1
|
Jung KW, Lee SH, Lee KT, Bahn YS. Sensing and responding to host-derived stress signals: lessons from fungal meningitis pathogen. Curr Opin Microbiol 2024; 80:102514. [PMID: 39024914 DOI: 10.1016/j.mib.2024.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The sophisticated ability of living organisms to sense and respond to external stimuli is critical for survival. This is particularly true for fungal pathogens, where the capacity to adapt and proliferate within a host is essential. To this end, signaling pathways, whether evolutionarily conserved or unique, have been refined through interactions with the host. Cryptococcus neoformans, an opportunistic fungal pathogen, is responsible for over 190,000 cases and an estimated 147,000 annual deaths globally. Extensive research over the past decades has shed light on the signaling pathways underpinning the pathogenicity of C. neoformans, as well as the host's responses during infection. In this context, we delineate the regulatory mechanisms employed by C. neoformans to detect and react to stresses derived from the host.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
| | - Seung-Heon Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Yiallouris A, Pana ZD, Marangos G, Tzyrka I, Karanasios S, Georgiou I, Kontopyrgia K, Triantafyllou E, Seidel D, Cornely OA, Johnson EO, Panagiotou S, Filippou C. Fungal diversity in the soil Mycobiome: Implications for ONE health. One Health 2024; 18:100720. [PMID: 38699438 PMCID: PMC11064618 DOI: 10.1016/j.onehlt.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Today, over 300 million individuals worldwide are afflicted by severe fungal infections, many of whom will perish. Fungi, as a result of their plastic genomes have the ability to adapt to new environments and extreme conditions as a consequence of globalization, including urbanization, agricultural intensification, and, notably, climate change. Soils and the impact of these anthropogenic environmental factors can be the source of pathogenic and non-pathogenic fungi and subsequent fungal threats to public health. This underscores the growing understanding that not only is fungal diversity in the soil mycobiome a critical component of a functioning ecosystem, but also that soil microbial communities can significantly contribute to plant, animal, and human health, as underscored by the One Health concept. Collectively, this stresses the importance of investigating the soil microbiome in order to gain a deeper understanding of soil fungal ecology and its interplay with the rhizosphere microbiome, which carries significant implications for human health, animal health and environmental health.
Collapse
Affiliation(s)
- Andreas Yiallouris
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Zoi D. Pana
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | | | | | | | | | | | | | - Danila Seidel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A. Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Elizabeth O. Johnson
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Stavros Panagiotou
- School of Medicine, European University, Cyprus
- Division of Medical Education, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - Charalampos Filippou
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| |
Collapse
|
3
|
Kwon S, Choi Y, Kim ES, Lee KT, Bahn YS, Jung KW. Pleiotropic roles of LAMMER kinase, Lkh1 in stress responses and virulence of Cryptococcus neoformans. Front Cell Infect Microbiol 2024; 14:1369301. [PMID: 38774630 PMCID: PMC11106425 DOI: 10.3389/fcimb.2024.1369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 05/24/2024] Open
Abstract
Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.
Collapse
Affiliation(s)
- Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eui-Seong Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
| |
Collapse
|
4
|
Jung KW, Kwon S, Jung JH, Lim S, Bahn YS. Functional Characterization of DNA N-Glycosylase Ogg1 and Ntg1 in DNA Damage Stress of Cryptococcus neoformans. J Microbiol 2023; 61:981-992. [PMID: 38055144 DOI: 10.1007/s12275-023-00092-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Reactive oxygen species induce DNA strand breaks and DNA oxidation. DNA oxidation leads to DNA mismatches, resulting in mutations in the genome if not properly repaired. Homologous recombination (HR) and non-homologous end-joining (NHEJ) are required for DNA strand breaks, whereas the base excision repair system mainly repairs oxidized DNAs, such as 8-oxoguanine and thymine glycol, by cleaving the glycosidic bond, inserting correct nucleotides, and sealing the gap. Our previous studies revealed that the Rad53-Bdr1 pathway mainly controls DNA strand breaks through the regulation of HR- and NHEJ-related genes. However, the functional roles of genes involved in the base excision repair system remain elusive in Cryptococcus neoformans. In the present study, we identified OGG1 and NTG1 genes in the base excision repair system of C. neoformans, which are involved in DNA oxidation repair. The expression of OGG1 was induced in a Hog1-dependent manner under oxidative stress. On the other hand, the expression of NTG1 was strongly induced by DNA damage stress in a Rad53-independent manner. We demonstrated that the deletion of NTG1, but not OGG1, resulted in elevated susceptibility to DNA damage agents and oxidative stress inducers. Notably, the ntg1Δ mutant showed growth defects upon antifungal drug treatment. Although deletion of OGG1 or NTG1 did not increase mutation rates, the mutation profile of each ogg1Δ and ntg1Δ mutant was different from that of the wild-type strain. Taken together, we found that DNA N-glycosylase Ntg1 is required for oxidative DNA damage stress and antifungal drug resistance in C. neoformans.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangyong Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Yuzon JD, Schultzhaus Z, Wang Z. Transcriptomic and genomic effects of gamma-radiation exposure on strains of the black yeast Exophiala dermatitidis evolved to display increased ionizing radiation resistance. Microbiol Spectr 2023; 11:e0221923. [PMID: 37676019 PMCID: PMC10581076 DOI: 10.1128/spectrum.02219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/15/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE Ionizing radiation poses a significant threat to living organisms and human health, given its destructive nature and widespread use in fields such as medicine and the potential for nuclear disasters. Melanized fungi exhibit remarkable survival capabilities, enduring doses up to 1,000-fold higher than mammals. Through adaptive laboratory evolution, we validated the protective role of constitutive upregulation of DNA repair genes in the black yeast Exophiala dermatitidis, enhancing survival after radiation exposure. Surprisingly, we found that evolved strains lacking melanin still achieved high levels of radioresistance. Our study unveiled the significance of robust activation and enhancement of redox homeostasis, as evidenced by the profound transcriptional changes and increased accumulation of mutations, in substantially improving ionizing radiation resistance in the absence of melanin. These findings underscore the delicate balance between DNA repair and redox homeostasis for an organism's ability to endure and recover from radiation exposure.
Collapse
Affiliation(s)
- Jennifer D. Yuzon
- National Research Council Postdoctoral Research Associate, US Naval Research Laboratory, Washington, USA
| | - Zachary Schultzhaus
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, USA
| | - Zheng Wang
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, USA
| |
Collapse
|
6
|
Song X, Li T, Gu H, Yin H. Space exposure enhanced pectin-degrading enzymes expression and activity in Aspergillus costaricaensis. World J Microbiol Biotechnol 2023; 39:295. [PMID: 37658165 DOI: 10.1007/s11274-023-03740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Aspergillus is a well-studied fungal genus that is widely used in the processing of plant biomass in industries. This study investigated the effects of space exposure on the ability of Aspergillus costaricaensis, a filamentous fungus isolated from rotten orange peel, to degrade pectin. These fungal spores were carried into space by the Long March 5B carrier rocket and exposed to cosmic radiation for 79 h. After the flight, these spores were resuscitated, and then the growing strains were screened with pectin as the sole carbon source, and the pectinase activity was evaluated. A mutant with increased biomass accumulation ability and pectin-degrading activity compared to the ground control strain was obtained. Comparative transcriptome analysis revealed that several CAZymes genes were significantly upregulated in the mutant, especially those related to pectin degradation. Among the 44 pectinases identified from the annotated genome, 42 were up-regulated. The activities of these pectinases are able to synergistically break down the structure of pectin. In addition, the expression of some genes involved in metabolism, sugar transport, and stress response was altered. These results imply that space exposure might serve as a potential mutagenesis breeding technique, offering the opportunity to acquire biomass-degrading microbial strains with potential for industrial application.
