1
|
Doole FT, Gupta S, Kumarage T, Ashkar R, Brown MF. Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:61-85. [PMID: 36988877 DOI: 10.1007/978-3-031-21547-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cell membranes regulate a wide range of phenomena that are implicated in key cellular functions. Cholesterol, a critical component of eukaryotic cell membranes, is responsible for cellular organization, membrane elasticity, and other critical physicochemical parameters. Besides cholesterol, other lipid components such as phosphatidylinositol 4,5-bisphosphate (PIP2) are found in minor concentrations in cell membranes yet can also play a major regulatory role in various cell functions. In this chapter, we describe how solid-state deuterium nuclear magnetic resonance (2H NMR) spectroscopy together with neutron spin-echo (NSE) spectroscopy can inform synergetic changes to lipid molecular packing due to cholesterol and PIP2 that modulate the bending rigidity of lipid membranes. Fundamental structure-property relations of molecular self-assembly are illuminated and point toward a length and time-scale dependence of cell membrane mechanics, with significant implications for biological activity and membrane lipid-protein interactions.
Collapse
Affiliation(s)
- Fathima T Doole
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sudipta Gupta
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Teshani Kumarage
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Rana Ashkar
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA.
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
- Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Doole FT, Kumarage T, Ashkar R, Brown MF. Cholesterol Stiffening of Lipid Membranes. J Membr Biol 2022; 255:385-405. [PMID: 36219221 PMCID: PMC9552730 DOI: 10.1007/s00232-022-00263-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Biomembrane order, dynamics, and other essential physicochemical parameters are controlled by cholesterol, a major component of mammalian cell membranes. Although cholesterol is well known to exhibit a condensing effect on fluid lipid membranes, the extent of stiffening that occurs with different degrees of lipid acyl chain unsaturation remains an enigma. In this review, we show that cholesterol locally increases the bending rigidity of both unsaturated and saturated lipid membranes, suggesting there may be a length-scale dependence of the bending modulus. We review our published data that address the origin of the mechanical effects of cholesterol on unsaturated and polyunsaturated lipid membranes and their role in biomembrane functions. Through a combination of solid-state deuterium NMR spectroscopy and neutron spin-echo spectroscopy, we show that changes in molecular packing cause the universal effects of cholesterol on the membrane bending rigidity. Our findings have broad implications for the role of cholesterol in lipid–protein interactions as well as raft-like mixtures, drug delivery applications, and the effects of antimicrobial peptides on lipid membranes.
Collapse
Affiliation(s)
- Fathima T Doole
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA
| | - Teshani Kumarage
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Michael F Brown
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85712, USA.
| |
Collapse
|
3
|
Gupta M, Weaver DF. Axonal plasma membrane-mediated toxicity of cholesterol in Alzheimer's disease: A microsecond molecular dynamics study. Biophys Chem 2021; 281:106718. [PMID: 34808480 DOI: 10.1016/j.bpc.2021.106718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease is increasingly being recognized as an immune-mediated disease of brain. Since physiological brain health and brain immune function is dependent upon homeostatic neuronal membrane structure and function, alterations in membrane lipid biochemistry may predispose to disease. Brain is rich in cholesterol, and cholesterol metabolism dysfunction is a known risk factor for AD. Employing extensive microsecond all-atom molecular dynamics simulations, we investigated the properties of model neuronal membranes as a function of cholesterol concentration; phospholipid and phospholipid/cholesterol bilayers were also simulated to compare against available experimental data. Increased cholesterol concentrations compact and stiffen the lipid membrane, reducing permeability while modulating local water densities in the peri-membranous environment. Conversely, lower cholesterol mole fraction yields membranes with increased molecular disorder, enhanced fluidity, higher molecular tilting, and augmented interdigitation between bilayer leaflet lipids. Our findings provide a molecular insight on effect of cholesterol composition on various biochemical processes occurring at neuronal axon plasma membrane. These calculations also endeavor to establish a membrane-based link between cholesterol as an AD risk factor and possible AD pathology.
