1
|
Bickley CD, Wan J, Komeili A. Intrinsic and extrinsic determinants of conditional localization of Mms6 to magnetosome organelles in Magnetospirillum magneticum AMB-1. J Bacteriol 2024; 206:e0000824. [PMID: 38819153 PMCID: PMC11332177 DOI: 10.1128/jb.00008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Magnetotactic bacteria are a diverse group of microbes that use magnetic particles housed within intracellular lipid-bounded magnetosome organelles to guide navigation along geomagnetic fields. The development of magnetosomes and their magnetic crystals in Magnetospirillum magneticum AMB-1 requires the coordinated action of numerous proteins. Most proteins are thought to localize to magnetosomes during the initial stages of organelle biogenesis, regardless of environmental conditions. However, the magnetite-shaping protein Mms6 is only found in magnetosomes that contain magnetic particles, suggesting that it might conditionally localize after the formation of magnetosome membranes. The mechanisms for this unusual mode of localization to magnetosomes are unclear. Here, using pulse-chase labeling, we show that Mms6 translated under non-biomineralization conditions translocates to pre-formed magnetosomes when cells are shifted to biomineralizing conditions. Genes essential for magnetite production, namely mamE, mamM, and mamO, are necessary for Mms6 localization, whereas mamN inhibits Mms6 localization. MamD localization was also investigated and found to be controlled by similar cellular factors. The membrane localization of Mms6 is dependent on a glycine-leucine repeat region, while the N-terminal domain of Mms6 is necessary for retention in the cytosol and impacts conditional localization to magnetosomes. The N-terminal domain is also sufficient to impart conditional magnetosome localization to MmsF, altering its native constitutive magnetosome localization. Our work illuminates an alternative mode of protein localization to magnetosomes in which Mms6 and MamD are excluded from magnetosomes by MamN until biomineralization initiates, whereupon they translocate into magnetosome membranes to control the development of growing magnetite crystals.IMPORTANCEMagnetotactic bacteria (MTB) are a diverse group of bacteria that form magnetic nanoparticles surrounded by membranous organelles. MTB are widespread and serve as a model for bacterial organelle formation and biomineralization. Magnetosomes require a specific cohort of proteins to enable magnetite formation, but how those proteins are localized to magnetosome membranes is unclear. Here, we investigate protein localization using pulse-chase microscopy and find a system of protein coordination dependent on biomineralization-permissible conditions. In addition, our findings highlight a protein domain that alters the localization behavior of magnetosome proteins. Utilization of this protein domain may provide a synthetic route for conditional functionalization of magnetosomes for biotechnological applications.
Collapse
Affiliation(s)
- Carson D. Bickley
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Juan Wan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
2
|
Tomoe R, Fujimoto K, Tanaka T, Arakaki A, Kisailus D, Yoshino T. Lipid membrane modulated control of magnetic nanoparticles within bacterial systems. J Biosci Bioeng 2023; 136:253-260. [PMID: 37422334 DOI: 10.1016/j.jbiosc.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Bacterial magnetosomes synthesized by the magnetotactic bacterium Magnetospirillum magneticum are suitable for biomedical and biotechnological applications because of their high level of chemical purity of mineral with well-defined morphological features and a biocompatible lipid bilayer coating. However, utilizations of native magnetosomes are not sufficient for maximum effectiveness in many applications as the appropriate particle size differs. In this study, a method to control magnetosome particle size is developed for integration into targeted technological applications. The size and morphology of magnetosome crystals are highly regulated by the complex interactions of magnetosome synthesis-related genes; however, these interactions have not been fully elucidated. In contrast, previous studies have shown a positive correlation between vesicle and crystal sizes. Therefore, control of the magnetosome vesicle size is tuned by modifying the membrane lipid composition. Exogenous phospholipid synthesis pathways have been genetically introduced into M. magneticum. The experimental results show that these phospholipids altered the properties of the magnetosome membrane vesicles, which yielded larger magnetite crystal sizes. The genetic engineering approach presented in this study is shown to be useful for controlling magnetite crystal size without involving complex interactions of magnetosome synthesis-related genes.
Collapse
Affiliation(s)
- Ryoto Tomoe
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazushi Fujimoto
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
3
|
Awal RP, Lefevre CT, Schüler D. Functional expression of foreign magnetosome genes in the alphaproteobacterium Magnetospirillum gryphiswaldense. mBio 2023; 14:e0328222. [PMID: 37318230 PMCID: PMC10470508 DOI: 10.1128/mbio.03282-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
Magnetosomes of magnetotactic bacteria (MTB) consist of structurally perfect, nano-sized magnetic crystals enclosed within vesicles of a proteo-lipid membrane. In species of Magnetospirillum, biosynthesis of their cubo-octahedral-shaped magnetosomes was recently demonstrated to be a complex process, governed by about 30 specific genes that are comprised within compact magnetosome gene clusters (MGCs). Similar, yet distinct gene clusters were also identified in diverse MTB that biomineralize magnetosome crystals with different, genetically encoded morphologies. However, since most representatives of these groups are inaccessible by genetic and biochemical approaches, their analysis will require the functional expression of magnetosome genes in foreign hosts. Here, we studied whether conserved essential magnetosome genes from closely and remotely related MTB can be functionally expressed by rescue of their respective mutants in the tractable model Magnetospirillum gryphiswaldense of the Alphaproteobacteria. Upon chromosomal integration, single orthologues from other magnetotactic Alphaproteobacteria restored magnetosome biosynthesis to different degrees, while orthologues from distantly related Magnetococcia and Deltaproteobacteria were found to be expressed but failed to re-induce magnetosome biosynthesis, possibly due to poor interaction with their cognate partners within multiprotein magnetosome organelle of the host. Indeed, co-expression of the known interactors MamB and MamM from the alphaproteobacterium Magnetovibrio blakemorei increased functional complementation. Furthermore, a compact and portable version of the entire MGCs of M. magneticum was assembled by transformation-associated recombination cloning, and it restored the ability to biomineralize magnetite both in deletion mutants of the native donor and M. gryphiswaldense, while co-expression of gene clusters from both M. gryphiswaldense and M. magneticum resulted in overproduction of magnetosomes. IMPORTANCE We provide proof of principle that Magnetospirillum gryphiswaldense is a suitable surrogate host for the functional expression of foreign magnetosome genes and extended the transformation-associated recombination cloning platform for the assembly of entire large magnetosome gene cluster, which could then be transplanted to different magnetotactic bacteria. The reconstruction, transfer, and analysis of gene sets or entire magnetosome clusters will be also promising for engineering the biomineralization of magnetite crystals with different morphologies that would be valuable for biotechnical applications.
