1
|
Krause N, Wegner A. N-acetyl-aspartate metabolism at the interface of cancer, immunity, and neurodegeneration. Curr Opin Biotechnol 2024; 85:103051. [PMID: 38103520 DOI: 10.1016/j.copbio.2023.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
N-acetyl-L-aspartic acid (NAA) is a prominent amino acid derivative primarily associated with vertebrate brain metabolism. This review delineates the critical role of NAA across various cell types and its significance in pathophysiological contexts, including Canavan disease and cancer metabolism. Although traditionally linked with myelination and aspartoacylase-driven carbon donation, its significance as a carbon source for myelination remains debated. Evidence suggests that intact NAA might substantially impact cellular signaling, particularly processes such as histone acetylation. Beyond the brain, NAA metabolism's relevance is evident in diverse tissues, such as adipocytes, immune cells, and notably, cancer cells. In several cancer types, there is an observed upregulation of NAA synthesis accompanied by a simultaneous downregulation of its degradation. This pattern highlights the potential signaling role of intact NAA in disease.
Collapse
Affiliation(s)
- Nils Krause
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Andre Wegner
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
2
|
Hackert NS, Radtke FA, Exner T, Lorenz HM, Müller-Tidow C, Nigrovic PA, Wabnitz G, Grieshaber-Bouyer R. Human and mouse neutrophils share core transcriptional programs in both homeostatic and inflamed contexts. Nat Commun 2023; 14:8133. [PMID: 38065997 PMCID: PMC10709367 DOI: 10.1038/s41467-023-43573-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophils are frequently studied in mouse models, but the extent to which findings translate to humans remains poorly defined. In an integrative analysis of 11 mouse and 13 human datasets, we find a strong correlation of neutrophil gene expression across species. In inflammation, neutrophils display substantial transcriptional diversity but share a core inflammation program. This program includes genes encoding IL-1 family members, CD14, IL-4R, CD69, and PD-L1. Chromatin accessibility of core inflammation genes increases in blood compared to bone marrow and further in tissue. Transcription factor enrichment analysis implicates members of the NF-κB family and AP-1 complex as important drivers, and HoxB8 neutrophils with JunB knockout show a reduced expression of core inflammation genes in resting and activated cells. In independent single-cell validation data, neutrophil activation by type I or type II interferon, G-CSF, and E. coli leads to upregulation in core inflammation genes. In COVID-19 patients, higher expression of core inflammation genes in neutrophils is associated with more severe disease. In vitro treatment with GM-CSF, LPS, and type II interferon induces surface protein upregulation of core inflammation members. Together, we demonstrate transcriptional conservation in neutrophils in homeostasis and identify a core inflammation program shared across heterogeneous inflammatory conditions.
Collapse
Affiliation(s)
- Nicolaj S Hackert
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felix A Radtke
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tarik Exner
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Guido Wabnitz
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
3
|
Chai Q, Lei Z, Liu CH. Pyroptosis modulation by bacterial effector proteins. Semin Immunol 2023; 69:101804. [PMID: 37406548 DOI: 10.1016/j.smim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
4
|
Wang Y, Xiao N, Hu L, Deng M, Zong F, Zhang Z, Su D, Zhou D, Yang H, Dai E. Mechanism of pulmonary plague biphasic syndrome: inhibition or activation of NF-κB signaling pathway. Future Microbiol 2023; 18:267-286. [PMID: 36971082 DOI: 10.2217/fmb-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Background: Pneumonic plague is a fatal respiratory disease caused by Yersinia pestis. Time-course transcriptome analysis on the mechanism of pneumonic plague biphasic syndrome is lacking in the literature. Materials & methods: This study documented the disease course through bacterial load, histopathology, cytokine levels and flow cytometry. RNA-sequencing technology was used to investigate the global transcriptome profile of lung tissue in mice infected with Y. pestis. Results: Inflammation-related genes were significantly upregulated at 48 h post-infection, while genes related to cell adhesion and cytoskeletal structure were downregulated. Conclusion: NOD-like receptor and TNF signaling pathways play a plausible role in pneumonic plague biphasic syndrome and lung injury by controlling the activation and inhibition of the NF-κB signaling pathway.