Collapse
Affiliation(s)
- Xiaohui Song
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hui Gu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
7
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
8
|
O’Meara MJ, Rapala JR, Nichols CB, Alexandre C, Billmyre RB, Steenwyk JL, Alspaugh JA, O’Meara TR. CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553567. [PMID: 37645941 PMCID: PMC10462067 DOI: 10.1101/2023.08.17.553567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process. For Cryptococcus neoformans, a prevalent human fungal pathogen greatly diverged from model yeasts, approximately 60% of the predicted genes in the genome lack functional annotations. Here, we leveraged a large amount of publicly available transcriptomic data to generate a C. neoformans Co-Expression Network (CryptoCEN), successfully recapitulating known protein networks, predicting gene function, and enabling insights into the principles influencing co-expression. With 100% predictive accuracy, we used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility of guilt-by-association for determining gene function. Overall, co-expression is a powerful tool for uncovering gene function, and decreases the experimental tests needed to identify functions for currently under-annotated genes.
Collapse
Affiliation(s)
- Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jackson R. Rapala
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Connie B. Nichols
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina Alexandre
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - R. Blake Billmyre
- Departments of Pharmaceutical and Biomedical Sciences/Infectious Disease, College of Pharmacy/College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - J. Andrew Alspaugh
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Tessaro APG, de Araujo LG, Silva TT, Coelho E, Corrêa B, Rolindo NC, Vicente R. Prospects for fungal bioremediation of unburied waste packages from the Goiânia radiological accident. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41045-41059. [PMID: 36627427 DOI: 10.1007/s11356-023-25247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Goiânia, the Goiás State capital, starred in 1987, where one of the largest radiological accidents in the world happened. A teletherapy machine was subtracted from a derelict radiotherapy clinic and disassembled by scavengers who distributed fragments of the 50 TBq 137CsCl source among relatives and acquaintances, enchanted by the blue shine of the substance. During the 15 days before the accident was acknowledged, contaminated recycling materials were delivered to recycling factories in four cities in the state of São Paulo, Brazil, in the form of recycling paper bales. The contaminated bales were spotted, collected, and stored in fifty 1.6 m3 steel boxes at the interim storage facility of the Nuclear and Energy Research Institute (IPEN). In 2017, a check of the content was performed in a few boxes and the presence of high moisture content was observed even though the bales were dry when conditioned and the packages were kept sealed since then. The main objective of this work was to report the fungi found in the radioactive waste after they evolved for 30 years in isolation inside the waste boxes and their role in the decay of the waste. Examination of the microbiome showed the presence of nematodes and fungal communities. The fungi species isolated were Aspergillus quadricinctus, Fusarium oxysporum, Lecanicillium coprophilumi, Scedosporium boydii, Scytalidium lignicola, Xenoacremonium recifei, and Pleurostoma richardsiae. These microorganisms showed a significant capacity to digest cellulose in our trials, which could be one of the ways they survive in such a harsh environment, reducing the volume of radioactive paper waste. These metabolic abilities give us a future perspective of using these fungi in biotechnology to remediate radioactively contaminated materials, particularly cellulose-based waste.
Collapse
Affiliation(s)
- Ana Paula Gimenes Tessaro
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Leandro Goulart de Araujo
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil.
- Current Affiliation, Université de Lorraine, CNRS, 88000, Epinal, IJL, France.
| | - Thalita Tieko Silva
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Ednei Coelho
- Microbiology Department, University of Sao Paulo, Av. Professor Lineu Prestes, São Paulo, 1374, Brazil
| | - Benedito Corrêa
- Microbiology Department, University of Sao Paulo, Av. Professor Lineu Prestes, São Paulo, 1374, Brazil
| | - Natalie Costa Rolindo
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Roberto Vicente
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
10
|
Jung KW, Kwon S, Jung JH, Bahn YS. Essential Roles of Ribonucleotide Reductases under DNA Damage and Replication Stresses in Cryptococcus neoformans. Microbiol Spectr 2022; 10:e0104422. [PMID: 35736239 PMCID: PMC9431586 DOI: 10.1128/spectrum.01044-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
A balance in the deoxyribonucleotide (dNTPs) intracellular concentration is critical for the DNA replication and repair processes. In the model yeast Saccharomyces cerevisiae, the Mec1-Rad53-Dun1 kinase cascade mainly regulates the ribonucleotide reductase (RNR) gene expression during DNA replication and DNA damage stress. However, the RNR regulatory mechanisms in basidiomycete fungi during DNA replication and damage stress remain elusive. Here, we observed that in C. neoformans, RNR1 (large RNR subunit) and RNR21 (one small RNR subunit) were required for cell viability, but not RNR22 (another small RNR subunit). RNR22 overexpression compensated for the lethality of RNR21 suppression. In contrast to the regulatory mechanisms of RNRs in S. cerevisiae, Rad53 and Chk1 kinases cooperatively or divergently controlled RNR1 and RNR21 expression under DNA damage and DNA replication stress. In particular, this study revealed that Chk1 mainly regulated RNR1 expression during DNA replication stress, whereas Rad53, rather than Chk1, played a significant role in controlling the expression of RNR21 during DNA damage stress. Furthermore, the expression of RNR22, not but RNR1 and RNR21, was suppressed by the Ssn6-Tup1 complex during DNA replication stress. Notably, we observed that RNR1 expression was mainly regulated by Mbs1, whereas RNR21 expression was cooperatively controlled by Mbs1 and Bdr1 as downstream factors of Rad53 and Chk1 during DNA replication and damage stress. Collectively, the regulation of RNRs in C. neoformans has both evolutionarily conserved and divergent features in DNA replication and DNA damage stress, compared with other yeasts. IMPORTANCE Upon DNA replication or damage stresses, it is critical to provide proper levels of deoxynucleotide triphosphates (dNTPs) and activate DNA repair machinery. Ribonucleotide reductases (RNRs), which are composed of large and small subunits, are required for synthesizing dNTP. An imbalance in the intracellular concentration of dNTPs caused by the perturbation of RNR results in a reduction in DNA repair fidelity. Despite the importance of their roles, functions and regulations of RNR have not been elucidated in the basidiomycete fungi. In this study, we found that the roles of RNR1, RNR21, and RNR22 genes encoding RNR subunits in the viability of C. neoformans. Furthermore, their expression levels are divergently regulated by the Rad53-Chk1 pathway and the Ssn6-Tup1 complex in response to DNA replication and damage stresses. Therefore, this study provides insight into the regulatory mechanisms of RNR genes to DNA replication and damage stresses in basidiomycete fungi.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jong-Hyun Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zhou S, Liu S, Tian G, Zhao L, Wang H, Li Y, Shen Y, Han L. KLK5 is associated with the radioresistance, aggression, and progression of cervical cancer. Gynecol Oncol 2022; 166:138-147. [PMID: 35595569 DOI: 10.1016/j.ygyno.2022.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The role of kallikrein-related peptidase 5 (KLK5) has been studied in several diseases, including skin and ovarian cancers. However, its role in cervical cancer remains unclear, particularly in regulating the radiation resistance and growth of cervical cancer cells. Radiation resistance of cervical cancer is associated with local recurrence, distant metastasis, and reduced survival. METHODS We first analyzed radiotherapy-naive samples and relevant clinical data from patients with cervical cancer who received radiotherapy without surgery or other antitumor treatment from 2014 to 2016. Subsequently, biopsied tissues, in vitro cells, and transplanted tumors in nude mice were investigated. RESULTS Gene sequencing and clinical data analysis showed that KLK5 overexpression was associated with a poor prognosis post-radiotherapy. In in vitro cell and tumor transplantation experiments, KLK5 overexpression significantly increased radiation resistance. However, downregulating KLK5 expression increased radiosensitivity. CONCLUSION Our results confirm that KLK5 is vital to the radioresistance of cervical cancer, and provide a new target and marker for the treatment of radioresistance in cervical cancer.
