1
|
Gadisa E, Egyir B, Adu B, Ahmed H, Disasa G, Tessema TS. Epidemiology, antimicrobial resistance profile and management of carbapenem-resistant Klebsiella pneumoniae among mothers with suspected sepsis in Ethiopia. Ann Clin Microbiol Antimicrob 2024; 23:85. [PMID: 39322956 PMCID: PMC11423506 DOI: 10.1186/s12941-024-00745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Early detection and proper management of maternal sepsis caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) can significantly reduce severe complications and maternal mortality. This study aimed to describe the epidemiology, antimicrobial resistance profile, and management of carbapenem-resistant K. pneumoniae among sepsis-suspected maternal cases in Ethiopia. METHODS A prospective cross-sectional study was conducted in five tertiary hospitals from June 2021 to December 2023. Isolation, identification, and antimicrobial susceptibility testing of the isolates were carried out following standard microbiological procedures as stated in the CLSI guidelines. Data on socio-demographics, risk factors, and management strategies were collected with structured questionnaires. Associations between variables were determined using logistic regression analysis in STATA-21. A p-value of less than 0.05 was statistically significant. RESULTS Of the 5613 total women suspected of having maternal sepsis, 609 (10.8%) of them were infected with K. pneumoniae. The prevalence rates of MDR, XDR, and PDR K. pneumoniae strains were 93.9%, 24.3%, and 10.9%, respectively. The resistance rates for the last-resort antibiotics; amikacin, tigecycline, carbapenem, and third-generation cephalosporin were 16.4%, 29.1%, 31.9%, and 93.0%, respectively. The combination of carbapenem with tigecycline or amikacin therapy was used to manage maternal sepsis caused by cephalosporin-and carbapenem-resistant strains. Sepsis associated risk factors, including septic abortion [AOR = 5.3; 95%CI:2.2-14.4]; extended hospitalization [AOR = 3.7; 95%CI: 1.6-19.4]; dilatation and curettage [AOR = 2.2; 95%CI:1.3-13.4]; cesarean wound infection [AOR = 4.1; 95%CI:2.0-9.2]; indwelling catheterization [AOR = 2.1;95%CI: 1.4-6.2]; ICU admission [AOR = 4.3; 95%CI:2.4-11.2]; post abortion [AOR = 9.8; 95%CI:5.7-16.3], and recurrent UTI [AOR = 3.3; 95%CI: 1.6-13.2] were significantly associated with maternal sepsis caused by K. pneumoniae. CONCLUSIONS The prevalence of maternal sepsis caused by carbapenem- resistant K. pneumoniae is high and serious attention needs to be given to combat transmission. Therefore, improving awareness, early diagnosis, IPC, integrated maternal surveillance, improved sanitation and efficient antimicrobial stewardship are crucial to combating bacterial maternal sepsis.
Collapse
Affiliation(s)
- Eshetu Gadisa
- Ethiopian Public Health Institute, P.O. Box 1242/5654, Addis Ababa, Ethiopia.
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Beverly Egyir
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Hawawu Ahmed
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Guta Disasa
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
2
|
Khachigian LM. The MEK-ERK-Egr-1 axis and its regulation in cardiovascular disease. Vascul Pharmacol 2023; 153:107232. [PMID: 37734428 DOI: 10.1016/j.vph.2023.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Cardiovascular disease (CVD) is the primary cause of morbidity and mortality in the Western world. Multiple molecular and cellular processes underpinning the pathogenesis of CVD are regulated by the zinc finger transcription factor and product of an immediate-early gene, early growth response-1 (Egr-1). Egr-1 regulates multiple pro-inflammatory processes that underpin the manifestation of CVD. The activity of Egr-1 itself is influenced by a range of post-translational modifications including sumoylation, ubiquitination and acetylation. Egr-1 also undergoes phosphorylation by protein kinases, such as extracellular-signal regulated kinase (ERK) which is itself phosphorylated by MEK. This article reviews recent progress on the MEK-ERK-Egr-1 cascade, notably regulation in conjunction with factors and agents such as TET2, TRIB2, MIAT, SphK1, cAMP, teneligliptin, cholinergic drugs, red wine and flavonoids, wogonin, febuxostat, docosahexaenoic acid and AT1R blockade. Such insights should provide new opportunity for therapeutic intervention in CVD.