1
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time-resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. mSphere 2024; 9:e0053424. [PMID: 39254340 PMCID: PMC11520297 DOI: 10.1128/msphere.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024] Open
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. In this study, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation in high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity in samples based on Salmonella ribosomal activity, which is separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expressions descriptive of each phase. Surprisingly, we identified genes associated with host cell entry expressed throughout infection, suggesting subpopulations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection.IMPORTANCEIdentifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts toward Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella. We observed differential gene expression across infection phases in mice over time on a high-fat diet. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, which explores the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
Affiliation(s)
- Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Richard Kevorkian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rebecca A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Adolph C, Hards K, Williams ZC, Cheung CY, Keighley LM, Jowsey WJ, Kyte M, Inaoka DK, Kita K, Mackenzie JS, Steyn AJC, Li Z, Yan M, Tian GB, Zhang T, Ding X, Furkert DP, Brimble MA, Hickey AJR, McNeil MB, Cook GM. Identification of Chemical Scaffolds That Inhibit the Mycobacterium tuberculosis Respiratory Complex Succinate Dehydrogenase. ACS Infect Dis 2024; 10:3496-3515. [PMID: 39268963 DOI: 10.1021/acsinfecdis.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Drug-resistant Mycobacterium tuberculosis is a significant cause of infectious disease morbidity and mortality for which new antimicrobials are urgently needed. Inhibitors of mycobacterial respiratory energy metabolism have emerged as promising next-generation antimicrobials, but a number of targets remain unexplored. Succinate dehydrogenase (SDH), a focal point in mycobacterial central carbon metabolism and respiratory energy production, is required for growth and survival in M. tuberculosis under a number of conditions, highlighting the potential of inhibitors targeting mycobacterial SDH enzymes. To advance SDH as a novel drug target in M. tuberculosis, we utilized a combination of biochemical screening and in-silico deep learning technologies to identify multiple chemical scaffolds capable of inhibiting mycobacterial SDH activity. Antimicrobial susceptibility assays show that lead inhibitors are bacteriostatic agents with activity against wild-type and drug-resistant strains of M. tuberculosis. Mode of action studies on lead compounds demonstrate that the specific inhibition of SDH activity dysregulates mycobacterial metabolism and respiration and results in the secretion of intracellular succinate. Interaction assays demonstrate that the chemical inhibition of SDH activity potentiates the activity of other bioenergetic inhibitors and prevents the emergence of resistance to a variety of drugs. Overall, this study shows that SDH inhibitors are promising next-generation antimicrobials against M. tuberculosis.
Collapse
Affiliation(s)
- Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Zoe C Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Africa Health Research Institute, University of KwaZulu Natal, Durban 4001, South Africa
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Laura M Keighley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Matson Kyte
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Host-Defence Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Jared S Mackenzie
- Africa Health Research Institute, University of KwaZulu Natal, Durban 4001, South Africa
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu Natal, Durban 4001, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Centres for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ming Yan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guo-Bao Tian
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
- Advanced Medical Technology Centre, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaobo Ding
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Daniel P Furkert
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Margaret A Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Anthony J R Hickey
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
3
|