Collapse
Affiliation(s)
- Shunqing Zhou
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130022, China.
| | - Shuyan Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130022, China.
| | - Geng Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130022, China.
| | - Lin Zhao
- Department of Obstetrics and Gynecology, The People's Hospital of LIAONING PROVINCE, Shenyang 110000, China
| | - Haichen Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Ying Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130022, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Liying Han
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130022, China.
| |
Collapse
|
12
|
Kelley M, Paulines MJ, Yoshida G, Myers R, Jora M, Levoy JP, Addepalli B, Benoit JB, Limbach PA. Ionizing radiation and chemical oxidant exposure impacts on Cryptococcus neoformans transfer RNAs. PLoS One 2022; 17:e0266239. [PMID: 35349591 PMCID: PMC8963569 DOI: 10.1371/journal.pone.0266239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus neoformans is a fungus that is able to survive abnormally high levels of ionizing radiation (IR). The radiolysis of water by IR generates reactive oxygen species (ROS) such as H2O2 and OH-. C. neoformans withstands the damage caused by IR and ROS through antioxidant production and enzyme-catalyzed breakdown of ROS. Given these particular cellular protein needs, questions arise whether transfer ribonucleic acids molecules (tRNAs) undergo unique chemical modifications to maintain their structure, stability, and/or function under such environmental conditions. Here, we investigated the effects of IR and H2O2 exposure on tRNAs in C. neoformans. We experimentally identified the modified nucleosides present in C. neoformans tRNAs and quantified changes in those modifications upon exposure to oxidative conditions. To better understand these modified nucleoside results, we also evaluated tRNA pool composition in response to the oxidative conditions. We found that regardless of environmental conditions, tRNA modifications and transcripts were minimally affected. A rationale for the stability of the tRNA pool and its concomitant profile of modified nucleosides is proposed based on the lack of codon bias throughout the C. neoformans genome and in particular for oxidative response transcripts. Our findings suggest that C. neoformans can rapidly adapt to oxidative environments as mRNA translation/protein synthesis are minimally impacted by codon bias.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Mellie June Paulines
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - George Yoshida
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ryan Myers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Manasses Jora
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Joel P. Levoy
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
13
|
Bijlani S, Parker C, Singh NK, Sierra MA, Foox J, Wang CCC, Mason CE, Venkateswaran K. Genomic Characterization of the Titan-like Cell Producing Naganishia tulchinskyi, the First Novel Eukaryote Isolated from the International Space Station. J Fungi (Basel) 2022; 8:165. [PMID: 35205919 PMCID: PMC8875396 DOI: 10.3390/jof8020165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022] Open
Abstract
Multiple strains of a novel yeast belonging to genus Naganishia were isolated from environmental surfaces aboard the International Space Station (ISS). These strains exhibited a phenotype similar to Titan cell (~10 µm diameter) morphology when grown under a combination of simulated microgravity and 5% CO2 conditions. Confocal, scanning, and transmission electron microscopy revealed distinct morphological differences between the microgravity-grown cells and the standard Earth gravity-grown cells, including larger cells and thicker cell walls, altered intracellular morphology, modifications to extracellular fimbriae, budding, and the shedding of bud scars. Phylogenetic analyses via multi-locus sequence typing indicated that these ISS strains represented a single species in the genus Naganishia and were clustered with Naganishia diffluens. The name Naganishia tulchinskyi is proposed to accommodate these strains, with IF6SW-B1T as the holotype. The gene ontologies were assigned to the cell morphogenesis, microtubule-based response, and response to UV light, suggesting a variety of phenotypes that are well suited to respond to microgravity and radiation. Genomic analyses also indicated that the extracellular region, outer membrane, and cell wall were among the highest cellular component results, thus implying a set of genes associated with Titan-like cell plasticity. Finally, the highest molecular function matches included cytoskeletal motor activity, microtubule motor activity, and nuclear export signal receptor activity.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; (S.B.); (C.C.C.W.)
| | - Ceth Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.P.); (N.K.S.)
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.P.); (N.K.S.)
| | - Maria A. Sierra
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA;
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Jonathan Foox
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10021, USA;
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; (S.B.); (C.C.C.W.)
| | - Christopher E. Mason
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10021, USA;
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.P.); (N.K.S.)
| |
Collapse
|
14
|
Understanding the way eumelanin works: A unique example of properties and skills driven by molecular heterogeneity. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Homology length dictates the requirement for Rad51 and Rad52 in gene targeting in the Basidiomycota yeast Naganishia liquefaciens. Curr Genet 2021; 67:919-936. [PMID: 34296348 DOI: 10.1007/s00294-021-01201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Here, we report the development of methodologies that enable genetic modification of a Basidiomycota yeast, Naganishia liquifaciens. The gene targeting method employs electroporation with PCR products flanked by an 80 bp sequence homologous to the target. The method, combined with a newly devised CRISPR-Cas9 system, routinely achieves 80% gene targeting efficiency. We further explored the genetic requirement for this homologous recombination (HR)-mediated gene targeting. The absence of Ku70, a major component of the non-homologous end joining (NHEJ) pathway of DNA double-strand break repair, almost completely eliminated inaccurate integration of the marker. Gene targeting with short homology (80 bp) was almost exclusively dependent on Rad52, an essential component of HR in the Ascomycota yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. By contrast, the RecA homolog Rad51, which performs homology search and strand exchange in HR, plays a relatively minor role in gene targeting, regardless of the homology length (80 bp or 1 kb). The absence of both Rad51 and Rad52, however, completely eliminated gene targeting. Unlike Ascomycota yeasts, the absence of Rad52 in N. liquefaciens conferred only mild sensitivity to ionizing radiation. These traits associated with the absence of Rad52 are reminiscent of findings in mice.
Collapse
|
16
|
Jung KW, Jung JH, Park HY. Functional Roles of Homologous Recombination and Non-Homologous End Joining in DNA Damage Response and Microevolution in Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7070566. [PMID: 34356945 PMCID: PMC8307084 DOI: 10.3390/jof7070566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most deleterious type of DNA lesions because they cause loss of genetic information if not properly repaired. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ) are required for DSB repair. However, the relationship of HR and NHEJ in DNA damage stress is unknown in the radiation-resistant fungus Cryptococcus neoformans. In this study, we found that the expression levels of HR- and NHEJ-related genes were highly induced in a Rad53-Bdr1 pathway-dependent manner under genotoxic stress. Deletion of RAD51, which is one of the main components in the HR, resulted in growth under diverse types of DNA damage stress, whereas perturbations of KU70 and KU80, which belong to the NHEJ system, did not affect the genotoxic stresses except when bleomycin was used for treatment. Furthermore, deletion of both RAD51 and KU70/80 renders cells susceptible to oxidative stress. Notably, we found that deletion of RAD51 induced a hypermutator phenotype in the fluctuation assay. In contrast to the fluctuation assay, perturbation of KU70 or KU80 induced rapid microevolution similar to that induced by the deletion of RAD51. Collectively, Rad51-mediated HR and Ku70/Ku80-mediated NHEJ regulate the DNA damage response and maintain genome stability.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si 56212, Jeollabuk-Do, Korea; (J.-H.J.); (H.-Y.P.)
- Correspondence: ; Tel.: +82-63-570-3337
| | - Jong-Hyun Jung
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si 56212, Jeollabuk-Do, Korea; (J.-H.J.); (H.-Y.P.)