Collapse
Affiliation(s)
- Ram Prasad Awal
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Christopher T. Lefevre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
4
|
Live-Cell Fluorescence Imaging of Magnetosome Organelle for Magnetotaxis Motility. Methods Mol Biol 2023; 2646:133-146. [PMID: 36842112 DOI: 10.1007/978-1-0716-3060-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The assessment of intracellular dynamics is crucial for understanding the function and formation process of bacterial organelle, just as it is for the inquisition of their eukaryotic counterparts. The methods for imaging magnetosome organelles in a magnetotactic bacterial cell using live-cell fluorescence imaging by highly inclined and laminated optical sheet (HILO) microscopy are presented in this chapter. Furthermore, we introduce methods for pH imaging in magnetosome lumen as an application of fluorescence magnetosome imaging.
Collapse
|
5
|
Wan J, Monteil CL, Taoka A, Ernie G, Park K, Amor M, Taylor-Cornejo E, Lefevre CT, Komeili A. McaA and McaB control the dynamic positioning of a bacterial magnetic organelle. Nat Commun 2022; 13:5652. [PMID: 36163114 PMCID: PMC9512821 DOI: 10.1038/s41467-022-32914-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Magnetotactic bacteria are a diverse group of microorganisms that use intracellular chains of ferrimagnetic nanocrystals, produced within magnetosome organelles, to align and navigate along the geomagnetic field. Several conserved genes for magnetosome formation have been described, but the mechanisms leading to distinct species-specific magnetosome chain configurations remain unclear. Here, we show that the fragmented nature of magnetosome chains in Magnetospirillum magneticum AMB-1 is controlled by genes mcaA and mcaB. McaA recognizes the positive curvature of the inner cell membrane, while McaB localizes to magnetosomes. Along with the MamK actin-like cytoskeleton, McaA and McaB create space for addition of new magnetosomes in between pre-existing magnetosomes. Phylogenetic analyses suggest that McaA and McaB homologs are widespread among magnetotactic bacteria and may represent an ancient strategy for magnetosome positioning.
Collapse
Affiliation(s)
- Juan Wan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Caroline L Monteil
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Azuma Taoka
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Gabriel Ernie
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Kieop Park
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Matthieu Amor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Elias Taylor-Cornejo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Biology, Randolph-Macon College, Ashland, VA, 23005, USA
| | - Christopher T Lefevre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Goswami P, He K, Li J, Pan Y, Roberts AP, Lin W. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. NPJ Biofilms Microbiomes 2022; 8:43. [PMID: 35650214 PMCID: PMC9160268 DOI: 10.1038/s41522-022-00304-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a group of phylogenetically diverse and morphologically varied microorganisms with a magnetoresponsive capability called magnetotaxis or microbial magnetoreception. MTB are a distinctive constituent of the microbiome of aquatic ecosystems because they use Earth's magnetic field to align themselves in a north or south facing direction and efficiently navigate to their favored microenvironments. They have been identified worldwide from diverse aquatic and waterlogged microbiomes, including freshwater, saline, brackish and marine ecosystems, and some extreme environments. MTB play important roles in the biogeochemical cycling of iron, sulphur, phosphorus, carbon and nitrogen in nature and have been recognized from in vitro cultures to sequester heavy metals like selenium, cadmium, and tellurium, which makes them prospective candidate organisms for aquatic pollution bioremediation. The role of MTB in environmental systems is not limited to their lifespan; after death, fossil magnetosomal magnetic nanoparticles (known as magnetofossils) are a promising proxy for recording paleoenvironmental change and geomagnetic field history. Here, we summarize the ecology, evolution, and environmental function of MTB and the paleoenvironmental implications of magnetofossils in light of recent discoveries.
Collapse
Affiliation(s)
- Pranami Goswami
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- Research School of Earth Sciences, Australian National University, ACT, Canberra, ACT, 2601, Australia
| | - Kuang He
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Submarine Geosciences and Prospecting Techniques, MoE and College of Marine Geosciences, Ocean University of China, 266100, Qingdao, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, ACT, Canberra, ACT, 2601, Australia.