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Alfano DN, Miller MJ, Bubeck Wardenburg J. Endothelial ADAM10 utilization defines a molecular pathway of vascular injury in mice with bacterial sepsis. J Clin Invest 2023; 133:e168450. [PMID: 37788087 PMCID: PMC10688991 DOI: 10.1172/jci168450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
The endothelium plays a critical role in the host response to infection and has been a focus of investigation in sepsis. While it is appreciated that intravascular thrombus formation, severe inflammation, and loss of endothelial integrity impair tissue oxygenation during sepsis, the precise molecular mechanisms that lead to endothelial injury remain poorly understood. We demonstrate here that endothelial ADAM10 was essential for the pathogenesis of Staphylococcus aureus sepsis, contributing to α-toxin-mediated (Hla-mediated) microvascular thrombus formation and lethality. As ADAM10 is essential for endothelial development and homeostasis, we examined whether other major human sepsis pathogens also rely on ADAM10-dependent pathways in pathogenesis. Mice harboring an endothelium-specific knockout of ADAM10 were protected against lethal Pseudomonas aeruginosa and Streptococcus pneumoniae sepsis, yet remained fully susceptible to group B streptococci and Candida albicans sepsis. These studies illustrate a previously unknown role for ADAM10 in sepsis-associated endothelial injury and suggest that understanding pathogen-specific divergent host pathways in sepsis may enable more precise targeting of disease.
Collapse
Affiliation(s)
| | - Mark J. Miller
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
4
|
Huang Y, Zhang J, Li X, Wu Z, Xie G, Wang Y, Liu Z, Jiao M, Zhang H, Shi B, Wang Y, Zhang Y. Chromatin accessibility memory of donor cells disrupts bovine somatic cell nuclear transfer blastocysts development. FASEB J 2023; 37:e23111. [PMID: 37531300 DOI: 10.1096/fj.202300131rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The post-transfer developmental capacity of bovine somatic cell nuclear transfer (SCNT) blastocysts is reduced, implying that abnormalities in gene expression regulation are present at blastocyst stage. Chromatin accessibility, as an indicator for transcriptional regulatory elements mediating gene transcription activity, has heretofore been largely unexplored in SCNT embryos, especially at blastocyst stage. In the present study, single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) of in vivo and SCNT blastocysts were conducted to segregate lineages and demonstrate the aberrant chromatin accessibility of transcription factors (TFs) related to inner cell mass (ICM) development in SCNT blastocysts. Pseudotime analysis of lineage segregation further reflected dysregulated chromatin accessibility dynamics of TFs in the ICM of SCNT blastocysts compared to their in vivo counterparts. ATAC- and ChIP-seq results of SCNT donor cells revealed that the aberrant chromatin accessibility in the ICM of SCNT blastocysts was due to the persistence of chromatin accessibility memory at corresponding loci in the donor cells, with strong enrichment of trimethylation of histone H3 at lysine 4 (H3K4me3) at these loci. Correction of the aberrant chromatin accessibility through demethylation of H3K4me3 by KDM5B diminished the expression of related genes (e.g., BCL11B) and significantly improved the ICM proliferation in SCNT blastocysts. This effect was confirmed by knocking down BCL11B in SCNT embryos to down-regulate p21 and alleviate the inhibition of ICM proliferation. These findings expand our understanding of the chromatin accessibility abnormalities in SCNT blastocysts and BCL11B may be a potential target to improve SCNT efficiency.