McKay LS, Spandrio AR, Johnson RM, Sobran MA, Marlatt SA, Mote KB, Dedloff MR, Nash ZM, Julio SM, Cotter PA. Cytochrome oxidase requirements in Bordetella reveal insights into evolution towards life in the mammalian respiratory tract. PLoS Pathog 2024; 20:e1012084. [PMID: 38976749 PMCID: PMC11257404 DOI: 10.1371/journal.ppat.1012084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Little is known about oxygen utilization during infection by bacterial respiratory pathogens. The classical Bordetella species, including B. pertussis, the causal agent of human whooping cough, and B. bronchiseptica, which infects nearly all mammals, are obligate aerobes that use only oxygen as the terminal electron acceptor for electron transport-coupled oxidative phosphorylation. B. bronchiseptica, which occupies many niches, has eight distinct cytochrome oxidase-encoding loci, while B. pertussis, which evolved from a B. bronchiseptica-like ancestor but now survives exclusively in and between human respiratory tracts, has only three functional cytochrome oxidase-encoding loci: cydAB1, ctaCDFGE1, and cyoABCD1. To test the hypothesis that the three cytochrome oxidases encoded within the B. pertussis genome represent the minimum number and class of cytochrome oxidase required for respiratory infection, we compared B. bronchiseptica strains lacking one or more of the eight possible cytochrome oxidases in vitro and in vivo. No individual cytochrome oxidase was required for growth in ambient air, and all three of the cytochrome oxidases conserved in B. pertussis were sufficient for growth in ambient air and low oxygen. Using a high-dose, large-volume persistence model and a low-dose, small-volume establishment of infection model, we found that B. bronchiseptica producing only the three B. pertussis-conserved cytochrome oxidases was indistinguishable from the wild-type strain for infection. We also determined that CyoABCD1 is sufficient to cause the same level of bacterial burden in mice as the wild-type strain and is thus the primary cytochrome oxidase required for murine infection, and that CydAB1 and CtaCDFGE1 fulfill auxiliary roles or are important for aspects of infection we have not assessed, such as transmission. Our results shed light on the environment at the surface of the ciliated epithelium, respiration requirements for bacteria that colonize the respiratory tract, and the evolution of virulence in bacterial pathogens.
Collapse
Affiliation(s)
- Liliana S. McKay
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexa R. Spandrio
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard M. Johnson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Ashley Sobran
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara A. Marlatt
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katlyn B. Mote
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Margaret R. Dedloff
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zachary M. Nash
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Steven M. Julio
- Department of Biology, Westmont College, Santa Barbara, California, United States of America
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
Nastasi MR, Caruso L, Giordano F, Mellini M, Rampioni G, Giuffrè A, Forte E. Cyanide Insensitive Oxidase Confers Hydrogen Sulfide and Nitric Oxide Tolerance to Pseudomonas aeruginosa Aerobic Respiration. Antioxidants (Basel) 2024; 13:383. [PMID: 38539916 PMCID: PMC10968556 DOI: 10.3390/antiox13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 07/31/2024] Open
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are long-known inhibitors of terminal oxidases in the respiratory chain. Yet, they exert pivotal signaling roles in physiological processes, and in several bacterial pathogens have been reported to confer resistance against oxidative stress, host immune responses, and antibiotics. Pseudomonas aeruginosa, an opportunistic pathogen causing life-threatening infections that are difficult to eradicate, has a highly branched respiratory chain including four terminal oxidases of the haem-copper type (aa3, cbb3-1, cbb3-2, and bo3) and one oxidase of the bd-type (cyanide-insensitive oxidase, CIO). As Escherichia coli bd-type oxidases have been shown to be H2S-insensitive and to readily recover their activity from NO inhibition, here we tested the effect of H2S and NO on CIO by performing oxygraphic measurements on membrane preparations from P. aeruginosa PAO1 and isogenic mutants depleted of CIO only or all other terminal oxidases except CIO. We show that O2 consumption by CIO is unaltered even in the presence of high levels of H2S, and that CIO expression is enhanced and supports bacterial growth under such stressful conditions. In addition, we report that CIO is reversibly inhibited by NO, while activity recovery after NO exhaustion is full and fast, suggesting a protective role of CIO under NO stress conditions. As P. aeruginosa is exposed to H2S and NO during infection, the tolerance of CIO towards these stressors agrees with the proposed role of CIO in P. aeruginosa virulence.