Collapse
Affiliation(s)
- Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 0S8, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 0S8, Canada; Department of Chemistry, University of Toronto, Toronto M55 3H6, Canada; Department of Medicine, University of Toronto, Toronto M5G 2C4, Canada; Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada.
| |
Collapse
|
4
|
Abstract
BACKGROUND 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG), which catalyzes the synthesis of 25-hydroxycholesterol (25HC). 25HC intervenes in metabolic and infectious processes and controls cholesterol homeostasis and influences viral entry into host cells. We verified whether natural resistance to HIV-1 infection in HIV-1-exposed seronegative (HESN) individuals is at least partially mediated by particularities in sterol biosynthesis. METHODS Peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs) isolated from 15 sexually exposed HESN and 15 healthy controls were in vitro HIV-1-infected and analyzed for: percentage of IFNα-producing plasmacytoid dendritic cells (pDCs); cholesterol signaling and inflammatory response RNA expression; resistance to HIV-1 infection. MDMs from five healthy controls were in vitro HIV-1-infected in the absence/presence of exogenously added 25HC. RESULTS IFNα-producing pDCs were augmented in HESN compared with healthy controls both in unstimulated and in in vitro HIV-1-infected PBMCs (P < 0.001). An increased expression of CH25H and of a number of genes involved in cholesterol metabolism (ABCA1, ABCG1, CYP7B1, LXRα, OSBP, PPARγ, SCARB1) was observed as well; this, was associated with a reduced susceptibility to in-vitro HIV-1-infection of PBMCs and MDMs (P < 0.01). Notably, addition of 25HC to MDMs resulted in increased cholesterol efflux and augmented resistance to in-vitro HIV-1-infection. CONCLUSION Results herein show that in HESN sterol metabolism might be particularly efficient. This could be related to the activation of the IFNα pathway and results into a reduced susceptibility to in-vitro HIV-1 infection. These results suggest a possible basis for therapeutic interventions to modulate HIV-1 infection.
Collapse
|
5
|
Abstract
Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure-property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach-combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations-we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer's packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure-property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol's role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid-protein interactions.
Collapse
|
6
|
Gorabi AM, Kiaie N, Bianconi V, Jamialahmadi T, Al-Rasadi K, Johnston TP, Pirro M, Sahebkar A. Antiviral effects of statins. Prog Lipid Res 2020; 79:101054. [PMID: 32777243 DOI: 10.1016/j.plipres.2020.101054] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Introducing statins as possible widely-available drugs for the treatment of viral infections requires an in depth review of their antiviral properties. Despite some inconsistency, a large body of literature data from experimental and clinical studies suggest that statins may have a role in the treatment of viral infections due to their immunomodulatory properties as well as their ability to inhibit viral replication. In the present review, the role that statins may play while interacting with the immune system during viral infections and the possible inhibitory effects of statins on different stages of virus cell cycle (i.e., from fusion with host cell membranes to extracellular release) and subsequent virus transmission are described. Specifically, cholesterol-dependent and cholesterol-independent mechanisms of the antiviral effects of statins are reported.
Collapse
Affiliation(s)
- Armita M Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalid Al-Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
7
|
Comorbidities of HIV infection: role of Nef-induced impairment of cholesterol metabolism and lipid raft functionality. AIDS 2020; 34:1-13. [PMID: 31789888 PMCID: PMC6903377 DOI: 10.1097/qad.0000000000002385] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Combination antiretroviral therapy has dramatically changed the outcome of HIV infection, turning it from a death sentence to a manageable chronic disease. However, comorbidities accompanying HIV infection, such as metabolic and cardio-vascular diseases, as well as cognitive impairment, persist despite successful virus control by combination antiretroviral therapy and pose considerable challenges to clinical management of people living with HIV. These comorbidities involve a number of pathological processes affecting a variety of different tissues and cells, making it challenging to identify a common cause(s) that would link these different diseases to HIV infection. In this article, we will present evidence that impairment of cellular cholesterol metabolism may be a common factor driving pathogenesis of HIV-associated comorbidities. Potential implications for therapeutic approaches are discussed.