Collapse
Affiliation(s)
- Yuemeng Huang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Xinmei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhipei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guoxiang Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Zhengqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| |
Collapse
|
5
|
Liao S, Lin Y, Liu L, Yang S, Lin Y, He J, Shao Y. ADAM10-a "multitasker" in sepsis: focus on its posttranslational target. Inflamm Res 2023; 72:395-423. [PMID: 36565333 PMCID: PMC9789377 DOI: 10.1007/s00011-022-01673-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sepsis has a complex pathogenesis in which the uncontrolled systemic inflammatory response triggered by infection leads to vascular barrier disruption, microcirculation dysfunction and multiple organ dysfunction syndrome. Numerous recent studies reveal that a disintegrin and metalloproteinase 10 (ADAM10) acts as a "molecular scissor" playing a pivotal role in the inflammatory response during sepsis by regulating proteolysis by cleaving various membrane protein substrates, including proinflammatory cytokines, cadherins and Notch, which are involved in intercellular communication. ADAM10 can also act as the cellular receptor for Staphylococcus aureus α-toxin, leading to lethal sepsis. However, its substrate-specific modulation and precise targets in sepsis have not yet to be elucidated. METHODS We performed a computer-based online search using PubMed and Google Scholar for published articles concerning ADAM10 and sepsis. CONCLUSIONS In this review, we focus on the functions of ADAM10 in sepsis-related complex endothelium-immune cell interactions and microcirculation dysfunction through the diversity of its substrates and its enzymatic activity. In addition, we highlight the posttranslational mechanisms of ADAM10 at specific subcellular sites, or in multimolecular complexes, which will provide the insight to intervene in the pathophysiological process of sepsis caused by ADAM10 dysregulation.
Collapse
Affiliation(s)
- Shuanglin Liao
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
| | - Yao Lin
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Tianfu Road 107, Rongcheng District, Jieyang, 522000 Guangdong China
| | - Lizhen Liu
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
| | - Shuai Yang
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
| | - YingYing Lin
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Tianfu Road 107, Rongcheng District, Jieyang, 522000 Guangdong China
| | - Junbing He
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Tianfu Road 107, Rongcheng District, Jieyang, 522000 Guangdong China
| | - Yiming Shao
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
- grid.410560.60000 0004 1760 3078The Key Laboratory of Sepsis Translational Medicine, Guangdong Medical University, Zhanjiang, Guangdong China
| |
Collapse
|
6
|
Woodson CM, Kehn-Hall K. Examining the role of EGR1 during viral infections. Front Microbiol 2022; 13:1020220. [PMID: 36338037 PMCID: PMC9634628 DOI: 10.3389/fmicb.2022.1020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 09/06/2023] Open
Abstract
Early growth response 1 (EGR1) is a multifunctional mammalian transcription factor capable of both enhancing and/or inhibiting gene expression. EGR1 can be activated by a wide array of stimuli such as exposure to growth factors, cytokines, apoptosis, and various cellular stress states including viral infections by both DNA and RNA viruses. Following induction, EGR1 functions as a convergence point for numerous specialized signaling cascades and couples short-term extracellular signals to influence transcriptional regulation of genes required to initiate the appropriate biological response. The role of EGR1 has been extensively studied in both physiological and pathological conditions of the adult nervous system where it is readily expressed in various regions of the brain and is critical for neuronal plasticity and the formation of memories. In addition to its involvement in neuropsychiatric disorders, EGR1 has also been widely examined in the field of cancer where it plays paradoxical roles as a tumor suppressor gene or oncogene. EGR1 is also associated with multiple viral infections such as Venezuelan equine encephalitis virus (VEEV), Kaposi's sarcoma-associated herpesvirus (KSHV), herpes simplex virus 1 (HSV-1), human polyomavirus JC virus (JCV), human immunodeficiency virus (HIV), and Epstein-Barr virus (EBV). In this review, we examine EGR1 and its role(s) during viral infections. First, we provide an overview of EGR1 in terms of its structure, other family members, and a brief overview of its roles in non-viral disease states. We also review upstream regulators of EGR1 and downstream factors impacted by EGR1. Then, we extensively examine EGR1 and its roles, both direct and indirect, in regulating replication of DNA and RNA viruses.