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China.
| |
Collapse
|
7
|
Zhao D, Yang J, Zhang G, Lu D, Zhang S, Wang W, Yan L. Potential and whole-genome sequence-based mechanism of elongated-prismatic magnetite magnetosome formation in Acidithiobacillus ferrooxidans BYM. World J Microbiol Biotechnol 2022; 38:121. [DOI: 10.1007/s11274-022-03308-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 01/15/2023]
|
8
|
Amor M, Faivre D, Corvisier J, Tharaud M, Busigny V, Komeili A, Guyot F. Defining Local Chemical Conditions in Magnetosomes of Magnetotactic Bacteria. J Phys Chem B 2022; 126:2677-2687. [PMID: 35362974 PMCID: PMC9098202 DOI: 10.1021/acs.jpcb.2c00752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defining chemical properties of intracellular organelles is necessary to determine their function(s) as well as understand and mimic the reactions they host. However, the small size of bacterial and archaeal microorganisms often prevents defining local intracellular chemical conditions in a similar way to what has been established for eukaryotic organelles. This work proposes to use magnetite (Fe3O4) nanocrystals contained in magnetosome organelles of magnetotactic bacteria as reporters of elemental composition, pH, and redox potential of a hypothetical environment at the site of formation of intracellular magnetite. This methodology requires combining recent single-cell mass spectrometry measurements together with elemental composition of magnetite in trace and minor elements. It enables a quantitative characterization of chemical disequilibria of 30 chemical elements between the intracellular and external media of magnetotactic bacteria, revealing strong transfers of elements with active influx or efflux processes that translate into elemental accumulation (Mo, Se, and Sn) or depletion (Sr and Bi) in the bacterial internal medium of up to seven orders of magnitude relative to the extracellular medium. Using this concept, we show that chemical conditions in magnetosomes are compatible with a pH of 7.5-9.5 and a redox potential of -0.25 to -0.6 V.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108 Saint-Paul-lez-Durance, France.,Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States
| | - Damien Faivre
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108 Saint-Paul-lez-Durance, France
| | - Jérôme Corvisier
- Mines ParisTech, PSL Research University, Centre de Géosciences, 35 rue Saint Honoré, Fontainebleau Cedex 77305, France
| | - Mickaël Tharaud
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris F-75005, France
| | - Vincent Busigny
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris F-75005, France.,Institut Universitaire de France, Paris 75005, France
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, United States
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Sorbonne Université, UMR 7590 CNRS, 61 rue Buffon, 75005 Paris, France
| |
Collapse
|
9
|
Hori K, Yoshimoto S, Yoshino T, Zako T, Hirao G, Fujita S, Nakamura C, Yamagishi A, Kamiya N. Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces. J Biosci Bioeng 2022; 133:195-207. [PMID: 34998688 DOI: 10.1016/j.jbiosc.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Biointerfaces are regions where biomolecules, cells, and organic materials are exposed to environmental media or come in contact with other biomaterials, cells, and inorganic/organic materials. In this review article, six research topics on biointerfaces are described to show examples of state-of-art research approaches. First, biointerface design of nanoparticles for molecular detection is described. Functionalized gold nanoparticles can be used for sensitive detection of various target molecules, including chemical compounds and biomolecules, such as DNA, proteins, cells, and viruses. Second, the interaction between bacterial cell surfaces and material surfaces, including the introduction of advances in analytical methods and theoretical calculations, are explained as well as their applications to bioprocesses. Third, bioconjugation technologies for localizing functional proteins at biointerfaces are introduced, in particular, by focusing the potential of enzymes as a catalytic tool for designing different types of bioconjugates that function at biointerfaces. Forth topics is focusing on lipid-protein interaction in cell membranes as natural biointerfaces. Examples of membrane lipid engineering are introduced, and it is mentioned how their compositional profiles affect membrane protein functions. Fifth topic is the physical method for molecular delivery across the biointerface being developed currently, such as highly efficient nanoinjection, electroporation, and nanoneedle devices, in which the key is how to perforate the cell membrane. Final topic is the chemical design of lipid- or polymer-based RNA delivery carriers and their behavior on the cell interface, which are currently attracting attention as RNA vaccine technologies targeting COVID-19. Finally, future directions of biointerface studies are presented.
Collapse
Affiliation(s)
- Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tamotsu Zako
- Faculty of Science, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Gen Hirao
- Faculty of Science, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Satoshi Fujita
- Photo BIO-OIL, National Institute of Advanced Industrial Science and Technology, Suita, Osaka 565-0871, Japan; Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikashi Nakamura
- DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ayana Yamagishi
- DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
A protease-mediated switch regulates the growth of magnetosome organelles in Magnetospirillum magneticum. Proc Natl Acad Sci U S A 2022; 119:2111745119. [PMID: 35110403 PMCID: PMC8833152 DOI: 10.1073/pnas.2111745119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Biomineralization, the process by which elaborate three-dimensional structures are built out of organic and inorganic molecules, is central to health and survival of many organisms. In some magnetotactic bacteria, the growth of magnetosome membranes is closely correlated to the progression of mineral formation. However, the molecular mechanisms of such regulation are not clear. We show that the serine protease MamE links magnetosome membrane growth to the controlled production of magnetite nanoparticles through the processing of mineral-associated MamD protein. Our results indicate that membrane growth directly controls mineral growth and shed light on how an organelle’s size can determine its physiological output. Manipulation of the MamE pathway may also open the door for control of nanoparticle size in future biotechnological applications. Magnetosomes are lipid-bound organelles that direct the biomineralization of magnetic nanoparticles in magnetotactic bacteria. Magnetosome membranes are not uniform in size and can grow in a biomineralization-dependent manner. However, the underlying mechanisms of magnetosome membrane growth regulation remain unclear. Using cryoelectron tomography, we systematically examined mutants with defects at various stages of magnetosome formation to identify factors involved in controlling membrane growth. We found that a conserved serine protease, MamE, plays a key role in magnetosome membrane growth regulation. When the protease activity of MamE is disrupted, magnetosome membrane growth is restricted, which, in turn, limits the size of the magnetite particles. Consistent with this finding, the upstream regulators of MamE protease activity, MamO and MamM, are also required for magnetosome membrane growth. We then used a combination of candidate and comparative proteomics approaches to identify Mms6 and MamD as two MamE substrates. Mms6 does not appear to participate in magnetosome membrane growth. However, in the absence of MamD, magnetosome membranes grow to a larger size than the wild type. Furthermore, when the cleavage of MamD by MamE protease is blocked, magnetosome membrane growth and biomineralization are severely inhibited, phenocopying the MamE protease-inactive mutant. We therefore propose that the growth of magnetosome membranes is controlled by a protease-mediated switch through processing of MamD. Overall, our work shows that, like many eukaryotic systems, bacteria control the growth and size of biominerals by manipulating the physical properties of intracellular organelles.