Collapse
|
5
|
Chen KW, Brodsky IE. Yersinia interactions with regulated cell death pathways. Curr Opin Microbiol 2023; 71:102256. [PMID: 36584489 DOI: 10.1016/j.mib.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022]
Abstract
Cell death in response to infection is conserved across all kingdoms of life. In metazoans, cell death upon bacterial infection is primarily carried out by the cysteine and aspartate protease and receptor-interacting serine/threonine protein kinase families. The Gram-negative bacterial genus Yersinia includes pathogens that cause disease in humans and other animals ranging from plague to gastrointestinal infections. Pathogenic Yersiniae express a type-III secretion system (T3SS), which translocates effectors that disrupt phagocytosis and innate immune signaling to evade immune defenses and replicate extracellularly in infected tissues. Blockade of innate immune signaling, disruption of the actin cytoskeleton, and the membrane-disrupting activity of the T3SS translocon pore, are all sensed by innate immune cells. Here, we discuss recent advances in understanding the pathways that regulate Yersinia-induced cell death, and how manipulation of these cell death pathways over the course of infection promotes bacterial dissemination or host defense.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, United States; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, United States.
| |
Collapse
|
6
|
Single-cell transcriptomics of immune cells in lymph nodes reveals their composition and alterations in functional dynamics during the early stages of bubonic plague. SCIENCE CHINA. LIFE SCIENCES 2023; 66:110-126. [PMID: 35943690 DOI: 10.1007/s11427-021-2119-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Bubonic plague caused by Yersinia pestis is highly infectious and often fatal. Characterization of the host immune response and its subsequent suppression by Y. pestis is critical to understanding the pathogenesis of Y. pestis. Here, we utilized single-cell RNA sequencing to systematically profile the transcriptomes of immune cells in draining lymph nodes (dLNs) during the early stage of Y. pestis infection. Dendritic cells responded to Y. pestis within 2 h post-infection (hpi), followed by the activation of macrophages/monocytes (Mφs/Mons) and recruitment of polymorphonuclear neutrophils (PMNs) to dLNs at 24 hpi. Analysis of cell-to-cell communication suggests that PMNs may be recruited to lymph nodes following the secretion of CCL9 by Mφs/Mons stimulated through CCR1-CCL9 interaction. Significant functional suppression of all the three innate immune cell types occurred during the early stage of infection. In summary, we present a dynamic immune landscape, at single-cell resolution, of murine dLNs involved in the response to Y. pestis infection, which may facilitate the understanding of the plague pathogenesis of during the early stage of infection.
Collapse
|
7
|
Novel RNA Extraction Method for Dual RNA-seq Analysis of Pathogen and Host in the Early Stages of Yersinia pestis Pulmonary Infection. Microorganisms 2021; 9:microorganisms9102166. [PMID: 34683487 PMCID: PMC8539884 DOI: 10.3390/microorganisms9102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Pneumonic plague, caused by Yersinia pestis, is a rapidly progressing lethal infection. The various phases of pneumonic plague are yet to be fully understood. A well-established way to address the pathology of infectious diseases in general, and pneumonic plague in particular, is to conduct concomitant transcriptomic analysis of the bacteria and the host. The analysis of dual RNA by RNA sequencing technology is challenging, due the difficulties of extracting bacterial RNA, which is overwhelmingly outnumbered by the host RNA, especially at the critical early time points post-infection (prior to 48 h). Here, we describe a novel technique that employed the infusion of an RNA preserving reagent (RNAlater) into the lungs of the animals, through the trachea, under deep anesthesia. This method enabled the isolation of stable dual mRNA from the lungs of mice infected with Y. pestis, as early as 24 h post-infection. The RNA was used for transcriptomic analysis, which provided a comprehensive gene expression profile of both the host and the pathogen.