Collapse
Affiliation(s)
- Caitlin M. Woodson
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
7
|
Han M, Chen Z, He P, Li Z, Chen Q, Tong Z, Wang M, Du H, Zhang H. YgiM may act as a trigger in the sepsis caused by Klebsiella pneumoniae through the membrane-associated ceRNA network. Front Genet 2022; 13:973145. [PMID: 36212144 PMCID: PMC9537587 DOI: 10.3389/fgene.2022.973145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Sepsis is one of the diseases that can cause serious mortality. In E. coli, an inner membrane protein YgiM encoded by gene ygiM can target the eukaryotic peroxisome. Peroxisome is a membrane-enclosed organelle associated with the ROS metabolism and was reported to play the key role in immune responses and inflammation during the development of sepsis. Klebsiella pneumoniae (K. pneumoniae) is one of the important pathogens causing sepsis. However, the function of gene vk055_4013 which is highly homologous to ygiM of E. coli has not been demonstrated in K. pneumoniae. In this study, we prepared ΔygiM of K. pneumoniae ATCC43816, and found that the deletion of ygiM did not affect bacterial growth and mouse mortality in the mouse infection model. Interestingly, ΔygiM not only resulted in reduced bacterial resistance to macrophages, but also attenuated pathological manifestations in mouse organs. Furthermore, based on the data of Gene Expression Omnibus, the expression profiles of micro RNAs (miRNAs) and messenger RNAs (mRNAs) in the serum of 44 sepsis patients caused by K. pneumoniae infection were analyzed, and 11 differently expressed miRNAs and 8 DEmRNAs associated with the membrane function were found. Finally, the membrane-associated competing endogenous RNAs (ceRNAs) network was constructed. In this ceRNAs network, DEmiRNAs (hsa-miR-7108-5p, hsa-miR-6780a-5p, hsa-miR-6756-5p, hsa-miR-4433b-3p, hsa-miR-3652, hsa-miR-342-3p, hsa-miR-32-5p) and their potential downstream target DEmRNAs (VNN1, CEACAM8, PGLYRP1) were verified in the cell model infected by wild type and ΔygiM of K. pneumoniae, respectively. Taken together, YgiM may trigger the sepsis caused by K. pneumoniae via membrane-associated ceRNAs. This study provided new insights into the role of YgiM in the process of K. pneumoniae induced sepsis.
Collapse
Affiliation(s)
- Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ping He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Clinical Laboratory, Sichuan Province Science City Hospital, Chengdu, China
| | - Ziyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zelei Tong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Rahn S, Becker-Pauly C. Meprin and ADAM proteases as triggers of systemic inflammation in sepsis. FEBS Lett 2022; 596:534-556. [PMID: 34762736 DOI: 10.1002/1873-3468.14225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
Systemic inflammatory disorders (SIDs) comprise a broad range of diseases characterized by dysregulated excessive innate immune responses. Severe forms of SIDs can lead to organ failure and death, and their increasing incidence represents a major issue for the healthcare system. Protease-mediated ectodomain shedding of cytokines and their receptors represents a central mechanism in the regulation of inflammatory responses. The metalloprotease A disintegrin and metalloproteinase (ADAM) 17 is the best-characterized ectodomain sheddase capable of releasing TNF-α and soluble IL-6 receptor, which are decisive factors of systemic inflammation. Recently, meprin metalloproteases were also identified as IL-6 receptor sheddases and activators of the pro-inflammatory cytokines IL-1β and IL-18. In different mouse models of SID, particularly those mimicking a sepsis-like phenotype, ADAM17 and meprins have been found to promote disease progression. In this review, we summarize the role of ADAM10, ADAM17, and meprins in the onset and progression of sepsis and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Sascha Rahn
- Biochemical Institute, Christian-Albrechts-University Kiel, Germany
| | | |
Collapse
|
9
|
