1
|
Septer AN, Visick KL. Lighting the way: how the Vibrio fischeri model microbe reveals the complexity of Earth's "simplest" life forms. J Bacteriol 2024; 206:e0003524. [PMID: 38695522 PMCID: PMC11112999 DOI: 10.1128/jb.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Vibrio (Aliivibrio) fischeri's initial rise to fame derived from its alluring production of blue-green light. Subsequent studies to probe the mechanisms underlying this bioluminescence helped the field discover the phenomenon now known as quorum sensing. Orthologs of quorum-sensing regulators (i.e., LuxR and LuxI) originally identified in V. fischeri were subsequently uncovered in a plethora of bacterial species, and analogous pathways were found in yet others. Over the past three decades, the study of this microbe has greatly expanded to probe the unique role of V. fischeri as the exclusive symbiont of the light organ of the Hawaiian bobtail squid, Euprymna scolopes. Buoyed by this optically amenable host and by persistent and insightful researchers who have applied novel and cross-disciplinary approaches, V. fischeri has developed into a robust model for microbe-host associations. It has contributed to our understanding of how bacteria experience and respond to specific, often fluxing environmental conditions and the mechanisms by which bacteria impact the development of their host. It has also deepened our understanding of numerous microbial processes such as motility and chemotaxis, biofilm formation and dispersal, and bacterial competition, and of the relevance of specific bacterial genes in the context of colonizing an animal host. Parallels in these processes between this symbiont and bacteria studied as pathogens are readily apparent, demonstrating functional conservation across diverse associations and permitting a reinterpretation of "pathogenesis." Collectively, these advances built a foundation for microbiome studies and have positioned V. fischeri to continue to expand the frontiers of our understanding of the microbial world inside animals.
Collapse
Affiliation(s)
- Alecia N. Septer
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
2
|
Fung BL, Esin JJ, Visick KL. Vibrio fischeri: a model for host-associated biofilm formation. J Bacteriol 2024; 206:e0037023. [PMID: 38270381 PMCID: PMC10882983 DOI: 10.1128/jb.00370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Multicellular communities of adherent bacteria known as biofilms are often detrimental in the context of a human host, making it important to study their formation and dispersal, especially in animal models. One such model is the symbiosis between the squid Euprymna scolopes and the bacterium Vibrio fischeri. Juvenile squid hatch aposymbiotically and selectively acquire their symbiont from natural seawater containing diverse environmental microbes. Successful pairing is facilitated by ciliary movements that direct bacteria to quiet zones on the surface of the squid's symbiotic light organ where V. fischeri forms a small aggregate or biofilm. Subsequently, the bacteria disperse from that aggregate to enter the organ, ultimately reaching and colonizing deep crypt spaces. Although transient, aggregate formation is critical for optimal colonization and is tightly controlled. In vitro studies have identified a variety of polysaccharides and proteins that comprise the extracellular matrix. Some of the most well-characterized matrix factors include the symbiosis polysaccharide (SYP), cellulose polysaccharide, and LapV adhesin. In this review, we discuss these components, their regulation, and other less understood V. fischeri biofilm contributors. We also highlight what is currently known about dispersal from these aggregates and host cues that may promote it. Finally, we briefly describe discoveries gleaned from the study of other V. fischeri isolates. By unraveling the complexities involved in V. fischeri's control over matrix components, we may begin to understand how the host environment triggers transient biofilm formation and dispersal to promote this unique symbiotic relationship.
Collapse
Affiliation(s)
- Brittany L Fung
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jeremy J Esin
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
3
|
Vander Griend JA, Isenberg RY, Kotla KR, Mandel MJ. Transcriptional pathways across colony biofilm models in the symbiont Vibrio fischeri. mSystems 2024; 9:e0081523. [PMID: 38126773 PMCID: PMC10804989 DOI: 10.1128/msystems.00815-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Beneficial microbial symbionts that are horizontally acquired by their animal hosts undergo a lifestyle transition from free-living in the environment to associating with host tissues. In the model symbiosis between the Hawaiian bobtail squid and its microbial symbiont Vibrio fischeri, one mechanism used to make this transition during host colonization is the formation of biofilm-like aggregates in host mucosa. Previous work identified factors that are sufficient to induce V. fischeri biofilm formation, yet much remains unknown regarding the breadth of target genes induced by these factors. Here, we probed two widely used in vitro models of biofilm formation to identify novel regulatory pathways in the squid symbiont V. fischeri ES114. We discovered a shared set of 232 genes that demonstrated similar patterns in expression in both models. These genes comprise multiple exopolysaccharide loci that are upregulated and flagellar motility genes that are downregulated, with a consistent decrease in measured swimming motility. Furthermore, we identified genes regulated downstream of the key sensor kinase RscS that are induced independent of the response regulator SypG. Our data suggest that transcriptional regulator VpsR plays a strong role in expression of at least a subset of these genes. Overall, this study adds to our understanding of the genes involved in V. fischeri biofilm regulation while revealing new regulatory pathways branching from previously characterized signaling networks.IMPORTANCEThe V. fischeri-squid system provides an opportunity to study biofilm development both in the animal host and in culture-based biofilm models that capture key aspects of in vivo signaling. In this work, we report the results of the transcriptomic profiling of two V. fischeri biofilm models followed by phenotypic validation and examination of novel signaling pathway architecture. Remarkable consistency between the models provides a strong basis for future studies using either approach or both. A subset of the factors identified by the approaches were validated in the work, and the body of transcriptomic data provides a number of leads for future studies in culture and during animal colonization.