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Korea
| | - Ha-Young Park
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si 56212, Jeollabuk-Do, Korea; (J.-H.J.); (H.-Y.P.)
| |
Collapse
|
17
|
Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus neoformans. Molecules 2021; 26:molecules26113476. [PMID: 34200464 PMCID: PMC8201179 DOI: 10.3390/molecules26113476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Due to lifespan extension and changes in global climate, the increase in mycoses caused by primary and opportunistic fungal pathogens is now a global concern. Despite increasing attention, limited options are available for the treatment of systematic and invasive mycoses, owing to the evolutionary similarity between humans and fungi. Although plants produce a diversity of chemicals to protect themselves from pathogens, the molecular targets and modes of action of these plant-derived chemicals have not been well characterized. Using a reverse genetics approach, the present study revealed that thymol, a monoterpene alcohol from Thymus vulgaris L., (Lamiaceae), exhibits antifungal activity against Cryptococcus neoformans by regulating multiple signaling pathways including calcineurin, unfolded protein response, and HOG (high-osmolarity glycerol) MAPK (mitogen-activated protein kinase) pathways. Thymol treatment reduced the intracellular concentration of Ca2+ by controlling the expression levels of calcium transporter genes in a calcineurin-dependent manner. We demonstrated that thymol decreased N-glycosylation by regulating the expression levels of genes involved in glycan-mediated post-translational modifications. Furthermore, thymol treatment reduced endogenous ergosterol content by decreasing the expression of ergosterol biosynthesis genes in a HOG MAPK pathway-dependent manner. Collectively, this study sheds light on the antifungal mechanisms of thymol against C. neoformans.
Collapse
|
18
|
Terranova ML. Radioactivity to Rethink the Earth's Energy Balance. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000094. [PMID: 34141445 PMCID: PMC8182276 DOI: 10.1002/gch2.202000094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/09/2021] [Indexed: 05/27/2023]
Abstract
This contribution invites to re-examine the whole matter of radioactivity, reconsidering it from the point of view of a realistic source of energy. State-of-the-art and technical aspects are briefly illustrated in this note that aims to open a discussion on this challenging topic.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Tor Vergata University of RomaDepartment of Chemical Sciences and TechnologiesVia della Ricerca ScientificaRoma00133Italy
| |
Collapse
|
19
|
Lim S, Bijlani S, Blachowicz A, Chiang YM, Lee MS, Torok T, Venkateswaran K, Wang CCC. Identification of the pigment and its role in UV resistance in Paecilomyces variotii, a Chernobyl isolate, using genetic manipulation strategies. Fungal Genet Biol 2021; 152:103567. [PMID: 33989788 DOI: 10.1016/j.fgb.2021.103567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/19/2022]
Abstract
Fungi produce secondary metabolites that are not directly involved in their growth, but often contribute to their adaptation to extreme environmental stimuli and enable their survival. Conidial pigment or melanin is one of the secondary metabolites produced naturally by a polyketide synthesis (PKS) gene cluster in several filamentous fungi and is known to protect these fungi from extreme radiation conditions. Several pigmented or melanized fungi have been shown to grow under extreme radiation conditions at the Chernobyl nuclear accident site. Some of these fungi, including Paecilomyces variotii, were observed to grow towards the source of radiation. Therefore, in this study, we wanted to identify if the pigment produced by P. variotii, contributes to providing protection against radiation condition. We first identified the PKS gene responsible for synthesis of pigment in P. variotii and confirmed its role in providing protection against UV irradiation through CRISPR-Cas9 mediated gene deletion. This is the first report that describes the use of CRISPR methodology to create gene deletions in P. variotii. Further, we showed that the pigment produced by this fungus, was not inhibited by DHN-melanin pathway inhibitors, indicating that the fungus does not produce melanin. We then identified the pigment synthesized by the PKS gene of P. variotii, as a naptho-pyrone Ywa1, by heterologously expressing the gene in Aspergillus nidulans. The results obtained will further aid in understanding the mechanistic basis of radiation resistance.
Collapse
Affiliation(s)
- Sujeung Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ming-Shian Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Wang P. Genetic Transformation in Cryptococcus Species. J Fungi (Basel) 2021; 7:56. [PMID: 33467426 PMCID: PMC7829943 DOI: 10.3390/jof7010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic transformation plays an imperative role in our understanding of the biology in unicellular yeasts and filamentous fungi, such as Saccharomyces cerevisiae, Aspergillus nidulans, Cryphonectria parasitica, and Magnaporthe oryzae. It also helps to understand the virulence and drug resistance mechanisms of the pathogenic fungus Cryptococcus that causes cryptococcosis in health and immunocompromised individuals. Since the first attempt at DNA transformation in this fungus by Edman in 1992, various methods and techniques have been developed to introduce DNA into this organism and improve the efficiency of homology-mediated gene disruption. There have been many excellent summaries or reviews covering the subject. Here we highlight some of the significant achievements and additional refinements in the genetic transformation of Cryptococcus species.
Collapse
Affiliation(s)
- Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
21
|
Schultzhaus Z, Chen A, Shuryak I, Wang Z. The Transcriptomic and Phenotypic Response of the Melanized Yeast Exophiala dermatitidis to Ionizing Particle Exposure. Front Microbiol 2021; 11:609996. [PMID: 33510728 PMCID: PMC7835796 DOI: 10.3389/fmicb.2020.609996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 01/20/2023] Open
Abstract
Fungi can tolerate extremely high doses of ionizing radiation compared with most other eukaryotes, a phenomenon encompassing both the recovery from acute exposure and the growth of melanized fungi in chronically contaminated environments such as nuclear disaster sites. This observation has led to the use of fungi in radiobiology studies, with the goal of finding novel resistance mechanisms. However, it is still not entirely clear what underlies this phenomenon, as genetic studies have not pinpointed unique responses to ionizing radiation in the most resistant fungi. Additionally, little work has been done examining how fungi (other than budding yeast) respond to irradiation by ionizing particles (e.g., protons, α-particles), although particle irradiation may cause distinct cellular damage, and is more relevant for human risks. To address this paucity of data, in this study we have characterized the phenotypic and transcriptomic response of the highly radioresistant yeast Exophiala dermatitidis to irradiation by three separate ionizing radiation sources: protons, deuterons, and α-particles. The experiment was performed with both melanized and non-melanized strains of E. dermatitidis, to determine the effect of this pigment on the response. No significant difference in survival was observed between these strains under any condition, suggesting that melanin does not impart protection to acute irradiation to these particles. The transcriptomic response during recovery to particle exposure was similar to that observed after γ-irradiation, with DNA repair and replication genes upregulated, and genes involved in translation and ribosomal biogenesis being heavily repressed, indicating an attenuation of cell growth. However, a comparison of global gene expression showed clear clustering of particle and γ-radiation groups. The response elicited by particle irradiation was, in total, more complex. Compared to the γ-associated response, particle irradiation resulted in greater changes in gene expression, a more diverse set of differentially expressed genes, and a significant induction of gene categories such as autophagy and protein catabolism. Additionally, analysis of individual particle responses resulted in identification of the first unique expression signatures and individual genes for each particle type that could be used as radionuclide discrimination markers.