The -172 A-to-G variation in ADAM17 gene promoter region affects EGR1/ADAM17 pathway and confers susceptibility to septic mortality with sepsis-3.0 criteria. Int Immunopharmacol 2021; 102:108385. [PMID: 34862128 DOI: 10.1016/j.intimp.2021.108385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND A disintegrin and metalloproteinase 17 (ADAM17) is a proteolytic cleaving protein with a crucial function in the inflammatory responses, especially sepsis. But the clear role of ADAM17 in sepsis and the underlying mechanism remained unknown. In this study, we aim to determine the clinical association of ADAM17 -172A > G (rs12692386) promoter polymorphism with sepsis and to further explore the effect and mechanism of the early growth response 1 (EGR1)/ADAM17 pathway in inflammatory process during sepsis. METHODS A total of 477 sepsis patients and 750 controls were enrolled in this study to determine the association of ADAM17 -172A > G polymorphism with sepsis. The transcription factor binding to the promoter region of ADAM17 gene was predicted by bioinformatics analysis and verified by Chromatin Immunoprecipitation (ChIP) and luciferase assays. Quantitative real-time PCR and Western blot were performed to detect EGR1 and ADAM17 expression. Cytokine production was detected by enzyme-linked immunosorbent assay. The effect of EGR1/ADAM17 pathway on sepsis-induced inflammatory responses was evaluated in EGR1-silenced cells and endotoxemia mouse model. RESULTS The frequencies of non-survivors among the sepsis patients with the -172AG/GG genotypes and G allele were distinctly higher than those among patients with the AA genotype (53.9% vs. 39.7%, OR = 1.779, 95% CI = 1.119-2.829, P = 0.0142) and A allele (30.9% vs. 22.2%, OR = 1.570, 95% CI = 1.095-2.251, P = 0.0136). The Kaplan-Meier survival analysis indicated that the 28-day survival in septic patients with -172AG/GG genotypes of this functional ADAM17 promoter polymorphism was much worse than in the AA genotype carriers (log-rank = 5.358, P = 0.021). The results of in vitro lipopolysaccharide-stimulated and luciferase assays indicated that the -172 A-to-G variation could functionally upregulate promoter activity and transcription of ADAM17 gene via enhancing the binding affinity of its promoter region with the EGR1. The ChIP assay identified the direct interaction. Further studies demonstrated that inhibition of EGR1 significantly decreased ADAM17 expression and the pro-inflammatory cytokine secretion in vitro, and improved the survival and inflammatory response of sepsis mouse model. CONCLUSIONS These results provided evidence that the ADAM17 -172A > G polymorphism functionally promoted ADAM17 expression and enhanced sepsis-induced inflammatory responses via the EGR1/ADAM17 pathway, which ultimately conferred susceptibility to sepsis mortality and poor prognosis.
Collapse
|
10
|
Abstract
Early growth response‐1 (Egr‐1) is a master regulator and transcriptional sensor in vascular dysfunction and disease. This article reviews recent developments in our understanding of the regulatory roles this zinc finger protein and product of an immediate‐early gene plays in a range of cardiovascular and inflammatory disorders. Egr‐1 can amplify pathologic signals from the extracellular environment by serving as a molecular conduit in the inducible expression of proliferative, migratory and proinflammatory genes driving disease progression. Strategies targeting Egr‐1 may provide therapeutic benefit in cardiovascular and inflammatory disorders.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research School of Medical Sciences Faculty of Medicine and Health University of New South Wales Sydney NSW Australia
| |
Collapse
|
11
|
He D, Lu X, Li W, Wang Y, Li N, Chen Y, Zhang L, Niu W, Zhang Q. Vitamin D Receptor Is a Sepsis-Susceptibility Gene in Chinese Children. Med Sci Monit 2021; 27:e932518. [PMID: 34689148 PMCID: PMC8552509 DOI: 10.12659/msm.932518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background We designed an association study among 267 cases of children with sepsis and 283 healthy controls, by genotyping 9 variants in the VDR gene. Material/Methods This was a hospital-based, case-control, genetic association study. In addition to 3 genetic modes of inheritance, haplotype and interaction analyses were employed to examine the prediction of VDR gene for pediatric sepsis. Effect-size estimates are expressed as odds ratio (OR) and 95% confidence interval (CI). Results Two variants in the VDR gene, rs2107301 and rs2189480, were found to play a leading role in susceptibility to sepsis in children. The mutant homozygotes of rs2107301 (CC) and rs2189480 (CC) were associated with a reduced risk of sepsis compared with the corresponding wild homozygotes (OR: 0.44 and 0.43, 95% CI: 0.21–0.92 and 0.23–0.81, p: 0.03 and 0.009, respectively). The mutations of rs2107301-C and rs2189480-C alleles were associated with reduced sepsis risk. Haplotype C-C-C-C-C-T-C-A-G in the VDR gene was significantly associated with a 0.59-fold decreased risk of sepsis (95% CI: 0.12–0.76, p: 0.02). In the haplotype–phenotype analysis, significant association was noted for high-density lipoprotein, even after simulation correction (psim <0.05). Conclusions Taken together, our findings indicate that the VDR gene may be a sepsis-susceptibility gene in Chinese Han children.