Collapse
|
11
|
Baki A, Wiekhorst F, Bleul R. Advances in Magnetic Nanoparticles Engineering for Biomedical Applications-A Review. Bioengineering (Basel) 2021; 8:134. [PMID: 34677207 PMCID: PMC8533261 DOI: 10.3390/bioengineering8100134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been developed and applied for a broad range of biomedical applications, such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery, gene therapy and tissue repair. As one key element, reproducible synthesis routes of MNPs are capable of controlling and adjusting structure, size, shape and magnetic properties are mandatory. In this review, we discuss advanced methods for engineering and utilizing MNPs, such as continuous synthesis approaches using microtechnologies and the biosynthesis of magnetosomes, biotechnological synthesized iron oxide nanoparticles from bacteria. We compare the technologies and resulting MNPs with conventional synthetic routes. Prominent biomedical applications of the MNPs such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery and magnetic actuation in micro/nanorobots will be presented.
Collapse
Affiliation(s)
- Abdulkader Baki
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany;
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| |
Collapse
|
12
|
Kaplan M, Chreifi G, Metskas LA, Liedtke J, Wood CR, Oikonomou CM, Nicolas WJ, Subramanian P, Zacharoff LA, Wang Y, Chang YW, Beeby M, Dobro MJ, Zhu Y, McBride MJ, Briegel A, Shaffer CL, Jensen GJ. In situ imaging of bacterial outer membrane projections and associated protein complexes using electron cryo-tomography. eLife 2021; 10:73099. [PMID: 34468314 PMCID: PMC8455137 DOI: 10.7554/elife.73099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to produce outer membrane projections in the form of tubular membrane extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among diderm bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms of ~90 bacterial species that we have collected for various projects over the past 15 years (Jensen lab database), in addition to data generated in the Briegel lab. We identified outer MEs and MVs in 13 diderm bacterial species and classified several major ultrastructures: (1) tubes with a uniform diameter (with or without an internal scaffold), (2) tubes with irregular diameter, (3) tubes with a vesicular dilation at their tip, (4) pearling tubes, (5) connected chains of vesicles (with or without neck-like connectors), (6) budding vesicles and nanopods. We also identified several protein complexes associated with these MEs and MVs which were distributed either randomly or exclusively at the tip. These complexes include a secretin-like structure and a novel crown-shaped structure observed primarily in vesicles from lysed cells. In total, this work helps to characterize the diversity of bacterial membrane projections and lays the groundwork for future research in this field.
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Georges Chreifi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Lauren Ann Metskas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Janine Liedtke
- Leiden University, Sylvius Laboratories, Leiden, Netherlands
| | - Cecily R Wood
- Department of Veterinary Science, University of Kentucky, Lexington, United States
| | - Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Poorna Subramanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Yuhang Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Yongtao Zhu
- Department of Biological Sciences, Minnesota State University, Mankato, United States
| | - Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Ariane Briegel
- Leiden University, Sylvius Laboratories, Leiden, Netherlands
| | - Carrie L Shaffer
- Department of Veterinary Science, University of Kentucky, Lexington, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, United States.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, United States
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
| |
Collapse
|
13
|
Abstract
Magnetotactic bacteria are aquatic or sediment-dwelling microorganisms able to take advantage of the Earth's magnetic field for directed motility. The source of this amazing trait is magnetosomes, unique organelles used to synthesize single nanometer-sized crystals of magnetic iron minerals that are queued up to build an intracellular compass. Most of these microorganisms cannot be cultivated under controlled conditions, much less genetically engineered, with only few exceptions. However, two of the genetically amenable Magnetospirillum species have emerged as tractable model organisms to study magnetosome formation and magnetotaxis. Recently, much has been revealed about the process of magnetosome biogenesis and dedicated structures for magnetosome dynamics and positioning, which suggest an unexpected cellular intricacy of these organisms. In this minireview, we summarize new insights and place the molecular mechanisms of magnetosome formation in the context of the complex cell biology of Magnetospirillum spp. First, we provide an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device. Finally, we discuss the impact of magnetotaxis on motility and its interconnection with chemotaxis, showing that magnetotactic bacteria are outstandingly adapted to lifestyle and habitat.
Collapse
|
14
|
Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol 2020; 18:677-689. [PMID: 32710089 DOI: 10.1038/s41579-020-0413-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.
Collapse
Affiliation(s)
- Chris Greening
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
15
|
Abstract
Many species of bacteria can manufacture materials on a finer scale than those that are synthetically made. These products are often produced within intracellular compartments that bear many hallmarks of eukaryotic organelles. One unique and elegant group of organisms is at the forefront of studies into the mechanisms of organelle formation and biomineralization. Magnetotactic bacteria (MTB) produce organelles called magnetosomes that contain nanocrystals of magnetic material, and understanding the molecular mechanisms behind magnetosome formation and biomineralization is a rich area of study. In this Review, we focus on the genetics behind the formation of magnetosomes and biomineralization. We cover the history of genetic discoveries in MTB and key insights that have been found in recent years and provide a perspective on the future of genetic studies in MTB.