Collapse
|
8
|
HIV-1 viral protein R (Vpr) induces fatty liver in mice via LXRα and PPARα dysregulation: implications for HIV-specific pathogenesis of NAFLD. Sci Rep 2017; 7:13362. [PMID: 29042644 PMCID: PMC5645472 DOI: 10.1038/s41598-017-13835-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022] Open
Abstract
HIV patients develop hepatic steatosis. We investigated hepatic steatosis in transgenic mice expressing the HIV-1 accessory protein Vpr (Vpr-Tg) in liver and adipose tissues, and WT mice infused with synthetic Vpr. Vpr-Tg mice developed increased liver triglyceride content and elevated ALT, bilirubin and alkaline phosphatase due to three hepatic defects: 1.6-fold accelerated de novo lipogenesis (DNL), 45% slower fatty acid ß-oxidation, and 40% decreased VLDL-triglyceride export. Accelerated hepatic DNL was due to coactivation by Vpr of liver X receptor-α (LXRα) with increased expression of its lipogenic targets Srebp1c, Chrebp, Lpk, Dgat, Fasn and Scd1, and intranuclear SREBP1c and ChREBP. Vpr enhanced association of LXRα with Lxrα and Srebp1c promoters, increased LXRE-LXRα binding, and broadly altered hepatic expression of LXRα-regulated lipid metabolic genes. Diminished hepatic fatty acid ß-oxidation was associated with decreased mRNA expression of Pparα and its targets Cpt1, Aox, Lcad, Ehhadh, Hsd10 and Acaa2, and blunted VLDL export with decreased expression of Mttp and its product microsomal triglyceride transfer protein. With our previous findings that Vpr circulates in HIV patients (including those with undetectable plasma HIV-1 RNA), co-regulates the glucocorticoid receptor and PPARγ and transduces hepatocytes, these data indicate a potential role for Vpr in HIV-associated fatty liver disease.
Collapse
|
9
|
Wudiri GA, Nicola AV. Cellular Cholesterol Facilitates the Postentry Replication Cycle of Herpes Simplex Virus 1. J Virol 2017; 91:e00445-17. [PMID: 28446672 PMCID: PMC5487575 DOI: 10.1128/jvi.00445-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential component of cell membranes and is required for herpes simplex virus 1 (HSV-1) entry (1-3). Treatment of HSV-1-infected Vero cells with methyl beta-cyclodextrin from 2 to 9 h postentry reduced plaque numbers. Transport of incoming viral capsids to the nuclear periphery was unaffected by the cholesterol reduction, suggesting that cell cholesterol is important for the HSV-1 replicative cycle at a stage(s) beyond entry, after the arrival of capsids at the nucleus. The synthesis and release of infectious HSV-1 and cell-to-cell spread of infection were all impaired in cholesterol-reduced cells. Propagation of HSV-1 on DHCR24-/- fibroblasts, which lack the desmosterol-to-cholesterol conversion enzyme, resulted in the generation of infectious extracellular virions (HSVdes) that lack cholesterol and likely contain desmosterol. The specific infectivities (PFU per viral genome) of HSVchol and HSVdes were similar, suggesting cholesterol and desmosterol in the HSV envelope support similar levels of infectivity. However, infected DHCR24-/- fibroblasts released ∼1 log less infectious HSVdes and ∼1.5 log fewer particles than release of cholesterol-containing particles (HSVchol) from parental fibroblasts, suggesting that the hydrocarbon tail of cholesterol facilitates viral synthesis. Together, the results suggest multiple roles for cholesterol in the HSV-1 replicative cycle.IMPORTANCE HSV-1 infections are associated with a wide range of clinical manifestations that are of public health importance. Cholesterol is a key player in the complex interaction between viral and cellular factors that allows HSV-1 to enter host cells and establish infection. Previous reports have demonstrated a role for cellular cholesterol in the entry of HSV-1 into target cells. Here, we employed both chemical treatment and cells that were genetically defined to synthesize only desmosterol to demonstrate that cholesterol is important at stages following the initial entry and transport of viral capsids to the nucleus. Viral protein expression, encapsidation of the viral genome, and the release of mature virions were impacted by the reduction of cellular cholesterol. Cholesterol was also critical for cell-to-cell spread of infection. These findings provide new insights into the cholesterol dependence of HSV-1 replication.