Collapse
|
8
|
Current Understanding of the Neutrophil Transcriptome in Health and Disease. Cells 2021; 10:cells10092406. [PMID: 34572056 PMCID: PMC8469435 DOI: 10.3390/cells10092406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are key cells of the innate immune system. It is now understood that this leukocyte population is diverse in both the basal composition and functional plasticity. Underlying this plasticity is a post-translational framework for rapidly achieving early activation states, but also a transcriptional capacity that is becoming increasingly recognized by immunologists. Growing interest in the contribution of neutrophils to health and disease has resulted in more efforts to describe their transcriptional activity. Whilst initial efforts focused predominantly on understanding the existing biology, investigations with advanced methods such as single cell RNA sequencing to understand interactions of the entire immune system are revealing higher flexibility in neutrophil transcription than previously thought possible and multiple transition states. It is now apparent that neutrophils utilise many forms of RNA in the regulation of their function. This review collates current knowledge on the nuclei structure and gene expression activity of human neutrophils across homeostasis and disease, before highlighting knowledge gaps that are research priority areas.
Collapse
|
9
|
Kilgore PB, Sha J, Andersson JA, Motin VL, Chopra AK. A new generation needle- and adjuvant-free trivalent plague vaccine utilizing adenovirus-5 nanoparticle platform. NPJ Vaccines 2021; 6:21. [PMID: 33514747 PMCID: PMC7846801 DOI: 10.1038/s41541-020-00275-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
A plague vaccine with a fusion cassette of YscF, F1, and LcrV encoding genes in an adenovirus-5 vector (rAd5-YFV) is evaluated for efficacy and immune responses in mice. Two doses of the vaccine provides 100% protection when administered intranasally against challenge with Yersinia pestis CO92 or its isogenic F1 mutant in short- or long- term immunization in pneumonic/bubonic plague models. The corresponding protection rates drop in rAd5-LcrV monovalent vaccinated mice in plague models. The rAd5-YFV vaccine induces superior humoral, mucosal and cell-mediated immunity, with clearance of the pathogen. Immunization of mice with rAd5-YFV followed by CO92 infection dampens proinflammatory cytokines and neutrophil chemoattractant production, while increasing Th1- and Th2-cytokine responses as well as macrophage/monocyte chemo-attractants when compared to the challenge control animals. This is a first study showing complete protection of mice from pneumonic/bubonic plague with a viral vector-based vaccine without the use of needles and the adjuvant.
Collapse
Affiliation(s)
- Paul B. Kilgore
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA
| | - Jian Sha
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA. .,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - Jourdan A. Andersson
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA
| | - Vladimir L. Motin
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Department of Pathology, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX USA
| | - Ashok K. Chopra
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
10
|
Schubert KA, Xu Y, Shao F, Auerbuch V. The Yersinia Type III Secretion System as a Tool for Studying Cytosolic Innate Immune Surveillance. Annu Rev Microbiol 2020; 74:221-245. [PMID: 32660389 DOI: 10.1146/annurev-micro-020518-120221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.
Collapse
Affiliation(s)
- Katherine Andrea Schubert
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| | - Yue Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| |
Collapse
|
11
|
Liu B, Bai L, Yu Q, Hu F, Wu J, Zhao S, Wang R, Wang W, Tao Y, Fan J, Liu E. iMarmot: an integrative platform for comparative and functional genomics of marmots. BMC Genomics 2020; 21:266. [PMID: 32228437 PMCID: PMC7104516 DOI: 10.1186/s12864-020-6697-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Marmots are large Holarctic rodents with unique biological features, making them potential animal models in various research fields. Due to the rapid accumulation of the genetic data in marmots, a highly integrative database is urgent needed. Description iMarmot is freely available on the web at http://www.marmotdb.org/ and currently contains the biological information of 14 marmots, genomic sequence of 6 marmots, syntenic relationship and orthologs among 3 marmots, and expression profiles of several hibernators and plague hosts. To assist with the genomic and transcriptomic analysis, we also integrated a set of analysis and visualization tools, such as KEGG or GO enrichment analysis, PCA, Blast, Muscle, GeneWise, Lastz, and JBrowse. Particularly, one DEGs (differentially expressed genes) module has been implemented in this database to visualize the gene expression changes in hibernators and plague hosts. Conclusion This database will provide comprehensive information and analysis platform for researchers interested in understanding the biological features of marmots.