Collapse
Affiliation(s)
- Hayley C. McCausland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Arash Komeili
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
16
|
Coelho C, Casadevall A. Answers to naysayers regarding microbial extracellular vesicles. Biochem Soc Trans 2019; 47:1005-1012. [PMID: 31320501 PMCID: PMC11386541 DOI: 10.1042/bst20180252] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 11/08/2023]
Abstract
It is now over 30 years since the discovery of extracellular vesicles (EVs) in Gram-negative bacteria. However, for cell-walled microbes such as fungi, mycobacteria and Gram-positive bacteria it was thought that EV release would be impossible, since such structures were not believed to cross the thick cell wall. This notion was disproven 10 years ago with the discovery of EVs in fungi, mycobacteria, and gram-positive bacteria. Today, EVs have been described in practically every species tested, ranging from Fungi through Bacteria and Archaea, suggesting that EVs are a feature of every living cell. However, there continues to be skepticism in some quarters regarding EV release and their biological significance. In this review, we list doubts that have been verbalized to us and provide answers to counter them. In our opinion, there is no doubt as to existence and physiological function of EVs and we take this opportunity to highlight the most pressing topics in our understanding of the biological processes underlying these structures.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology, Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, U.K.
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, U.K
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, U.S.A
| |
Collapse
|
17
|
Otegui MS, Pennington JG. Electron tomography in plant cell biology. Microscopy (Oxf) 2019; 68:69-79. [PMID: 30452668 DOI: 10.1093/jmicro/dfy133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Electron tomography (ET) approaches are based on the imaging of a biological specimen at different tilt angles by transmission electron microscopy (TEM). ET can be applied to both plastic-embedded and frozen samples. Technological advancements in TEM, direct electron detection, automated image collection, and imaging processing algorithms allow for 2-7-nm scale axial resolution in tomographic reconstructions of cells and organelles. In this review, we discussed the application of ET in plant cell biology and new opportunities for imaging plant cells by cryo-ET and other 3D electron microscopy approaches.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison WI, USA.,Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison WI, USA.,Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison WI, USA
| | - Jannice G Pennington
- Institute for Molecular Virology, University of Wisconsin-Madison, 1525 Linden Drive, Madison WI, USA.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
18
|
Abstract
Uncovering the mechanisms that underlie the biogenesis and maintenance of eukaryotic organelles is a vibrant and essential area of biological research. In comparison, little attention has been paid to the process of compartmentalization in bacteria and archaea. This lack of attention is in part due to the common misconception that organelles are a unique evolutionary invention of the "complex" eukaryotic cell and are absent from the "primitive" bacterial and archaeal cells. Comparisons across the tree of life are further complicated by the nebulous criteria used to designate subcellular structures as organelles. Here, with the aid of a unified definition of a membrane-bounded organelle, we present some of the recent findings in the study of lipid-bounded organelles in bacteria and archaea.
Collapse
Affiliation(s)
- Carly R Grant
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Juan Wan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
19
|
Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria. Sci Rep 2018; 8:7699. [PMID: 29769616 PMCID: PMC5955880 DOI: 10.1038/s41598-018-25972-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Understanding the biological processes enabling magnetotactic bacteria to maintain oriented chains of magnetic iron-bearing nanoparticles called magnetosomes is a major challenge. The study aimed to constrain the role of an external applied magnetic field on the alignment of magnetosome chains in Magnetospirillum magneticum AMB-1 magnetotactic bacteria immobilized within a hydrated silica matrix. A deviation of the chain orientation was evidenced, without significant impact on cell viability, which was preserved after the field was turned-off. Transmission electron microscopy showed that the crystallographic orientation of the nanoparticles within the chains were preserved. Off-axis electron holography evidenced that the change in magnetosome orientation was accompanied by a shift from parallel to anti-parallel interactions between individual nanocrystals. The field-induced destructuration of the chain occurs according to two possible mechanisms: (i) each magnetosome responds individually and reorients in the magnetic field direction and/or (ii) short magnetosome chains deviate in the magnetic field direction. This work enlightens the strong dynamic character of the magnetosome assembly and widens the potentialities of magnetotactic bacteria in bionanotechnology.
Collapse
|
20
|
Orue I, Marcano L, Bender P, García-Prieto A, Valencia S, Mawass MA, Gil-Cartón D, Alba Venero D, Honecker D, García-Arribas A, Fernández Barquín L, Muela A, Fdez-Gubieda ML. Configuration of the magnetosome chain: a natural magnetic nanoarchitecture. NANOSCALE 2018; 10:7407-7419. [PMID: 29557439 DOI: 10.1039/c7nr08493e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetospirillum gryphiswaldense is a microorganism with the ability to biomineralize magnetite nanoparticles, called magnetosomes, and arrange them into a chain that behaves like a magnetic compass. Rather than straight lines, magnetosome chains are slightly bent, as evidenced by electron cryotomography. Our experimental and theoretical results suggest that due to the competition between the magnetocrystalline and shape anisotropies, the effective magnetic moment of individual magnetosomes is tilted out of the [111] crystallographic easy axis of magnetite. This tilt does not affect the direction of the chain net magnetic moment, which remains along the [111] axis, but explains the arrangement of magnetosomes in helical-like shaped chains. Indeed, we demonstrate that the chain shape can be reproduced by considering an interplay between the magnetic dipolar interactions between magnetosomes, ruled by the orientation of the magnetosome magnetic moment, and a lipid/protein-based mechanism, modeled as an elastic recovery force exerted on the magnetosomes.