Collapse
Affiliation(s)
- Martina R. Nastasi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Lorenzo Caruso
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Francesca Giordano
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Marta Mellini
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Alessandro Giuffrè
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| |
Collapse
|
5
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578763. [PMID: 38352409 PMCID: PMC10862859 DOI: 10.1101/2024.02.03.578763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. Here, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation of the high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity of samples based on Salmonella ribosomal activity, which separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expression descriptive of each phase. Surprisingly, we identified genes associated with host-cell entry expressed throughout infection, suggesting sub-populations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection. Importance Identifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts towards Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella . Over time on a high-fat diet, we observed differential gene expression across infection phases. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, exploring the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
|
6
|
Santi L, Berger M, Guimarães JA, Calegari-Alves YP, Vainstein MH, Yates JR, Beys-da-Silva WO. Proteomic profile of Cryptococcus gattii biofilm: Metabolic shift and the potential activation of electron chain transport. J Proteomics 2024; 290:105022. [PMID: 37838096 DOI: 10.1016/j.jprot.2023.105022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Cryptococcus gattii is a primary pathogenic fungus that causes pneumonia. This species is also responsible for an outbreak in Vancouver, Canada, and spreading to the mainland and United States. The use of medical devices is often complicated by infections with biofilm-forming microbes with increased resistance to antimicrobial agents and host defense mechanisms. This study investigated the comparative proteome of C. gattii R265 (VGIIa) grown under planktonic and biofilm conditions. A brief comparison with C. neoformans H99 biofilm and the use of different culture medium and surface were also evaluated. Using Multidimensional Protein Identification Technology (MudPIT), 1819 proteins were identified for both conditions, where 150 (8.2%) were considered differentially regulated (up- or down-regulated and unique in biofilm cells). Overall, the proteomic approach suggests that C. gattii R265 biofilm cells are maintained by the induction of electron transport chain for reoxidation, and by alternative energy metabolites, such as succinate and acetate. SIGNIFICANCE: Since C. gattii is considered a primary pathogen and is one of the most virulent and less susceptible to antifungals, understanding how biofilms are maintained is fundamental to search for new targets to control this important mode of growth that is difficult to eradicate.
Collapse
Affiliation(s)
- Lucélia Santi
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil; Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Jorge A Guimarães
- Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| | - Yohana Porto Calegari-Alves
- Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marilene H Vainstein
- Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | - Walter O Beys-da-Silva
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Makarchuk I, Kägi J, Gerasimova T, Wohlwend D, Friedrich T, Melin F, Hellwig P. pH-dependent kinetics of NO release from E. coli bd-I and bd-II oxidase reveals involvement of Asp/Glu58 B. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148952. [PMID: 36535430 DOI: 10.1016/j.bbabio.2022.148952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7. Likewise, the pH dependence of NO release from the reduced active site, an essential property of bd oxidases, differed between the two oxidases as detected by UV/vis spectroscopy. Both findings may be attributed to differences in the proton channel leading to the active site heme d. The channel comprises a titratable residue (Asp58B in bd-I and Glu58B in bd-II). Conservative mutations at this position drastically altered NO release demonstrating its contribution to the process.
Collapse
Affiliation(s)
- Iryna Makarchuk
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - Jan Kägi
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Tatjana Gerasimova
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France.
| |
Collapse
|
8
|
Li Y, He C, Dong F, Yuan S, Hu Z, Wang W. Performance of anaerobic digestion of phenol using exogenous hydrogen and granular activated carbon and analysis of microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45077-45087. [PMID: 36701053 DOI: 10.1007/s11356-023-25275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Anaerobic conversion rate of phenol to methane was low due to its biological toxicity. In this study, the coupling of granular activated carbon (GAC) and exogenous hydrogen (EH) could enhance greatly methane production of phenol anaerobic digestion, and the metagenomic was firstly used to analyze its potential mechanism. The results indicated that a mass of syntrophic acetate-oxidizing bacteria and hydrogen-utilizing methanogens were enriched on the GAC surface, and SAO-HM pathway has become the dominant pathway. The energy transfer analysis implied that the abundance of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) oxidase increased. Furthermore, direct interspecies electron transfer (DIET) was formed by promoting type IV e-pili between Methanobacterium and Syntrophus, thereby improving the interspecies electron transfer efficiency. The dominant SAO-HM pathway was induced and DIET was formed, which was the internal mechanism of the coupling of GAC and EH to enhance anaerobic biotransformation of phenol.