Collapse
Affiliation(s)
- Jacob A. Vander Griend
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruth Y. Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ketan R. Kotla
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Greenwich JL, Fleming D, Banin E, Häussler S, Kjellerup BV, Sauer K, Visick KL, Fuqua C. The biofilm community resurfaces: new findings and post-pandemic progress. J Bacteriol 2023; 205:e0016623. [PMID: 37756166 PMCID: PMC10601713 DOI: 10.1128/jb.00166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
The ninth American Society for Microbiology Conference on Biofilms was convened in-person on 13-17 November 2022 in Charlotte, NC. As the first of these conferences since prior to the start of the COVID-19 pandemic, the energy among the participants of the conference was clear, and the meeting was a tremendous success. The mixture of >330 oral and poster presentations resoundingly embodied the vitality of biofilm research across a wide range of topics and multiple scientific disciplines. Special activities, including a pre-conference symposium for early career researchers, further enhanced the attendee experience. As a general theme, the conference was deliberately structured to provide high levels of participation and engagement among early career scientists.
Collapse
Affiliation(s)
| | - Derek Fleming
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Birthe V. Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Karin Sauer
- Department of Biological Sciences, University of Binghamton, Binghamton, New York, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Lopez AE, Grigoryeva LS, Barajas A, Cianciotto NP. Legionella pneumophila Rhizoferrin Promotes Bacterial Biofilm Formation and Growth within Amoebae and Macrophages. Infect Immun 2023; 91:e0007223. [PMID: 37428036 PMCID: PMC10429650 DOI: 10.1128/iai.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Previously, we showed that Legionella pneumophila secretes rhizoferrin, a polycarboxylate siderophore that promotes bacterial growth in iron-deplete media and the murine lung. Yet, past studies failed to identify a role for the rhizoferrin biosynthetic gene (lbtA) in L. pneumophila infection of host cells, suggesting the siderophore's importance was solely linked to extracellular survival. To test the possibility that rhizoferrin's relevance to intracellular infection was missed due to functional redundancy with the ferrous iron transport (FeoB) pathway, we characterized a new mutant lacking both lbtA and feoB. This mutant was highly impaired for growth on bacteriological media that were only modestly depleted of iron, confirming that rhizoferrin-mediated ferric iron uptake and FeoB-mediated ferrous iron uptake are critical for iron acquisition. The lbtA feoB mutant, but not its lbtA-containing complement, was also highly defective for biofilm formation on plastic surfaces, demonstrating a new role for the L. pneumophila siderophore in extracellular survival. Finally, the lbtA feoB mutant, but not its complement containing lbtA, proved to be greatly impaired for growth in Acanthamoeba castellanii, Vermamoeba vermiformis, and human U937 cell macrophages, revealing that rhizoferrin does promote intracellular infection by L. pneumophila. Moreover, the application of purified rhizoferrin triggered cytokine production from the U937 cells. Rhizoferrin-associated genes were fully conserved across the many sequenced strains of L. pneumophila examined but were variably present among strains from the other species of Legionella. Outside of Legionella, the closest match to the L. pneumophila rhizoferrin genes was in Aquicella siphonis, another facultative intracellular parasite of amoebae.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Armando Barajas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
6
|
Griend JAV, Isenberg RY, Kotla KR, Mandel MJ. Transcriptional pathways across colony biofilm models in the symbiont Vibrio fischeri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552283. [PMID: 37609283 PMCID: PMC10441365 DOI: 10.1101/2023.08.07.552283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Beneficial microbial symbionts that are horizontally acquired by their animal hosts undergo a lifestyle transition from free-living in the environment to associated with host tissues. In the model symbiosis between the Hawaiian bobtail squid and its microbial symbiont Vibrio fischeri, one mechanism used to make this transition during host colonization is the formation of biofilm-like aggregates in host mucosa. Previous work identified factors that are sufficient to induce V. fischeri biofilm formation, yet much remains unknown regarding the breadth of target genes induced by these factors. Here, we probed two widely-used in vitro models of biofilm formation to identify novel regulatory pathways in the squid symbiont V. fischeri ES114. We discovered a shared set of 232 genes that demonstrated similar patterns in expression in both models. These genes comprise multiple exopolysaccharide loci that are upregulated and flagellar motility genes that are downregulated, with a consistent decrease in measured swimming motility. Furthermore, we identified genes regulated downstream of the key sensor kinase RscS that are induced independent of the response regulator SypG. Our data suggest that putative response regulator VpsR plays a strong role in expression of at least a subset of these genes. Overall, this study adds to our understanding of the genes involved in V. fischeri biofilm regulation, while revealing new regulatory pathways branching from previously characterized signaling networks.