Collapse
Affiliation(s)
- Danni He
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China (mainland).,Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Xiuxiu Lu
- Intensive Care Unit, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Wei Li
- Intensive Care Unit, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Yuanyuan Wang
- Department of Respiratory Intervention, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Ning Li
- Intensive Care Unit, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Yuanmei Chen
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Lipeng Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China (mainland).,Graduate School of Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China (mainland)
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China (mainland)
| |
Collapse
|
12
|
Lu F, Chen H, Hong Y, Lin Y, Liu L, Wei N, Wu Q, Liao S, Yang S, He J, Shao Y. A gain-of-function NLRP3 3'-UTR polymorphism causes miR-146a-mediated suppression of NLRP3 expression and confers protection against sepsis progression. Sci Rep 2021; 11:13300. [PMID: 34172780 PMCID: PMC8233413 DOI: 10.1038/s41598-021-92547-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (LRR)-containing family protein 3 (NLRP3) regulated the maturation of inflammation-related cytokines by forming NLRP3 inflammasome, which plays pivotal roles in sepsis pathogenesis. In this study, we evaluated the genetic association of NLRP3 polymorphisms with sepsis (640 patients and 769 controls) and characterized the impact of NLRP3 polymorphisms on NLRP3 expression and inflammatory responses. No significant differences were observed in genotype/allelic frequencies of NLRP3 29940G>C between sepsis cases and controls. The G allele was significantly overrepresented in patients with septic shock than those in sepsis subgroup, and the GC/GG genetypes were related to the 28-day mortality of sepsis. Lipopolysaccharide challenge to peripheral blood mononuclear cells showed a significant suppression of NLRP3 mRNA expression and release of IL-1β and TNF-α in CC compared with the GC/GG genotype category. Functional experiments with luciferase reporter vectors containing the NLRP3 3′-UTR with the 29940 G-to-C variation in HUVECs and THP-1 cells showed a potential suppressive effect of miR-146a on NLRP3 transcription in the presence of the C allele. Taken together, these results demonstrated that the 29940 G-to-C mutation within the NLRP3 3′-UTR was a gain-of-function alteration that caused the suppression of NLRP3 expression and downstream inflammatory cytokine production via binding with miR-146a, which ultimately protected patients against susceptibility to sepsis progression and poor clinical outcome.
Collapse
Affiliation(s)
- Furong Lu
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Hongpeng Chen
- The Department of Chemotherapy, Jieyang Affiliated Hospital, SunYat-Sen University, Jieyang, Guangdong, People's Republic of China
| | - Yuan Hong
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Yao Lin
- The Clinical Medicine Research Laboratory, The Intensive Care Unit, Jieyang Affiliated Hospital, SunYat-Sen University, Tianfu Road 107, Rongcheng District, Jieyang City, 522000, Guangdong Province, People's Republic of China
| | - Lizhen Liu
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China.,The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Ning Wei
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Qinyan Wu
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Shuanglin Liao
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Shuai Yang
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Junbing He
- The Clinical Medicine Research Laboratory, The Intensive Care Unit, Jieyang Affiliated Hospital, SunYat-Sen University, Tianfu Road 107, Rongcheng District, Jieyang City, 522000, Guangdong Province, People's Republic of China.
| | - Yiming Shao
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China. .,The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524023, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Banerji R, Saroj SD. Early growth response 1 (EGR1) activation in initial stages of host-pathogen interactions. Mol Biol Rep 2021; 48:2935-2943. [PMID: 33783681 DOI: 10.1007/s11033-021-06305-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
The factors that determine the outcomes of host-pathogen interactions, such as host specificity, tissue specificity, and transition from asymptomatic to symptomatic behavior of a pathogen, are yet to be deciphered. The initial interaction of a pathogen with host and host-associated factors play a crucial role in deciding such outcomes. One of the several host-factors that contribute to bacterial adhesion and the outcome of an infection is the activation of early growth response 1 (EGR1). EGR1 is an initial response transcriptional regulator that plays a vital role in regulating cell growth, differentiation, and survival. EGR1 expression is seen in most of the mammalian tissues. Multiple post-translational modifications occur, which modulate the EGR1 transcriptional activity. Upon activation, EGR1 can transactivate several genes with diverse cellular functions, including transcriptional regulatory proteins and cell proliferation. EGR1 has also been identified as a potential mediator of inflammatory gene expression. Recent studies have highlighted the role of EGR1 as a potent signaling molecule that facilitates bacterial adhesion to host epithelial cells, thus modulating colonization pathways. The pathways for the regulation of EGR1 during host-pathogen interaction remain yet unidentified. The review focuses on the role and regulation of EGR1 during host-pathogen interaction.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, Maharashtra, 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, Maharashtra, 412115, India.