Collapse
Affiliation(s)
- Yongcun Li
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Chunhua He
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei, 230009, China
| | - Fang Dong
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Shoujun Yuan
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China.
| |
Collapse
|
9
|
Goojani HG, Besharati S, Chauhan P, Asseri AH, Lill H, Bald D. Cytochrome bd-I from Escherichia coli is catalytically active in the absence of the CydH subunit. FEBS Lett 2023; 597:547-556. [PMID: 36460943 DOI: 10.1002/1873-3468.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
Cytochrome bd-I from Escherichia coli is a terminal oxidase in the respiratory chain that plays an important role under stress conditions. Cytochrome bd-I was thought to consist of the major subunits CydA and CydB plus the small CydX subunit. Recent high-resolution structures of cytochrome bd-I demonstrated the presence of an additional subunit, CydH/CydY (called CydH here), the function of which is unclear. In this report, we show that in the absence of CydH, cytochrome bd-I is catalytically active, can sustain bacterial growth and displays haem spectra and susceptibility for haem-binding inhibitors comparable to the wild-type enzyme. Removal of CydH did not elicit catalase activity of cytochrome bd-I in our experimental system. Taken together, in the absence of the CydH subunit cytochrome bd-I retained key enzymatic properties.
Collapse
Affiliation(s)
- Hojjat Ghasemi Goojani
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands
| | - Samira Besharati
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands
| | - Priyanka Chauhan
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands
| | - Amer H Asseri
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Holger Lill
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands
| | - Dirk Bald
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
10
|
Walsh BJC, Costa SS, Edmonds KA, Trinidad JC, Issoglio FM, Brito JA, Giedroc DP. Metabolic and Structural Insights into Hydrogen Sulfide Mis-Regulation in Enterococcus faecalis. Antioxidants (Basel) 2022; 11:1607. [PMID: 36009332 PMCID: PMC9405070 DOI: 10.3390/antiox11081607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide (H2S) is implicated as a cytoprotective agent that bacteria employ in response to host-induced stressors, such as oxidative stress and antibiotics. The physiological benefits often attributed to H2S, however, are likely a result of downstream, more oxidized forms of sulfur, collectively termed reactive sulfur species (RSS) and including the organic persulfide (RSSH). Here, we investigated the metabolic response of the commensal gut microorganism Enterococcus faecalis to exogenous Na2S as a proxy for H2S/RSS toxicity. We found that exogenous sulfide increases protein abundance for enzymes responsible for the biosynthesis of coenzyme A (CoA). Proteome S-sulfuration (persulfidation), a posttranslational modification implicated in H2S signal transduction, is also widespread in this organism and is significantly elevated by exogenous sulfide in CstR, the RSS sensor, coenzyme A persulfide (CoASSH) reductase (CoAPR) and enzymes associated with de novo fatty acid biosynthesis and acetyl-CoA synthesis. Exogenous sulfide significantly impacts the speciation of fatty acids as well as cellular concentrations of acetyl-CoA, suggesting that protein persulfidation may impact flux through these pathways. Indeed, CoASSH is an inhibitor of E. faecalis phosphotransacetylase (Pta), suggesting that an important metabolic consequence of increased levels of H2S/RSS may be over-persulfidation of this key metabolite, which, in turn, inhibits CoA and acyl-CoA-utilizing enzymes. Our 2.05 Å crystallographic structure of CoA-bound CoAPR provides new structural insights into CoASSH clearance in E. faecalis.