Collapse
Affiliation(s)
- I Orue
- SGIker, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - L Marcano
- Dpto. Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain.
| | - P Bender
- CITIMAC, Universidad de Cantabria, 39005 Santander, Spain
| | - A García-Prieto
- Dpto. Física Aplicada I, Universidad del País Vasco - UPV/EHU, 48013 Bilbao, Spain and BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - S Valencia
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - M A Mawass
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - D Gil-Cartón
- Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio, Spain
| | - D Alba Venero
- ISIS, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
| | - D Honecker
- Institut Laue-Langevin, 38042 Grenoble, France
| | - A García-Arribas
- Dpto. Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain. and BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | | | - A Muela
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain and Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - M L Fdez-Gubieda
- Dpto. Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain. and BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
21
|
Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proc Natl Acad Sci U S A 2018; 115:E3246-E3255. [PMID: 29555764 DOI: 10.1073/pnas.1718810115] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial nanowires have garnered recent interest as a proposed extracellular electron transfer (EET) pathway that links the bacterial electron transport chain to solid-phase electron acceptors away from the cell. Recent studies showed that Shewanella oneidensis MR-1 produces outer membrane (OM) and periplasmic extensions that contain EET components and hinted at their possible role as bacterial nanowires. However, their fine structure and distribution of cytochrome electron carriers under native conditions remained unclear, making it difficult to evaluate the potential electron transport (ET) mechanism along OM extensions. Here, we report high-resolution images of S. oneidensis OM extensions, using electron cryotomography (ECT). We developed a robust method for fluorescence light microscopy imaging of OM extension growth on electron microscopy grids and used correlative light and electron microscopy to identify and image the same structures by ECT. Our results reveal that S. oneidensis OM extensions are dynamic chains of interconnected outer membrane vesicles (OMVs) with variable dimensions, curvature, and extent of tubulation. Junction densities that potentially stabilize OMV chains are seen between neighboring vesicles in cryotomograms. By comparing wild type and a cytochrome gene deletion mutant, our ECT results provide the likely positions and packing of periplasmic and outer membrane proteins consistent with cytochromes. Based on the observed cytochrome packing density, we propose a plausible ET path along the OM extensions involving a combination of direct hopping and cytochrome diffusion. A mean-field calculation, informed by the observed ECT cytochrome density, supports this proposal by revealing ET rates on par with a fully packed cytochrome network.
Collapse
|
22
|
Uebe R, Keren-Khadmy N, Zeytuni N, Katzmann E, Navon Y, Davidov G, Bitton R, Plitzko JM, Schüler D, Zarivach R. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol Microbiol 2018; 107:542-557. [PMID: 29243866 DOI: 10.1111/mmi.13899] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
Abstract
Magnetospirillum gryphiswaldense MSR-1 synthesizes membrane-enclosed magnetite (Fe3 O4 ) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome-associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome-directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi-disciplinary approach to define the role of MamB during magnetosome formation. Using site-directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo-electron tomography, we show that MamB is most likely an active magnetosome-directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport-independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C-terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.
Collapse
Affiliation(s)
- René Uebe
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Noa Keren-Khadmy
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Natalie Zeytuni
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Emanuel Katzmann
- Department of Molecular Structural Biology, Am Klopferspitz 18, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Yotam Navon
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Am Klopferspitz 18, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| |
Collapse
|
23
|
Werckmann J, Cypriano J, Lefèvre CT, Dembelé K, Ersen O, Bazylinski DA, Lins U, Farina M. Localized iron accumulation precedes nucleation and growth of magnetite crystals in magnetotactic bacteria. Sci Rep 2017; 7:8291. [PMID: 28811607 PMCID: PMC5557804 DOI: 10.1038/s41598-017-08994-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022] Open
Abstract
Many magnetotactic bacteria (MTB) biomineralize magnetite crystals that nucleate and grow inside intracellular membranous vesicles that originate from invaginations of the cytoplasmic membrane. The crystals together with their surrounding membranes are referred to magnetosomes. Magnetosome magnetite crystals nucleate and grow using iron transported inside the vesicle by specific proteins. Here we address the question: can iron transported inside MTB for the production of magnetite crystals be spatially mapped using electron microscopy? Cultured and uncultured MTB from brackish and freshwater lagoons were studied using analytical transmission electron microscopy in an attempt to answer this question. Scanning transmission electron microscopy was used at sub-nanometric resolution to determine the distribution of elements by implementing high sensitivity energy dispersive X-ray (EDS) mapping and electron energy loss spectroscopy (EELS). EDS mapping showed that magnetosomes are enmeshed in a magnetosomal matrix in which iron accumulates close to the magnetosome forming a continuous layer visually appearing as a corona. EELS, obtained at high spatial resolution, confirmed that iron was present close to and inside the lipid bilayer magnetosome membrane. This study provides important clues to magnetite formation in MTB through the discovery of a mechanism where iron ions accumulate prior to magnetite biomineralization.
Collapse
Affiliation(s)
- Jacques Werckmann
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
| | - Jefferson Cypriano
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Christopher T Lefèvre
- CNRS/CEA/Aix-Marseille Université, UMR7265 Institut de biosciences et biotechnologies, Laboratoire de Bioénergétique Cellulaire, 13108, Saint Paul lez Durance, France
| | - Kassiogé Dembelé
- Institut de physique et chimie des matériaux de Strasbourg (IPCMS) UMR 7504 CNRS 23 rue du Lœss, BP 43 67034, Strasbourg Cedex 2, France
| | - Ovidiu Ersen
- Institut de physique et chimie des matériaux de Strasbourg (IPCMS) UMR 7504 CNRS 23 rue du Lœss, BP 43 67034, Strasbourg Cedex 2, France
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, 89154-4004, USA
| | - Ulysses Lins
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Tethered Magnets Are the Key to Magnetotaxis: Direct Observations of Magnetospirillum magneticum AMB-1 Show that MamK Distributes Magnetosome Organelles Equally to Daughter Cells. mBio 2017; 8:mBio.00679-17. [PMID: 28790202 PMCID: PMC5550748 DOI: 10.1128/mbio.00679-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Magnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cytoskeletal filaments consisting of the actin-like protein MamK are associated with the magnetosome chain. Previously, the function of MamK was thought to be in positioning magnetosome organelles; this was proposed based on observations via electron microscopy still images. Here, we conducted live-cell time-lapse fluorescence imaging analyses employing highly inclined and laminated optical sheet microscopy, and these methods enabled us to visualize detailed dynamic movement of magnetosomes in growing cells during the entire cell cycle with high-temporal resolution and a high signal/noise ratio. We found that the MamK cytoskeleton anchors magnetosomes through a mechanism that requires MamK-ATPase activity throughout the cell cycle to prevent simple diffusion of magnetosomes within the cell. We concluded that the static chain-like arrangement of the magnetosomes is required to precisely and consistently segregate the magnetosomes to daughter cells. Thus, the daughter cells inherit a functional magnetic sensor that mediates magneto-reception. Half a century ago, bacterial cells were considered a simple “bag of enzymes”; only recently have they been shown to comprise ordered complexes of macromolecular structures, such as bacterial organelles and cytoskeletons, similar to their eukaryotic counterparts. In eukaryotic cells, the positioning of organelles is regulated by cytoskeletal elements. However, the role of cytoskeletal elements in the positioning of bacterial organelles, such as magnetosomes, remains unclear. Magnetosomes are associated with cytoskeletal filaments that consist of the actin-like protein MamK. In this study, we focused on how the MamK cytoskeleton regulates the dynamic movement of magnetosome organelles in living magnetotactic bacterial cells. Here, we used fluorescence imaging to visualize the dynamics of magnetosomes throughout the cell cycle in living magnetotactic bacterial cells to understand how they use the actin-like cytoskeleton to maintain and to make functional their nano-sized magnetic organelles.