Collapse
Affiliation(s)
- Baoning Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Qingqing Yu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Fang Hu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Jing Wu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750004, Gansu, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Rong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Yuanqing Tao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China. .,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
12
|
Redundant and Cooperative Roles for Yersinia pestis Yop Effectors in the Inhibition of Human Neutrophil Exocytic Responses Revealed by Gain-of-Function Approach. Infect Immun 2020; 88:IAI.00909-19. [PMID: 31871100 DOI: 10.1128/iai.00909-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Yersinia pestis causes a rapid, lethal disease referred to as plague. Y. pestis actively inhibits the innate immune system to generate a noninflammatory environment during early stages of infection to promote colonization. The ability of Y. pestis to create this early noninflammatory environment is in part due to the action of seven Yop effector proteins that are directly injected into host cells via a type 3 secretion system (T3SS). While each Yop effector interacts with specific host proteins to inhibit their function, several Yop effectors either target the same host protein or inhibit converging signaling pathways, leading to functional redundancy. Previous work established that Y. pestis uses the T3SS to inhibit neutrophil respiratory burst, phagocytosis, and release of inflammatory cytokines. Here, we show that Y. pestis also inhibits release of granules in a T3SS-dependent manner. Moreover, using a gain-of-function approach, we discovered previously hidden contributions of YpkA and YopJ to inhibition and that cooperative actions by multiple Yop effectors are required to effectively inhibit degranulation. Independent from degranulation, we also show that multiple Yop effectors can inhibit synthesis of leukotriene B4 (LTB4), a potent lipid mediator released by neutrophils early during infection to promote inflammation. Together, inhibition of these two arms of the neutrophil response likely contributes to the noninflammatory environment needed for Y. pestis colonization and proliferation.
Collapse
|
13
|
Eichelberger KR, Jones GS, Goldman WE. Inhibition of Neutrophil Primary Granule Release during Yersinia pestis Pulmonary Infection. mBio 2019; 10:e02759-19. [PMID: 31822588 PMCID: PMC6904878 DOI: 10.1128/mbio.02759-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Inhalation of Yersinia pestis causes primary pneumonic plague, the most severe manifestation of plague that is characterized by a dramatic neutrophil influx to the lungs. Neutrophils are ineffective during primary pneumonic plague, failing to control Y. pestis growth in the airways. However, the mechanisms by which Y. pestis resists neutrophil killing are incompletely understood. Here, we show that Y. pestis inhibits neutrophil degranulation, an important line of host innate immune defense. We observed that neutrophils from the lungs of mice infected intranasally with Y. pestis fail to release primary granules throughout the course of disease. Using a type III secretion system (T3SS) injection reporter strain, we determined that Y. pestis directly inhibits neutrophil granule release by a T3SS-dependent mechanism. Combinatorial mutant analysis revealed that a Y. pestis strain lacking both effectors YopE and YopH did not inhibit primary granule release and is killed by neutrophils both in vivo and in vitro Similarly, Y. pestis strains injecting only YopE or YopH are able to inhibit the majority of primary granule release from human neutrophils. We determined that YopE and YopH block Rac2 activation and calcium flux, respectively, to inhibit neutrophil primary granule release in isolated human neutrophils. These results demonstrate that Y. pestis coordinates the inhibition of neutrophil primary granule release through the activities of two distinct effectors, and this inhibition promotes Y. pestis survival during primary pneumonic plague.IMPORTANCEYersinia pestis is the causative agent of plague and is one of the deadliest human pathogens. The pneumonic form of Y. pestis infection has played a critical role in the severity of both historical and modern plague outbreaks, yet the host-pathogen interactions that govern the lethality of Yersinia pestis pulmonary infections are incompletely understood. Here, we report that Yersinia pestis inhibits neutrophil degranulation during infection, rendering neutrophils ineffective and allowing unrestricted growth of Y. pestis in the lungs. This coordinated inhibition of granule release not only demonstrates the pathogenic benefit of "silencing" lung neutrophils but also reveals specific host processes and pathways that could be manipulated to reduce the severity of primary pneumonic plague.