| |
Collapse
|
14
|
Zhou M, Lin Y, Lu L, Zhang Z, Guo W, Peng G, Zhang W, Zhu Z, Wu Z, Mo M, Yang X, Zhu X, Chen C, Chen X, Xu P. Association of ADAM10 gene variants with sporadic Parkinson's disease in Chinese Han population. J Gene Med 2021; 23:e3319. [PMID: 33527480 DOI: 10.1002/jgm.3319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/07/2021] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Genetic factors play important roles in PD risk. rs653765 and rs514049 of ADAM10 were reported to be associated with Alzheimer's disease (AD) in Caucasian population; however, the association of the two variants with PD in Chinese Han population remains unknown. The present investigation aimed to explore the possible association of ADAM10 variants with PD in Chinese Han population. METHODS We enrolled 565 PD patients and 518 healthy controls to conduct a case-control study. DNA samples were extracted from peripheral blood leukocytes, and the genotypes were determined by utilization of MassARRAY platform. Plasma levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS We found CC genotype of rs514049 was associated with an increased risk of PD (OR (95% CI) = 3.776 (1.127-11.217), p = 0.018). The C allele frequency of rs514049 was significantly higher in PD group (OR (95% CI) = 1.328 (1.031-1.709), p = 0.028), especially in male subgroup (OR (95% CI) = 1.484 (1.053-2.092), p = 0.024). However, there was no significant difference in the genotype or allele frequencies for rs653765 within the groups. Plasma levels were significantly decreased in PD patients compared with controls (p < 0.001). CONCLUSIONS Our data suggested that C allele of rs514049 in ADAM10 may increase the risk of PD in Chinese Han population, especially in males. The decreased plasma levels are probably involved in PD development.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziting Zhu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chaojun Chen
- Department of Neurology, Guangzhou Chinese Medical Integrated Hospital (Huadu), Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Cheng W, Meng W, Gu Y. Metalloprotease Adam10 inhibition mitigates acute liver injury via repression of intrahepatic inflammation. Minerva Med 2020; 113:506-512. [PMID: 32512977 DOI: 10.23736/s0026-4806.20.06655-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Acute liver injury (ALI) is associated with the occurrence and progress of intrahepatic inflammation. Recent studies have shown that Adam10, a significant member of metalloproteinase family, has modulated the inflammation level in various neurologic diseases. However, it is elusive whether Adam10 regulation exert a hepatic protective effect on ALI by the suppression of inflammation level. The study aimed to explore the regulated function of Adam10 on acute liver injury. METHODS C57BL/6J mice (eight-week-old, male) were carried out intraperitoneal injection of tetrachloromethane (CTC) to provoke ALI. Adam 10 loaded in Adeno-associated viral vectors (AAV-Adam 10) or short hairpin RNA loaded in lentivirus aimed at murine Adam 10 mRNA (sh-RNA-Adam 10) were respectively delivered to mice via tail intravenous injection to achieve overexpression or silence of Adam 10. Western blotting, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), immumohistochemical (IHC) and hematoxylin and eosin (HE) staining were conducted to measure Adam 10 alteration, inflammation level, histology and liver function. RESULTS We show that the expression of Adam 10 markedly increases in CTC-induced injured liver tissues. Moreover, we demonstrate that the knockdown of Adam 10 attenuates the intrahepatic inflammation and protects hepatic histology and function in ALI mice, however the overexpression of Adam10 aggravates inflammation and liver lesion. CONCLUSIONS The above suggested that the inhibition of Adam 10 ameliorates ALI through inhibiting inflammation. Our research provides novel view on the Adam 10 modulation of process of ALI by the inflammation aspect and verify a potential target for the therapy of ALI in the future.
Collapse
Affiliation(s)
- Weihua Cheng
- Departments of Hepatobiliary, Pancreatic and Splenic Surgery, Baoji Central Hospital, Baoji, China
| | - Wei Meng
- Department of Infectious Disease, Binzhou People's Hospital, Binzhou, China
| | - Yihai Gu
- Department of Traditional Chinese Medicine, Sixth People's Hospital of Qingdao, Qingdao, China -
| |
Collapse
|