Collapse
Affiliation(s)
- Brenna J. C. Walsh
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Sofia Soares Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | | | - Federico M. Issoglio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET and Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - José A. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7003, USA
| |
Collapse
|
11
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
12
|
Forte E, Nastasi MR, Borisov VB. Preparations of Terminal Oxidase Cytochrome bd-II Isolated from Escherichia coli Reveal Significant Hydrogen Peroxide Scavenging Activity. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:720-730. [PMID: 36171653 DOI: 10.1134/s0006297922080041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 06/16/2023]
Abstract
Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O2). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC50 = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.
Collapse
Affiliation(s)
- Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185, Italy
| | - Martina R Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185, Italy
| | - Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Uppalapati SR, Vazquez-Torres A. Manganese Utilization in Salmonella Pathogenesis: Beyond the Canonical Antioxidant Response. Front Cell Dev Biol 2022; 10:924925. [PMID: 35903545 PMCID: PMC9315381 DOI: 10.3389/fcell.2022.924925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The metal ion manganese (Mn2+) is equally coveted by hosts and bacterial pathogens. The host restricts Mn2+ in the gastrointestinal tract and Salmonella-containing vacuoles, as part of a process generally known as nutritional immunity. Salmonella enterica serovar Typhimurium counteract Mn2+ limitation using a plethora of metal importers, whose expression is under elaborate transcriptional and posttranscriptional control. Mn2+ serves as cofactor for a variety of enzymes involved in antioxidant defense or central metabolism. Because of its thermodynamic stability and low reactivity, bacterial pathogens may favor Mn2+-cofactored metalloenzymes during periods of oxidative stress. This divalent metal catalyzes metabolic flow through lower glycolysis, reductive tricarboxylic acid and the pentose phosphate pathway, thereby providing energetic, redox and biosynthetic outputs associated with the resistance of Salmonella to reactive oxygen species generated in the respiratory burst of professional phagocytic cells. Combined, the oxyradical-detoxifying properties of Mn2+ together with the ability of this divalent metal cation to support central metabolism help Salmonella colonize the mammalian gut and establish systemic infections.
Collapse
Affiliation(s)
- Siva R. Uppalapati
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| | - Andres Vazquez-Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| |
Collapse
|
14
|
Borisov VB, Forte E. Bioenergetics and Reactive Nitrogen Species in Bacteria. Int J Mol Sci 2022; 23:7321. [PMID: 35806323 PMCID: PMC9266656 DOI: 10.3390/ijms23137321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
The production of reactive nitrogen species (RNS) by the innate immune system is part of the host's defense against invading pathogenic bacteria. In this review, we summarize recent studies on the molecular basis of the effects of nitric oxide and peroxynitrite on microbial respiration and energy conservation. We discuss possible molecular mechanisms underlying RNS resistance in bacteria mediated by unique respiratory oxygen reductases, the mycobacterial bcc-aa3 supercomplex, and bd-type cytochromes. A complete picture of the impact of RNS on microbial bioenergetics is not yet available. However, this research area is developing very rapidly, and the knowledge gained should help us develop new methods of treating infectious diseases.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
15
|
Chautrand T, Souak D, Chevalier S, Duclairoir-Poc C. Gram-Negative Bacterial Envelope Homeostasis under Oxidative and Nitrosative Stress. Microorganisms 2022; 10:924. [PMID: 35630368 PMCID: PMC9144841 DOI: 10.3390/microorganisms10050924] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria are frequently exposed to endogenous and exogenous reactive oxygen and nitrogen species which can damage various biomolecules such as DNA, lipids, and proteins. High concentrations of these molecules can induce oxidative and nitrosative stresses in the cell. Reactive oxygen and nitrogen species are notably used as a tool by prokaryotes and eukaryotes to eradicate concurrent species or to protect themselves against pathogens. The main example is mammalian macrophages that liberate high quantities of reactive species to kill internalized bacterial pathogens. As a result, resistance to these stresses is determinant for the survival of bacteria, both in the environment and in a host. The first bacterial component in contact with exogenous molecules is the envelope. In Gram-negative bacteria, this envelope is composed of two membranes and a layer of peptidoglycan lodged between them. Several mechanisms protecting against oxidative and nitrosative stresses are present in the envelope, highlighting the importance for the cell to deal with reactive species in this compartment. This review aims to provide a comprehensive view of the challenges posed by oxidative and nitrosative stresses to the Gram-negative bacterial envelope and the mechanisms put in place in this compartment to prevent and repair the damages they can cause.