Collapse
Affiliation(s)
- Zachary Schultzhaus
- Center for Biomolecular Science and Engineering, United States Naval Research Laboratory, Washington, DC, United States
| | - Amy Chen
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Zheng Wang
- Center for Biomolecular Science and Engineering, United States Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
22
|
Romsdahl J, Schultzhaus Z, Chen A, Liu J, Ewing A, Hervey J, Wang Z. Adaptive evolution of a melanized fungus reveals robust augmentation of radiation resistance by abrogating non-homologous end-joining. Environ Microbiol 2020; 23:3627-3645. [PMID: 33078510 DOI: 10.1111/1462-2920.15285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
Fungi have been observed to exhibit resistance to high levels of ionizing radiation despite sharing most DNA repair mechanisms with other eukaryotes. Radioresistance, in fact, is such a common feature in fungi that it is difficult to identify species that exhibit widely different radiosensitivities, which in turn has hampered the identification of genetic elements responsible for this resistance phenotype. Due to the inherent mutagenic properties of radiation exposure, however, this can be addressed through adaptive laboratory evolution for increased ionizing radiation resistance. Here, using the black yeast Exophiala dermatitidis, we demonstrate that resistance to γ-radiation can be greatly increased through repeated rounds of irradiation and outgrowth. Moreover, we find that the small genome size of fungi situates them as a relatively simple functional genomics platform for identification of mutations associated with ionizing radiation resistance. This enabled the identification of genetic mutations in genes encoding proteins with a broad range of functions from 10 evolved strains. Specifically, we find that greatly increased resistance to γ-radiation is achieved in E. dermatitidis through disruption of the non-homologous end-joining pathway, with three individual evolutionary paths converging to abolish this DNA repair process. This result suggests that non-homologous end-joining, even in haploid cells where homologous chromosomes are not present during much of the cell cycle, is an impediment to repair of radiation-induced lesions in this organism, and that the relative levels of homologous and non-homologous repair in a given fungal species may play a major role in its radiation resistance.
Collapse
Affiliation(s)
- Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, Naval Research Laboratory, Washington, DC, USA
| | - Zachary Schultzhaus
- Center for Biomolecular Sciences and Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Amy Chen
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Jing Liu
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | | | - Judson Hervey
- Center for Biomolecular Sciences and Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Zheng Wang
- Center for Biomolecular Sciences and Engineering, US Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
23
|
Schultzhaus ZS, Schultzhaus JN, Romsdahl J, Chen A, Hervey IV WJ, Leary DH, Wang Z. Proteomics Reveals Distinct Changes Associated with Increased Gamma Radiation Resistance in the Black Yeast Exophiala dermatitidis. Genes (Basel) 2020; 11:E1128. [PMID: 32992890 PMCID: PMC7650708 DOI: 10.3390/genes11101128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
The yeast Exophiala dermatitidis exhibits high resistance to γ-radiation in comparison to many other fungi. Several aspects of this phenotype have been characterized, including its dependence on homologous recombination for the repair of radiation-induced DNA damage, and the transcriptomic response invoked by acute γ-radiation exposure in this organism. However, these findings have yet to identify unique γ-radiation exposure survival strategies-many genes that are induced by γ-radiation exposure do not appear to be important for recovery, and the homologous recombination machinery of this organism is not unique compared to more sensitive species. To identify features associated with γ-radiation resistance, here we characterized the proteomes of two E. dermatitidis strains-the wild type and a hyper-resistant strain developed through adaptive laboratory evolution-before and after γ-radiation exposure. The results demonstrate that protein intensities do not change substantially in response to this stress. Rather, the increased resistance exhibited by the evolved strain may be due in part to increased basal levels of single-stranded binding proteins and a large increase in ribosomal content, possibly allowing for a more robust, induced response during recovery. This experiment provides evidence enabling us to focus on DNA replication, protein production, and ribosome levels for further studies into the mechanism of γ-radiation resistance in E. dermatitidis and other fungi.
Collapse
Affiliation(s)
- Zachary S. Schultzhaus
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.S.); (J.N.S.); (W.J.H.IV); (D.H.L.)
| | - Janna N. Schultzhaus
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.S.); (J.N.S.); (W.J.H.IV); (D.H.L.)
| | - Jillian Romsdahl
- National Research Council, Postdoctoral Fellowship Program, US Naval Research Laboratory, Washington, DC 20744, USA;
| | - Amy Chen
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA;
| | - W. Judson Hervey IV
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.S.); (J.N.S.); (W.J.H.IV); (D.H.L.)
| | - Dagmar H. Leary
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.S.); (J.N.S.); (W.J.H.IV); (D.H.L.)
| | - Zheng Wang
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.S.); (J.N.S.); (W.J.H.IV); (D.H.L.)
| |
Collapse
|
24
|
Genome-wide functional analysis of phosphatases in the pathogenic fungus Cryptococcus neoformans. Nat Commun 2020; 11:4212. [PMID: 32839469 PMCID: PMC7445287 DOI: 10.1038/s41467-020-18028-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatases, together with kinases and transcription factors, are key components in cellular signalling networks. Here, we present a systematic functional analysis of the phosphatases in Cryptococcus neoformans, a fungal pathogen that causes life-threatening fungal meningoencephalitis. We analyse 230 signature-tagged mutant strains for 114 putative phosphatases under 30 distinct in vitro growth conditions, revealing at least one function for 60 of these proteins. Large-scale virulence and infectivity assays using insect and mouse models indicate roles in pathogenicity for 31 phosphatases involved in various processes such as thermotolerance, melanin and capsule production, stress responses, O-mannosylation, or retromer function. Notably, phosphatases Xpp1, Ssu72, Siw14, and Sit4 promote blood-brain barrier adhesion and crossing by C. neoformans. Together with our previous systematic studies of transcription factors and kinases, our results provide comprehensive insight into the pathobiological signalling circuitry of C. neoformans. Phosphatases are key components in cellular signalling networks. Here, the authors present a systematic functional analysis of phosphatases of the fungal pathogen Cryptococcus neoformans, revealing roles in virulence, stress responses, O-mannosylation, retromer function and other processes.
Collapse
|
25
|
Schultzhaus Z, Romsdahl J, Chen A, Tschirhart T, Kim S, Leary D, Wang Z. The response of the melanized yeast Exophiala dermatitidis to gamma radiation exposure. Environ Microbiol 2020; 22:1310-1326. [PMID: 32011087 DOI: 10.1111/1462-2920.14936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 01/21/2023]
Abstract
The melanized yeast Exophiala dermatitidis is resistant to many environmental stresses and is used as a model for understanding the diverse roles of melanin in fungi. Here, we describe the extent of resistance of E. dermatitidis to acute γ-radiation exposure and the major mechanisms it uses to recover from this stress. We find that melanin does not protect E. dermatitidis from γ-radiation. Instead, environmental factors such as nutrient availability, culture age and culture density are much greater determinants of cell survival after exposure. We also observe a dramatic transcriptomic response to γ-radiation that mobilizes pathways involved in morphological development, protein degradation and DNA repair, and is unaffected by the presence of melanin. Together, these results suggest that the ability of E. dermatitidis to survive γ-radiation exposure is determined by the prior and the current metabolic state of the cells as well as DNA repair mechanisms, and that small changes in these conditions can lead to large effects in radiation resistance, which should be taken into account when understanding how diverse fungi recover from this unique stress.