Collapse
Affiliation(s)
- Kara R Eichelberger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Grant S Jones
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William E Goldman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Ji JJ, Fan J. Discovering myeloid cell heterogeneity in the lung by means of next generation sequencing. Mil Med Res 2019; 6:33. [PMID: 31651369 PMCID: PMC6814050 DOI: 10.1186/s40779-019-0222-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
The lung plays a vital role in maintaining homeostasis, as it is responsible for the exchange of oxygen and carbon dioxide. Pulmonary homeostasis is maintained by a network of tissue-resident cells, including epithelial cells, endothelial cells and leukocytes. Myeloid cells of the innate immune system and epithelial cells form a critical barrier in the lung. Recently developed unbiased next generation sequencing (NGS) has revealed cell heterogeneity in the lung with respect to physiology and pathology and has reshaped our knowledge. New phenotypes and distinct gene signatures have been identified, and these new findings enhance the diagnosis and treatment of lung diseases. Here, we present a review of the new NGS findings on myeloid cells in lung development, homeostasis, and lung diseases, including acute lung injury (ALI), lung fibrosis, chronic obstructive pulmonary disease (COPD), and lung cancer.
Collapse
Affiliation(s)
- Jing-Jing Ji
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Pathophysiology, Southern Medical University, Guangzhou, 510515, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA. .,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
15
|
Abstract
The human and animal pathogens Yersinia pestis, which causes bubonic and pneumonic plague, and Yersinia pseudotuberculosis and Yersinia enterocolitica, which cause gastroenteritis, share a type 3 secretion system which injects effector proteins, Yops, into host cells. This system is critical for virulence of all three pathogens in tissue infection. Neutrophils are rapidly recruited to infected sites and all three pathogens frequently interact with and inject Yops into these cells during tissue infection. Host receptors, serum factors, and bacterial adhesins appear to collaborate to promote neutrophil- Yersinia interactions in tissues. The ability of neutrophils to control infection is mixed depending on the stage of infection and points to the efficiency of Yops and other bacterial factors to mitigate bactericidal effects of neutrophils. Yersinia in close proximity to neutrophils has higher levels of expression from yop promoters, and neutrophils in close proximity to Yersinia express higher levels of pro-survival genes than migrating neutrophils. In infected tissues, YopM increases neutrophil survival and YopH targets a SKAP2/SLP-76 signal transduction pathway. Yet the full impact of these and other Yops and other Yersinia factors on neutrophils in infected tissues has yet to be understood.
Collapse
Affiliation(s)
- Joan Mecsas
- Department of Molecular Biology and Microbiology, 136 Harrison Ave, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
16
|
Demeure C, Dussurget O, Fiol GM, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination and diagnostics. Microbes Infect 2019; 21:202-212. [DOI: 10.1016/j.micinf.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
|
17
|
Demeure CE, Dussurget O, Mas Fiol G, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun 2019; 20:357-370. [PMID: 30940874 PMCID: PMC6760536 DOI: 10.1038/s41435-019-0065-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022]
Abstract
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged <6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer-membrane proteins (Yops), the broad-range protease Pla, pathogen-associated molecular patterns (PAMPs), and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and <48 h for pneumonic plague). Here, we review recent research advances on Y. pestis evolution, virulence factor function, bacterial strategies to subvert mammalian innate immune responses, vaccination, and problems associated with pneumonic plague diagnosis.
Collapse
Affiliation(s)
| | - Olivier Dussurget
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Guillem Mas Fiol
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Anne-Sophie Le Guern
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Cyril Savin
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France.
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France.