Collapse
Affiliation(s)
- George A Wudiri
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
10
|
Dumas F, Haanappel E. Lipids in infectious diseases - The case of AIDS and tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1636-1647. [PMID: 28535936 DOI: 10.1016/j.bbamem.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Lipids play a central role in many infectious diseases. AIDS (Acquired Immune Deficiency Syndrome) and tuberculosis are two of the deadliest infectious diseases to have struck mankind. The pathogens responsible for these diseases, Human Immunodeficiency Virus-1 and Mycobacterium tuberculosis, rely on lipids and on lipid membrane properties to gain access to their host cells, to persist in them and ultimately to egress from their hosts. In this Review, we discuss the life cycles of these pathogens and the roles played by lipids and membranes. We then give an overview of therapies that target lipid metabolism, modulate host membrane properties or implement lipid-based drug delivery systems. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
11
|
Brandenberg OF, Magnus C, Regoes RR, Trkola A. The HIV-1 Entry Process: A Stoichiometric View. Trends Microbiol 2015; 23:763-774. [PMID: 26541228 DOI: 10.1016/j.tim.2015.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/31/2015] [Accepted: 09/16/2015] [Indexed: 11/15/2022]
Abstract
HIV-1 infection starts with fusion of the viral and the host cell membranes, a process mediated by the HIV-1 envelope glycoprotein trimer. The number of trimers required to complete membrane fusion, referred to as HIV-1 entry stoichiometry, remains under debate. A precise definition of HIV-1 entry stoichiometry is important as it reflects the efficacy of the viral entry process and steers the infectivity of HIV-1 virion populations. Initial estimates suggested a unanimous entry stoichiometry across HIV-1 strains while recent findings showed that HIV-1 strains can differ in entry stoichiometry. Here, we review current analyses of HIV-1 entry stoichiometry and point out future research directions to further define the interplay between entry stoichiometry, virus entry fitness, transmission, and susceptibility to antibody neutralization.
Collapse
Affiliation(s)
- Oliver F Brandenberg
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Carsten Magnus
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
12
|
Pessi A. Cholesterol-conjugated peptide antivirals: a path to a rapid response to emerging viral diseases. J Pept Sci 2014; 21:379-86. [PMID: 25331523 PMCID: PMC7167725 DOI: 10.1002/psc.2706] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/01/2014] [Accepted: 09/15/2014] [Indexed: 12/18/2022]
Abstract
While it is now possible to identify and genetically fingerprint the causative agents of emerging viral diseases, often with extraordinary speed, suitable therapies cannot be developed with equivalent speed, because drug discovery requires information that goes beyond knowledge of the viral genome. Peptides, however, may represent a special opportunity. For all enveloped viruses, fusion between the viral and the target cell membrane is an obligatory step of the life cycle. Class I fusion proteins harbor regions with a repeating pattern of amino acids, the heptad repeats (HRs), that play a key role in fusion, and HR‐derived peptides such as enfuvirtide, in clinical use for HIV, can block the process. Because of their characteristic sequence pattern, HRs are easily identified in the genome by means of computer programs, providing the sequence of candidate peptide inhibitors directly from genomic information. Moreover, a simple chemical modification, the attachment of a cholesterol group, can dramatically increase the antiviral potency of HR‐derived inhibitors and simultaneously improve their pharmacokinetics. Further enhancement can be provided by dimerization of the cholesterol‐conjugated peptide. The examples reported so far include inhibitors of retroviruses, paramyxoviruses, orthomyxoviruses, henipaviruses, coronaviruses, and filoviruses. For some of these viruses, in vivo efficacy has been demonstrated in suitable animal models. The combination of bioinformatic lead identification and potency/pharmacokinetics improvement provided by cholesterol conjugation may form the basis for a rapid response strategy, where development of an emergency cholesterol‐conjugated therapeutic would immediately follow the availability of the genetic information of a new enveloped virus. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Antonello Pessi
- PeptiPharma, Viale Città D'Europa 679, 00141, Roma, Italy; JV Bio, Via Gaetano Salvatore 486, 80145, Napoli, Italy; CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy
| |
Collapse
|