Collapse
Affiliation(s)
- Zachary Schultzhaus
- National Research Council Postdoctoral Research Associate, National Research Laboratory, Washington, DC, USA
| | - Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, National Research Laboratory, Washington, DC, USA
| | - Amy Chen
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Tanya Tschirhart
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Seongwon Kim
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Dagmar Leary
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Zheng Wang
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
26
|
Candida glabrata peroxiredoxins, Tsa1 and Tsa2, and sulfiredoxin, Srx1, protect against oxidative damage and are necessary for virulence. Fungal Genet Biol 2019; 135:103287. [PMID: 31654781 DOI: 10.1016/j.fgb.2019.103287] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/22/2022]
Abstract
Candida glabrata is an opportunistic fungal pathogen that can cause life-threatening infections in immunocompromised patients. To ensure a successful infection, C. glabrata has evolved a variety of strategies to avoid killing within the host. One of these strategies is the resistance to oxidative stress. Here we show that the sulfiredoxin Srx1 and the peroxiredoxins, Tsa1 and Tsa2, are implicated in the oxidative stress response (OSR) and required for virulence. We analyzed null mutations in SRX1, TSA1 and TSA2 and showed that TSA2 and SRX1 are required to respond to oxidative stress. While TSA1 expression is constitutive, SRX1 and TSA2 are induced in the presence of H2O2 in a process dependent on H2O2 concentration and on both transcription factors Yap1 and Skn7. Msn2 and Msn4 are not necessary for the regulation of SRX1, TSA1 and TSA2. Interestingly, TSA1 and TSA2, which are localized in the cytoplasm, are induced in the presence of neutrophils and required for survival in these phagocytic cells.
Collapse
|
27
|
Verma S, Shakya VPS, Idnurm A. The dual function gene RAD23 contributes to Cryptococcus neoformans virulence independently of its role in nucleotide excision DNA repair. Gene 2019; 717:144043. [PMID: 31400407 DOI: 10.1016/j.gene.2019.144043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/18/2022]
Abstract
Genes involved in the repair of DNA damage are emerging as playing important roles during the disease processes caused by pathogenic fungi. However, there are potentially hundreds of genes involved in DNA repair in a fungus and some of those genes can play additional roles within the cell. One such gene is RAD23, required for virulence of the human pathogenic fungus Cryptococcus neoformans, that encodes a protein involved in the nucleotide excision repair (NER) pathway. However, Rad23 is a dual function protein, with a role in either repair of damaged DNA or protein turn over by directing proteins to the proteasome. Here, these two functions of Rad23 were tested by the creation of a series of domain deletion alleles of RAD23 and the assessment of the strains for DNA repair, proteasome functions, and virulence properties. Deletion of the different domains was able to uncouple the two functions of Rad23, and the phenotypes of strains carrying such forms indicated that the role of RAD23 in virulence is due to its function in proteasomal-mediated protein degradation rather than NER.
Collapse
Affiliation(s)
- Surbhi Verma
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Viplendra P S Shakya
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA; School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
28
|
So YS, Lee DG, Idnurm A, Ianiri G, Bahn YS. The TOR Pathway Plays Pleiotropic Roles in Growth and Stress Responses of the Fungal Pathogen Cryptococcus neoformans. Genetics 2019; 212:1241-1258. [PMID: 31175227 PMCID: PMC6707454 DOI: 10.1534/genetics.119.302191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/02/2019] [Indexed: 11/18/2022] Open
Abstract
The target of rapamycin (TOR) pathway is an evolutionarily conserved signal transduction system that governs a plethora of eukaryotic biological processes, but its role in Cryptococcus neoformans remains elusive. In this study, we investigated the TOR pathway by functionally characterizing two Tor-like kinases, Tor1 and Tlk1, in C. neoformans We successfully deleted TLK1, but not TOR1TLK1 deletion did not result in any evident in vitro phenotypes, suggesting that Tlk1 is dispensable for the growth of C. neoformans We demonstrated that Tor1, but not Tlk1, is essential and the target of rapamycin by constructing and analyzing conditionally regulated strains and sporulation analysis of heterozygous mutants in the diploid strain background. To further analyze the Tor1 function, we constructed constitutive TOR1 overexpression strains. Tor1 negatively regulated thermotolerance and the DNA damage response, which are two important virulence factors of C. neoformansTOR1 overexpression reduced Mpk1 phosphorylation, which is required for cell wall integrity and thermoresistance, and Rad53 phosphorylation, which governs the DNA damage response pathway. Tor1 is localized to the cytoplasm, but enriched in the vacuole membrane. Phosphoproteomics and transcriptomics revealed that Tor1 regulates a variety of biological processes, including metabolic processes, cytoskeleton organization, ribosome biogenesis, and stress response. TOR inhibition by rapamycin caused actin depolarization in a Tor1-dependent manner. Finally, screening rapamycin-sensitive and -resistant kinase and transcription factor mutants revealed that the TOR pathway may crosstalk with a number of stress signaling pathways. In conclusion, our study demonstrates that a single Tor1 kinase plays pleiotropic roles in C. neoformans.
Collapse
Affiliation(s)
- Yee-Seul So
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong-Gi Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
29
|
Minkoff BB, Bruckbauer ST, Sabat G, Cox MM, Sussman MR. Covalent Modification of Amino Acids and Peptides Induced by Ionizing Radiation from an Electron Beam Linear Accelerator Used in Radiotherapy. Radiat Res 2019; 191:447-459. [PMID: 30849023 PMCID: PMC6506356 DOI: 10.1667/rr15288.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To identify modifications to amino acids that are directly induced by ionizing radiation, free amino acids and 3-residue peptides were irradiated using a linear accelerator (Linac) radiotherapy device. Mass spectrometry was performed to detail the relative sensitivity to radiation as well as identify covalent, radiation-dependent adducts. The order of reactivity of the 20 common amino acids was generally in agreement with published literature except for His (most reactive of the 20) and Cys (less reactive). Novel and previously identified modifications on the free amino acids were detected. Amino acids were far less reactive when flanked by glycine residues in a tripeptide. Order of reactivity, with GVG most and GEG least, was substantially altered, as were patterns of modification. Radiation reactivity of amino acids is clearly and strongly affected by conversion of the α-amino and α-carboxyl groups to peptide bonds, and the presence of neighboring amino acid residues.
Collapse
Affiliation(s)
- Benjamin B. Minkoff
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Steven T. Bruckbauer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael R. Sussman
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
30
|
Cui W, Li X, Hull L, Xiao M. GATA-type transcription factors play a vital role in radiation sensitivity of Cryptococcus neoformans by regulating the gene expression of specific amino acid permeases. Sci Rep 2019; 9:6385. [PMID: 31015536 PMCID: PMC6478845 DOI: 10.1038/s41598-019-42778-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
Cryptococcus neoformans is a basidiomycete fungus that is highly resistant to ionizing radiation and has been identified in highly radioactive environments. Transcription factors (TFs) are master regulators of gene expression by binding to specific DNA sequences within promoters of target genes. A library of 322 signature-tagged gene deletion strains for 155 C. neoformans TF genes has been established. Previous phenome-based functional analysis of the C. neoformans TF mutant library identified key TFs important for various phenotypes, such as growth, differentiation, virulence-factor production, and stress responses. Here, utilizing the established TF mutant library, we identified 5 TFs that are important for radiation sensitivity, including SRE1, BZP2, GAT5, GAT6, and HCM1. Interestingly, BZP2, GAT5 and GAT6 all belong to the GATA-type transcription factors. These factors regulate transcription of nitrogen catabolite repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. In addition to radiation, we found that specific GATA factors are important for other stressors such as rapamycin, fluconazole, and hydroxyurea treatment. Using real-time PCR method, we studied the expression of GATA down-stream genes after radiation exposure and identified that AAP4, AAP5 and URO1 were differentially expressed in the GAT5 and GAT6 mutants compared to the wild type cells. In summary, our data suggest that GATA TFs are important for radiation sensitivity in C. neoformans by regulating specific downstream AAP genes.