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France.
| |
Collapse
|
18
|
Vagima Y, Levy Y, Mamroud E. Monitoring of Neutrophil Recruitment to Mice Lungs During Pneumonic Plague. Methods Mol Biol 2019; 2010:141-150. [PMID: 31177436 DOI: 10.1007/978-1-4939-9541-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Early sensing of bacterial infection and the immediate recruitment of neutrophils to the lung is a major and decisive stage of the innate immune response to pulmonary bacterial infections. This chapter details the preparation of lung tissue suspensions from mice infected intra-nasally (I.N.) with the plague bacterium Yersinia pestis to study in vivo neutrophil responses to the infection. The samples were used for the quantification of neutrophil levels and for the characterization of the pro-inflammatory response required for neutrophil recruitment to the lung. The specific requirements for performing the procedures under Biosafety Level 3 containment and the proper handling and sterilization of the samples are discussed.
Collapse
Affiliation(s)
- Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel.
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
19
|
Abstract
Neutrophils are the primary immune cell recruited to the site of bacterial infection, where they can rapidly deploy vesicles filled with various pro-inflammatory and anti-microbial proteins. This degranulation process, combined with oxidative and nitrosative mechanisms, is a major part of the initial host response to kill microorganisms. Neutrophils are one of the main cell types that interact with Yersinia pestis during infection, which is often lethal in the absence of prompt antibiotic treatment. Intradermal inoculation of Y. pestis results in bubonic plague, and inhalation of aerosolized droplets containing Y. pestis results in pneumonic plague. Although neutrophils are recruited to the site of inoculation during both bubonic and pneumonic plague, the neutrophils fail to clear Y. pestis, and, during pneumonic plague, contribute to the development of severe pneumonia. Subverting neutrophil responses is critical to the development of fulminant disease, yet the mechanisms by which Y. pestis impairs neutrophils are poorly understood. Cell culture models are important tools for studying Y. pestis interactions with immune cells. We describe a cell culture model for the infection of human neutrophils with Y. pestis. Neutrophils are isolated from human peripheral blood at high purity and subsequently infected with Y. pestis. We specifically focus on the application of this in vitro infection assay to the analysis of neutrophil degranulation responses.
Collapse
|
20
|
Norkowski S, Schmidt MA, Rüter C. The species-spanning family of LPX-motif harbouring effector proteins. Cell Microbiol 2018; 20:e12945. [PMID: 30137651 DOI: 10.1111/cmi.12945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
The delivery of effector proteins into infected eukaryotic cells represents a key virulence feature of many microbial pathogens in order to derail essential cellular processes and effectively counter the host defence system. Although bacterial effectors are truly numerous and exhibit a wide range of biochemical activities, commonalities in terms of protein structure and function shared by many bacterial pathogens exist. Recent progress has shed light on a species-spanning family of bacterial effectors containing an LPX repeat motif as a subtype of the leucine-rich repeat superfamily, partially combined with a novel E3 ubiquitin ligase domain. This review highlights the immunomodulatory effects of LPX effector proteins, with particular emphasis on the exploitation of the host ubiquitin system.
Collapse
Affiliation(s)
- Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
21
|
Kang E, Crouse A, Chevallier L, Pontier SM, Alzahrani A, Silué N, Campbell-Valois FX, Montagutelli X, Gruenheid S, Malo D. Enterobacteria and host resistance to infection. Mamm Genome 2018; 29:558-576. [PMID: 29785663 DOI: 10.1007/s00335-018-9749-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Enterobacteriaceae are a large family of Gram-negative, non-spore-forming bacteria. Although many species exist as part of the natural flora of animals including humans, some members are associated with both intestinal and extraintestinal diseases. In this review, we focus on members of this family that have important roles in human disease: Salmonella, Escherichia, Shigella, and Yersinia, providing a brief overview of the disease caused by these bacteria, highlighting the contribution of animal models to our understanding of their pathogenesis and of host genetic determinants involved in susceptibility or resistance to infection.