Collapse
|
25
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
26
|
Abstract
Membrane deformation by proteins is a universal phenomenon that has been studied extensively in eukaryotes but much less in prokaryotes. In this study, we discovered a membrane-deforming activity of the phospholipid N-methyltransferase PmtA from the plant-pathogenic bacterium Agrobacterium tumefaciens PmtA catalyzes the successive three-step N-methylation of phosphatidylethanolamine to phosphatidylcholine. Here, we defined the lipid and protein requirements for the membrane-remodeling activity of PmtA by a combination of transmission electron microscopy and liposome interaction studies. Dependent on the lipid composition, PmtA changes the shape of spherical liposomes either into filaments or small vesicles. Upon overproduction of PmtA in A. tumefaciens, vesicle-like structures occur in the cytoplasm, dependent on the presence of the anionic lipid cardiolipin. The N-terminal lipid-binding α-helix (αA) is involved in membrane deformation by PmtA. Two functionally distinct and spatially separated regions in αA can be distinguished. Anionic interactions by positively charged amino acids on one face of the helix are responsible for membrane recruitment of the enzyme. The opposite hydrophobic face of the helix is required for membrane remodeling, presumably by shallow insertion into the lipid bilayer.IMPORTANCE The ability to alter the morphology of biological membranes is known for a small number of some bacterial proteins. Our study adds the phospholipid N-methyltransferase PmtA as a new member to the category of bacterial membrane-remodeling proteins. A combination of in vivo and in vitro methods reveals the molecular requirements for membrane deformation at the protein and phospholipid level. The dual functionality of PmtA suggests a contribution of membrane biosynthesis enzymes to the complex morphology of bacterial membranes.
Collapse
|
27
|
Barber-Zucker S, Zarivach R. A Look into the Biochemistry of Magnetosome Biosynthesis in Magnetotactic Bacteria. ACS Chem Biol 2017; 12:13-22. [PMID: 27930882 DOI: 10.1021/acschembio.6b01000] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Magnetosomes are protein-rich membrane organelles that encapsulate magnetite or greigite and whose chain alignment enables magnetotactic bacteria (MTB) to sense the geomagnetic field. As these bacteria synthesize uniform magnetic particles, their biomineralization mechanism is of great interest among researchers from different fields, from material engineering to medicine. Both magnetosome formation and magnetic particle synthesis are highly controlled processes that can be divided into several crucial steps: membrane invagination from the inner-cell membrane, protein sorting, the magnetosomes' arrangement into chains, iron transport, chemical environment regulation of the magnetosome lumen, magnetic particle nucleation, and finally crystal growth, size, and morphology control. This complex system involves an ensemble of unique proteins that participate in different stages during magnetosome formation, some of which were extensively studied in recent years. Here, we present the current knowledge on magnetosome biosynthesis with a focus on the different proteins and the main biochemical pathways along this process.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life
Sciences,
the National Institute for Biotechnology in the Negev and Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life
Sciences,
the National Institute for Biotechnology in the Negev and Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
28
|
X-ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization. Proc Natl Acad Sci U S A 2016; 113:13396-13401. [PMID: 27821762 DOI: 10.1073/pnas.1612034113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnetotactic bacteria produce iron-rich magnetic nanoparticles that are enclosed by membrane invaginations to form magnetosomes so they are able to sense and act upon Earth's magnetic field. In Magnetospirillum and other magnetotactic bacteria, to combine their magnetic moments, magnetosomes align along filaments formed by a bacterial actin homolog, MamK. Here, we present the crystal structure of a nonpolymerizing mutant of MamK from Magnetospirillum magneticum AMB-1 at 1.8-Å resolution, revealing its close similarity to actin and MreB. The crystals contain AMPPNP-bound monomeric MamK in two different conformations. To investigate conformational changes associated with polymerization, we used unmodified MamK protein and cryo-EM with helical 3D reconstruction in RELION to obtain a density map and a fully refined atomic model of MamK in filamentous form at 3.6-Å resolution. The filament is parallel (polar) double-helical, with a rise of 52.2 Å and a twist of 23.8°. As shown previously and unusually for actin-like filaments, the MamK subunits from each of the two strands are juxtaposed, creating an additional twofold axis along the filament. Compared with monomeric MamK, ADP-bound MamK in the filament undergoes a conformational change, rotating domains I and II against each other to further close the interdomain cleft between subdomains IB and IIB. The domain movement causes several loops to close around the nucleotide-binding pocket. Glu-143, a key residue for catalysis coordinating the magnesium ion, moves closer, presumably switching nucleotide hydrolysis upon polymerization-one of the hallmarks of cytomotive filaments of the actin type.