Collapse
Affiliation(s)
- Wanchang Cui
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - XiangHong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lisa Hull
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
31
|
Phenotypic characteristics and transcriptome profile of Cryptococcus gattii biofilm. Sci Rep 2019; 9:6438. [PMID: 31015652 PMCID: PMC6478838 DOI: 10.1038/s41598-019-42896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we characterized Cryptococcus gattii biofilm formation in vitro. There was an increase in the density of metabolically active sessile cells up to 72 h of biofilm formation on polystyrene and glass surfaces. Scanning electron microscopy and confocal laser scanning microscopy analysis revealed that in the early stage of biofilm formation, yeast cells adhered to the abiotic surface as a monolayer. After 12 h, extracellular fibrils were observed projecting from C. gattii cells, connecting the yeast cells to each other and to the abiotic surface; mature biofilm consisted of a dense network of cells deeply encased in an extracellular polymeric matrix. These features were also observed in biofilms formed on polyvinyl chloride and silicone catheter surfaces. We used RNA-Seq-based transcriptome analysis to identify changes in gene expression associated with C. gattii biofilm at 48 h compared to the free-floating planktonic cells. Differential expression analysis showed that 97 and 224 transcripts were up-regulated and down-regulated in biofilm, respectively. Among the biological processes, the highest enriched term showed that the transcripts were associated with cellular metabolic processes, macromolecule biosynthetic processes and translation.
Collapse
|
32
|
Schultzhaus Z, Chen A, Kim S, Shuryak I, Chang M, Wang Z. Transcriptomic analysis reveals the relationship of melanization to growth and resistance to gamma radiation in Cryptococcus neoformans. Environ Microbiol 2019; 21:2613-2628. [PMID: 30724440 DOI: 10.1111/1462-2920.14550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 11/29/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans produces melanin within its cell wall for infection and resistance against external stresses such as exposure to UV, temperature fluctuations and reactive oxygen species. It has been reported that melanin may also protect cells from ionizing radiation damage, against which C. neoformans is extremely resistant. This has tagged melanin as a potential radioprotective biomaterial. Here, we report the effect of melanin on the transcriptomic response of C. neoformans to gamma radiation. We did not observe a substantial protective effect of melanin against gamma radiation, and the general gene expression patterns in irradiated cells were independent of the presence of melanin. However, melanization itself dramatically altered the C. neoformans transcriptome, primarily by repressing genes involved in respiration and cell growth. We suggest that, in addition to providing a physical and chemical barrier against external stresses, melanin production alters the transcriptional landscape of C. neoformans with the result of increased resistance to uncertain environmental conditions. This observation demonstrates the importance of the melanization process in understanding the stress response of C. neoformans and for understanding fungal physiology.
Collapse
Affiliation(s)
- Zachary Schultzhaus
- National Research Council Postdoctoral Research Associate, Naval Research Laboratory, Washington, DC, USA
| | - Amy Chen
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Seongwon Kim
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Melody Chang
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Zheng Wang
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
33
|
Rad53- and Chk1-Dependent DNA Damage Response Pathways Cooperatively Promote Fungal Pathogenesis and Modulate Antifungal Drug Susceptibility. mBio 2019; 10:mBio.01726-18. [PMID: 30602579 PMCID: PMC6315099 DOI: 10.1128/mbio.01726-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome instability is detrimental for living things because it induces genetic disorder diseases and transfers incorrect genome information to descendants. Therefore, living organisms have evolutionarily conserved signaling networks to sense and repair DNA damage. However, how the DNA damage response pathway is regulated for maintaining the genome integrity of fungal pathogens and how this contributes to their pathogenicity remain elusive. In this study, we investigated the DNA damage response pathway in the basidiomycete pathogen Cryptococcus neoformans, which causes life-threatening meningoencephalitis in immunocompromised individuals, with an average of 223,100 infections leading to 181,100 deaths reported annually. Here, we found that perturbation of Rad53- and Chk1-dependent DNA damage response pathways attenuated the virulence of C. neoformans and increased its susceptibility to certain antifungal drugs, such as amphotericin B and flucytosine. Therefore, our work paves the way to understanding the important role of human fungal DNA damage networks in pathogenesis and antifungal drug susceptibility. Living organisms are constantly exposed to DNA damage stress caused by endogenous and exogenous events. Eukaryotic cells have evolutionarily conserved DNA damage checkpoint surveillance systems. We previously reported that a unique transcription factor, Bdr1, whose expression is strongly induced by the protein kinase Rad53 governs DNA damage responses by controlling the expression of DNA repair genes in the basidiomycetous fungus Cryptococcus neoformans. However, the regulatory mechanism of the Rad53-dependent DNA damage signal cascade and its function in pathogenicity remain unclear. Here, we demonstrate that Rad53 is required for DNA damage response and is phosphorylated by two phosphatidylinositol 3-kinase (PI3K)-like kinases, Tel1 and Mec1, in response to DNA damage stress. Transcriptome analysis revealed that Rad53 regulates the expression of several DNA repair genes in response to gamma radiation. We found that expression of CHK1, another effector kinase involved in the DNA damage response, is regulated by Rad53 and that CHK1 deletion rendered cells highly susceptible to DNA damage stress. Nevertheless, BDR1 expression is regulated by Rad53, but not Chk1, indicating that DNA damage signal cascades mediated by Rad53 and Chk1 exhibit redundant and distinct functions. We found that perturbation of both RAD53 and CHK1 attenuated the virulence of C. neoformans, perhaps by promoting phagosome maturation within macrophage, reducing melanin production, and increasing susceptibility to oxidative stresses. Furthermore, deletion of both RAD53 and CHK1 increased susceptibility to certain antifungal drugs such as amphotericin B. This report provides insight into the regulatory mechanism of fungal DNA damage repair systems and their functional relationship with fungal virulence and antifungal drug susceptibility.
Collapse
|
34
|
Peng CA, Gaertner AAE, Henriquez SA, Fang D, Colon-Reyes RJ, Brumaghim JL, Kozubowski L. Fluconazole induces ROS in Cryptococcus neoformans and contributes to DNA damage in vitro. PLoS One 2018; 13:e0208471. [PMID: 30532246 PMCID: PMC6286144 DOI: 10.1371/journal.pone.0208471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/16/2018] [Indexed: 11/24/2022] Open
Abstract
Pathogenic basidiomycetous yeast, Cryptococcus neoformans, causes fatal meningitis in immunocompromised individuals. Fluconazole (FLC) is a fungistatic drug commonly administered to treat cryptococcosis. Unfortunately, FLC-resistant strains characterized by various degree of chromosomal instability were isolated from clinical patients. Importantly, the underlying mechanisms that lead to chromosomal instability in FLC-treated C. neoformans remain elusive. Previous studies in fungal and mammalian cells link chromosomal instability to the reactive oxygen species (ROS). This study provides the evidence that exposure of C. neoformans to FLC induces accumulation of intracellular ROS, which correlates with plasma membrane damage. FLC caused transcription changes of oxidative stress related genes encoding superoxide dismutase (SOD1), catalase (CAT3), and thioredoxin reductase (TRR1). Strikingly, FLC contributed to an increase of the DNA damage in vitro, when complexed with iron or copper in the presence of hydrogen peroxide. Strains with isogenic deletion of copper response protein metallothionein were more susceptible to FLC. Addition of ascorbic acid (AA), an anti-oxidant at 10 mM, reduced the inhibitory effects of FLC. Consistent with potential effects of FLC on DNA integrity and chromosomal segregation, FLC treatment led to elevated transcription of RAD54 and repression of cohesin-encoding gene SCC1. We propose that FLC forms complexes with metals and contributes to elevated ROS, which may lead to chromosomal instability in C. neoformans.