Collapse
Affiliation(s)
- Jacob A. Vander Griend
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ruth Y. Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ketan R. Kotla
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
7
|
Guckes KR, Miyashiro TI. The type-VI secretion system of the beneficial symbiont Vibrio fischeri. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001302. [PMID: 36809081 PMCID: PMC9972734 DOI: 10.1099/mic.0.001302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
The mutualistic symbiosis between the Hawaiian bobtail squid Euprymna scolopes and the marine bacterium Vibrio fischeri is a powerful experimental system for determining how intercellular interactions impact animal-bacterial associations. In nature, this symbiosis features multiple strains of V. fischeri within each adult animal, which indicates that different strains initially colonize each squid. Various studies have demonstrated that certain strains of V. fischeri possess a type-VI secretion system (T6SS), which can inhibit other strains from establishing symbiosis within the same host habitat. The T6SS is a bacterial melee weapon that enables a cell to kill adjacent cells by translocating toxic effectors via a lancet-like apparatus. This review describes the progress that has been made in understanding the factors that govern the structure and expression of the T6SS in V. fischeri and its effect on the symbiosis.
Collapse
Affiliation(s)
- Kirsten R. Guckes
- The Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, PA, USA
| | - Tim I. Miyashiro
- The Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, PA, USA
| |
Collapse
|
8
|
Speare L, Jackson A, Septer AN. Calcium Promotes T6SS-Mediated Killing and Aggregation between Competing Symbionts. Microbiol Spectr 2022; 10:e0139722. [PMID: 36453912 PMCID: PMC9769598 DOI: 10.1128/spectrum.01397-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
Bacteria use a variety of strategies to exclude competitors from accessing resources, including space within a host niche. Because these mechanisms are typically costly to deploy, they are often tightly regulated for use in environments where the benefits outweigh the energetic cost. The type VI secretion system (T6SS) is a competitive mechanism that allows inhibitors to kill competing microbes by physically puncturing and translocating cytotoxic effectors directly into neighboring competitor cells. Although T6SSs are encoded in both symbiotic and free-living taxa where they may be actively secreting into the extracellular milieu during growth in liquid culture, there is little evidence for bacteria engaging in T6SS-mediated, contact-dependent killing under low-viscosity liquid conditions. Here, we determined that calcium acts as a pH-dependent cue to activate the assembly of an antibacterial T6SS in a Vibrio fischeri light organ symbiont in a low-viscosity liquid medium. Moreover, competing V. fischeri isolates formed mixed-strain aggregates that promoted the contact necessary for T6SS-dependent elimination of a target population. Our findings expand our knowledge of V. fischeri T6SS ecology and identify a low-viscosity liquid condition where cells engage in contact-dependent killing. IMPORTANCE Microbes deploy competitive mechanisms to gain access to resources such as nutrients or space within an ecological niche. Identifying when and where these strategies are employed can be challenging given the complexity and variability of most natural systems; therefore, studies evaluating specific cues that conditionally regulate interbacterial competition can inform the ecological context for such competition. In this work, we identified a pH-dependent chemical cue in seawater, calcium, which promotes activation of a contact-dependent interbacterial weapon in the marine symbiont Vibrio fischeri. This finding underscores the importance of using ecologically relevant salts in growth media and the ability of bacterial cells to sense and integrate multiple environmental cues to assess the need for a weapon. Identification of these cues provides insight into the types of environments where employing a weapon is advantageous to the survival and propagation of a bacterial population.
Collapse
Affiliation(s)
- Lauren Speare
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Aundre Jackson
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Abstract
During colonization of the Hawaiian bobtail squid (Euprymna scolopes), Vibrio fischeri bacteria undergo a lifestyle transition from a planktonic motile state in the environment to a biofilm state in host mucus. Cyclic diguanylate (c-di-GMP) is a cytoplasmic signaling molecule that is important for regulating motility-biofilm transitions in many bacterial species. V. fischeri encodes 50 proteins predicted to synthesize and/or degrade c-di-GMP, but a role for c-di-GMP regulation during host colonization has not been investigated. We examined strains exhibiting either low or high levels of c-di-GMP during squid colonization and found that while a low-c-di-GMP strain had no colonization defect, a high c-di-GMP strain was severely impaired. Expression of a heterologous c-di-GMP phosphodiesterase restored colonization, demonstrating that the effect is due to high c-di-GMP levels. In the constitutive high-c-di-GMP state, colonizing V. fischeri exhibited reduced motility, altered biofilm aggregate morphology, and a regulatory interaction where transcription of one polysaccharide locus is inhibited by the presence of the other polysaccharide. Our results highlight the importance of proper c-di-GMP regulation during beneficial animal colonization, illustrate multiple pathways regulated by c-di-GMP in the host, and uncover an interplay of multiple exopolysaccharide systems in host-associated aggregates.
Collapse
|