Collapse
|
29
|
Bohuszewicz O, Liu J, Low HH. Membrane remodelling in bacteria. J Struct Biol 2016; 196:3-14. [PMID: 27265614 PMCID: PMC6168058 DOI: 10.1016/j.jsb.2016.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
Abstract
In bacteria the ability to remodel membrane underpins basic cell processes such as growth, and more sophisticated adaptations like inter-cell crosstalk, organelle specialisation, and pathogenesis. Here, selected examples of membrane remodelling in bacteria are presented and the diverse mechanisms for inducing membrane fission, fusion, and curvature discussed. Compared to eukaryotes, relatively few curvature-inducing proteins have been characterised so far. Whilst it is likely that many such proteins remain to be discovered, it also reflects the importance of alternative membrane remodelling strategies in bacteria where passive mechanisms for generating curvature are utilised.
Collapse
Affiliation(s)
- Olga Bohuszewicz
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Jiwei Liu
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Harry H Low
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| |
Collapse
|
30
|
Bergeron JRC, Hutto R, Ozyamak E, Hom N, Hansen J, Draper O, Byrne ME, Keyhani S, Komeili A, Kollman JM. Structure of the magnetosome-associated actin-like MamK filament at subnanometer resolution. Protein Sci 2016; 26:93-102. [PMID: 27391173 DOI: 10.1002/pro.2979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria possess cellular compartments called magnetosomes that sense magnetic fields. Alignment of magnetosomes in the bacterial cell is necessary for their function, and this is achieved through anchoring of magnetosomes to filaments composed of the protein MamK. MamK is an actin homolog that polymerizes upon ATP binding. Here, we report the structure of the MamK filament at ∼6.5 Å, obtained by cryo-Electron Microscopy. This structure confirms our previously reported double-stranded, nonstaggered architecture, and reveals the molecular basis for filament formation. While MamK is closest in sequence to the bacterial actin MreB, the longitudinal contacts along each MamK strand most closely resemble those of eukaryotic actin. In contrast, the cross-strand interface, with a surprisingly limited set of contacts, is novel among actin homologs and gives rise to the nonstaggered architecture.
Collapse
Affiliation(s)
| | - Rachel Hutto
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Ertan Ozyamak
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Nancy Hom
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Jesse Hansen
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia
| | - Olga Draper
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Meghan E Byrne
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Sepehr Keyhani
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
31
|
Hershey DM, Browne PJ, Iavarone AT, Teyra J, Lee EH, Sidhu SS, Komeili A. Magnetite Biomineralization in Magnetospirillum magneticum Is Regulated by a Switch-like Behavior in the HtrA Protease MamE. J Biol Chem 2016; 291:17941-52. [PMID: 27302060 DOI: 10.1074/jbc.m116.731000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 11/06/2022] Open
Abstract
Magnetotactic bacteria are aquatic organisms that produce subcellular magnetic particles in order to orient in the earth's geomagnetic field. MamE, a predicted HtrA protease required to produce magnetite crystals in the magnetotactic bacterium Magnetospirillum magneticum AMB-1, was recently shown to promote the proteolytic processing of itself and two other biomineralization factors in vivo Here, we have analyzed the in vivo processing patterns of three proteolytic targets and used this information to reconstitute proteolysis with a purified form of MamE. MamE cleaves a custom peptide substrate with positive cooperativity, and its autoproteolysis can be stimulated with exogenous substrates or peptides that bind to either of its PDZ domains. A misregulated form of the protease that circumvents specific genetic requirements for proteolysis causes biomineralization defects, showing that proper regulation of its activity is required during magnetite biosynthesis in vivo Our results represent the first reconstitution of the proteolytic activity of MamE and show that its behavior is consistent with the previously proposed checkpoint model for biomineralization.
Collapse
Affiliation(s)
| | | | - Anthony T Iavarone
- the California Institute for Quantitative Biosciences, and the QB3/Chemistry Mass Spectrometry Facility, and the University of California, Berkeley, California 94720 and
| | - Joan Teyra
- the Department of Molecular Genetics, Terrance Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | - Sachdev S Sidhu
- the Department of Molecular Genetics, Terrance Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arash Komeili
- From the Departments of Plant and Microbial Biology and the California Institute for Quantitative Biosciences, and Molecular and Cell Biology,
| |
Collapse
|
32
|
Genetic and Ultrastructural Analysis Reveals the Key Players and Initial Steps of Bacterial Magnetosome Membrane Biogenesis. PLoS Genet 2016; 12:e1006101. [PMID: 27286560 PMCID: PMC4902198 DOI: 10.1371/journal.pgen.1006101] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins. One of the most intriguing examples for membrane-bounded prokaryotic organelles are magnetosomes which consist of well-ordered chains of perfectly shaped magnetic nanocrystals that in many aquatic bacteria serve as geomagnetic field sensors to direct their swimming towards microoxic zones at the bottom of natural waters. In the model bacterium Magnetospirillum gryphiswaldense and related magnetotactic microorganisms, magnetosomes are formed by a complex pathway that is orchestrated by more than 30 genes. However, the initial and most crucial step of magnetosome biosynthesis, formation and differentiation of a dedicated intracellular membrane compartment for controlled biomineralization of magnetite crystals, remained only poorly understood. By ultrastructural analysis of several mutants and genetic induction of de novo magnetosome synthesis, we identified the key determinants and early steps of magnetosome membrane biogenesis. Our results suggest that formation of intracellular membranes in bacteria is mediated by a cumulative action of several factors, but apparently is differently controlled than intracellular membrane remodeling in eukaryotic cells.
Collapse
|