Collapse
Affiliation(s)
- Eugene Kang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Alanna Crouse
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Lucie Chevallier
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Stéphanie M Pontier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ashwag Alzahrani
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xavier Montagutelli
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Danielle Malo
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Pechous RD. With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia. Front Cell Infect Microbiol 2017; 7:160. [PMID: 28507954 PMCID: PMC5410563 DOI: 10.3389/fcimb.2017.00160] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 01/12/2023] Open
Abstract
Pneumonia is a leading cause of death from infection in the United States and across the globe. During pulmonary infection, clear resolution of host inflammatory responses occurs in the absence of appreciable lung damage. Neutrophils are the first wave of leukocytes to arrive in the lung upon infection. After activation, neutrophils traffic from the vasculature via transendothelial migration through the lung interstitium and into the alveolar space. Successful pulmonary immunity requires neutrophil-mediated killing of invading pathogens by phagocytosis and release of a myriad of antimicrobial molecules, followed by resolution of inflammation, neutrophil apoptosis, and clearing of dead or dying neutrophils by macrophages. In addition to their antimicrobial role, it is becoming clear that neutrophils are also important modulators of innate and adaptive immune responses, primarily through the release of cytokines and recruitment of additional waves of neutrophils into the airways. Though typically essential to combating severe pneumonia, neutrophil influx into the airways is a double-edged sword: Overzealous neutrophil activation can cause severe tissue damage as a result of the release of toxic agents including proteases, cationic polypeptides, cytokines, and reactive oxygen species (ROS) aimed at killing invading microbes. In extreme cases, the damage caused by neutrophils and other innate immune mediators become the primary source of morbidity and mortality. Here, we review the complex role of neutrophils during severe pneumonia by highlighting specific molecules and processes that contribute to pulmonary immunity, but can also drive progression of severe disease. Depending on the identity of the infectious agent, enhancing or suppressing neutrophil-mediated responses may be key to effectively treating severe and typically lethal pneumonia.
Collapse
Affiliation(s)
- Roger D Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| |
Collapse
|
23
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
24
|
Chung LK, Park YH, Zheng Y, Brodsky IE, Hearing P, Kastner DL, Chae JJ, Bliska JB. The Yersinia Virulence Factor YopM Hijacks Host Kinases to Inhibit Type III Effector-Triggered Activation of the Pyrin Inflammasome. Cell Host Microbe 2016; 20:296-306. [PMID: 27569559 DOI: 10.1016/j.chom.2016.07.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/29/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
Pathogenic Yersinia, including Y. pestis, the agent of plague in humans, and Y. pseudotuberculosis, the related enteric pathogen, deliver virulence effectors into host cells via a prototypical type III secretion system to promote pathogenesis. These effectors, termed Yersinia outer proteins (Yops), modulate multiple host signaling responses. Studies in Y. pestis and Y. pseudotuberculosis have shown that YopM suppresses infection-induced inflammasome activation; however, the underlying molecular mechanism is largely unknown. Here we show that YopM specifically restricts the pyrin inflammasome, which is triggered by the RhoA-inactivating enzymatic activities of YopE and YopT, in Y. pseudotuberculosis-infected macrophages. The attenuation of a yopM mutant is fully reversed in pyrin knockout mice, demonstrating that YopM inhibits pyrin to promote virulence. Mechanistically, YopM recruits and activates the host kinases PRK1 and PRK2 to negatively regulate pyrin by phosphorylation. These results show how a virulence factor can hijack host kinases to inhibit effector-triggered pyrin inflammasome activation.
Collapse
Affiliation(s)
- Lawton K Chung
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yong Hwan Park
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Yueting Zheng
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Jae Jin Chae
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James B Bliska
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
25
|
Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins. Infect Immun 2016; 84:2243-2254. [PMID: 27217422 DOI: 10.1128/iai.00324-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/17/2016] [Indexed: 01/30/2023] Open
Abstract
Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia.
Collapse
|
26
|
Different Leishmania Species Drive Distinct Neutrophil Functions. Trends Parasitol 2016; 32:392-401. [DOI: 10.1016/j.pt.2016.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/06/2023]
|
27
|
Pechous RD, Sivaraman V, Stasulli NM, Goldman WE. Pneumonic Plague: The Darker Side of Yersinia pestis. Trends Microbiol 2016; 24:190-197. [DOI: 10.1016/j.tim.2015.11.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022]
|