Collapse
Affiliation(s)
- Congyue Annie Peng
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Andrea A. E. Gaertner
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Sarah Ana Henriquez
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Diana Fang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Rodney J. Colon-Reyes
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Julia L. Brumaghim
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
35
|
Cui W, Li X, Hull L, Xiao M. Measuring radiation-induced DNA damage in Cryptococcus neoformans and Saccharomyces cerevisiae using long range quantitative PCR. PLoS One 2018; 13:e0207071. [PMID: 30408089 PMCID: PMC6224075 DOI: 10.1371/journal.pone.0207071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022] Open
Abstract
DNA damage has been considered to be the universal critical lesion in cells after exposure to ionizing radiation. Measuring radiation-induced DNA damage is important to understand the mechanisms of radiation-induced toxicity and monitor DNA damage repairs. Currently the most widely used methods to measure DNA damage are pulsed-field gel electrophoresis (PFGF) and single-cell gel electrophoresis (also known as the comet assay), both of which are technically challenging and time consuming. Long range quantitative polymerase chain reaction (LR-QPCR) has been used successfully to measure nuclear and mitochondrial DNA damage in mammalian and several model organism cells. The principle of this assay is that DNA lesions will slow down or block the progression of DNA polymerase. Therefore, the amplification efficiency of DNA with fewer lesions will be higher than DNA with more lesions under the same reaction condition. Here, we developed the LR-QPCR assay primers and reaction conditions to quantify DNA damage in Cryptococcus neoformans (C. neoformans) and Saccharomyces cerevisiae (S. cerevisiae) after gamma ray exposure. Under these conditions, long DNA targets of C. neoformans H99 and S. cerevisiae BY4741 (17.6 and 16.4 kb for nuclear DNA and 15.3 and 14.6 kb for mitochondrial DNA) were quantitatively amplified using extracted DNA templates, respectively. Two short mitochondrial DNA targets of these two species (207 bp and 154 bp) were also quantitatively amplified and used to monitor the number of mitochondria. Using the LR-QPCR method, we showed that the frequency of radiation-induced mitochondrial and nuclear DNA lesions had a significant linear correlation with the radiation doses (from 500 Gy to 3000 Gy) in both species. Furthermore, the faster disappearance of DNA damage detected in C. neoformans H99S strain compared to H99 strain may help to explain the different radiation sensitivity of these two strains. In summary, we developed a simple, sensitive method to measure radiation-induced DNA damage, which can greatly facilitate the study of radiation-induced toxicity and can be widely used as a dosimetry in radiation-induced cell damage.
Collapse
Affiliation(s)
- Wanchang Cui
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - XiangHong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Lisa Hull
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
36
|
Nikitaki Z, Holá M, Donà M, Pavlopoulou A, Michalopoulos I, Angelis KJ, Georgakilas AG, Macovei A, Balestrazzi A. Integrating plant and animal biology for the search of novel DNA damage biomarkers. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:21-38. [DOI: 10.1016/j.mrrev.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
|
37
|
Sista Kameshwar AK, Qin W. Analyzing Phanerochaete chrysosporium gene expression patterns controlling the molecular fate of lignocellulose degrading enzymes. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Jung KW, Lim S, Bahn YS. Microbial radiation-resistance mechanisms. J Microbiol 2017; 55:499-507. [PMID: 28664512 DOI: 10.1007/s12275-017-7242-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/19/2017] [Indexed: 11/28/2022]
Abstract
Organisms living in extreme environments have evolved a wide range of survival strategies by changing biochemical and physiological features depending on their biological niches. Interestingly, organisms exhibiting high radiation resistance have been discovered in the three domains of life (Bacteria, Archaea, and Eukarya), even though a naturally radiationintensive environment has not been found. To counteract the deleterious effects caused by radiation exposure, radiation- resistant organisms employ a series of defensive systems, such as changes in intracellular cation concentration, excellent DNA repair systems, and efficient enzymatic and non-enzymatic antioxidant systems. Here, we overview past and recent findings about radiation-resistance mechanisms in the three domains of life for potential usage of such radiationresistant microbes in the biotechnology industry.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
39
|
A novel bZIP protein, Gsb1, is required for oxidative stress response, mating, and virulence in the human pathogen Cryptococcus neoformans. Sci Rep 2017. [PMID: 28642475 PMCID: PMC5481450 DOI: 10.1038/s41598-017-04290-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human pathogen Cryptococcus neoformans, which causes life-threatening meningoencephalitis in immunocompromised individuals, normally faces diverse stresses in the human host. Here, we report that a novel, basic, leucine-zipper (bZIP) protein, designated Gsb1 (general stress-related bZIP protein 1), is required for its normal growth and diverse stress responses. C. neoformans gsb1Δ mutants grew slowly even under non-stressed conditions and showed increased sensitivity to high or low temperatures. The hypersensitivity of gsb1Δ to oxidative and nitrosative stresses was reversed by addition of a ROS scavenger. RNA-Seq analysis during normal growth revealed increased expression of a number of genes involved in mitochondrial respiration and cell cycle, but decreased expression of several genes involved in the mating-pheromone-responsive MAPK signaling pathway. Accordingly, gsb1Δ showed defective mating and abnormal cell-cycle progression. Reflecting these pleiotropic phenotypes, gsb1Δ exhibited attenuated virulence in a murine model of cryptococcosis. Moreover, RNA-Seq analysis under oxidative stress revealed that several genes involved in ROS defense, cell-wall remodeling, and protein glycosylation were highly induced in the wild-type strain but not in gsb1Δ. Gsb1 localized exclusively in the nucleus in response to oxidative stress. In conclusion, Gsb1 is a key transcription factor modulating growth, stress responses, differentiation, and virulence in C. neoformans.
Collapse
|
40
|
Nikitaki Z, Pavlopoulou A, Holá M, Donà M, Michalopoulos I, Balestrazzi A, Angelis KJ, Georgakilas AG. Bridging Plant and Human Radiation Response and DNA Repair through an In Silico Approach. Cancers (Basel) 2017; 9:E65. [PMID: 28587301 PMCID: PMC5483884 DOI: 10.3390/cancers9060065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
The mechanisms of response to radiation exposure are conserved in plants and animals. The DNA damage response (DDR) pathways are the predominant molecular pathways activated upon exposure to radiation, both in plants and animals. The conserved features of DDR in plants and animals might facilitate interdisciplinary studies that cross traditional boundaries between animal and plant biology in order to expand the collection of biomarkers currently used for radiation exposure monitoring (REM) in environmental and biomedical settings. Genes implicated in trans-kingdom conserved DDR networks often triggered by ionizing radiation (IR) and UV light are deposited into biological databases. In this study, we have applied an innovative approach utilizing data pertinent to plant and human genes from publicly available databases towards the design of a 'plant radiation biodosimeter', that is, a plant and DDR gene-based platform that could serve as a REM reliable biomarker for assessing environmental radiation exposure and associated risk. From our analysis, in addition to REM biomarkers, a significant number of genes, both in human and Arabidopsis thaliana, not yet characterized as DDR, are suggested as possible DNA repair players. Last but not least, we provide an example on the applicability of an Arabidopsis thaliana-based plant system monitoring the role of cancer-related DNA repair genes BRCA1, BARD1 and PARP1 in processing DNA lesions.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Polytechniou 9, 15780 Zografou, Greece.
| | - Athanasia Pavlopoulou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35100 Lamia, Greece.
| | - Marcela Holá
- Institute of Experimental Botany ASCR, Na Karlovce 1, 16000 Praha, Czech Republic.
| | - Mattia Donà
- Gregor Mendel Institute (GMI) Austrian Academy of Science, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', via Ferrata 1, 27100 Pavia, Italy.
| | - Karel J Angelis
- Institute of Experimental Botany ASCR, Na Karlovce 1, 16000 Praha, Czech Republic.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Polytechniou 9, 15780 Zografou, Greece.
| |
Collapse
|