Collapse
Affiliation(s)
| | | | | | - Cécile Duclairoir-Poc
- Research Unit Bacterial Communication and Anti-infectious Strategies (UR CBSA), Rouen Normandy University, Normandy University, 55 rue Saint-Germain, 27000 Evreux, France; (T.C.); (D.S.); (S.C.)
| |
Collapse
|
16
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
17
|
Rivera-Lugo R, Deng D, Anaya-Sanchez A, Tejedor-Sanz S, Tang E, Reyes Ruiz VM, Smith HB, Titov DV, Sauer JD, Skaar EP, Ajo-Franklin CM, Portnoy DA, Light SH. Listeria monocytogenes requires cellular respiration for NAD + regeneration and pathogenesis. eLife 2022; 11:e75424. [PMID: 35380108 PMCID: PMC9094743 DOI: 10.7554/elife.75424] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Cellular respiration is essential for multiple bacterial pathogens and a validated antibiotic target. In addition to driving oxidative phosphorylation, bacterial respiration has a variety of ancillary functions that obscure its contribution to pathogenesis. We find here that the intracellular pathogen Listeria monocytogenes encodes two respiratory pathways which are partially functionally redundant and indispensable for pathogenesis. Loss of respiration decreased NAD+ regeneration, but this could be specifically reversed by heterologous expression of a water-forming NADH oxidase (NOX). NOX expression fully rescued intracellular growth defects and increased L. monocytogenes loads >1000-fold in a mouse infection model. Consistent with NAD+ regeneration maintaining L. monocytogenes viability and enabling immune evasion, a respiration-deficient strain exhibited elevated bacteriolysis within the host cytosol and NOX expression rescued this phenotype. These studies show that NAD+ regeneration represents a major role of L. monocytogenes respiration and highlight the nuanced relationship between bacterial metabolism, physiology, and pathogenesis.
Collapse
Affiliation(s)
- Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - David Deng
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Andrea Anaya-Sanchez
- Graduate Group in Microbiology, University of California, BerkeleyBerkeleyUnited States
| | - Sara Tejedor-Sanz
- Department of Biosciences, Rice UniversityHoustonUnited States
- The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Eugene Tang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Valeria M Reyes Ruiz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical CenterNashvilleUnited States
| | - Hans B Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Denis V Titov
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Nutritional Sciences and Toxicology, University of California, BerkeleyBerkeleyUnited States
- Center for Computational Biology, University of California, BerkeleyBerkeleyUnited States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical CenterNashvilleUnited States
| | - Caroline M Ajo-Franklin
- Department of Biosciences, Rice UniversityHoustonUnited States
- The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Samuel H Light
- Department of Microbiology, University of ChicagoChicagoUnited States
- Duchossois Family Institute, University of ChicagoChicagoUnited States
| |
Collapse
|
18
|
Friedrich T, Wohlwend D, Borisov VB. Recent Advances in Structural Studies of Cytochrome bd and Its Potential Application as a Drug Target. Int J Mol Sci 2022; 23:ijms23063166. [PMID: 35328590 PMCID: PMC8951039 DOI: 10.3390/ijms23063166] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cytochrome bd is a triheme copper-free terminal oxidase in membrane respiratory chains of prokaryotes. This unique molecular machine couples electron transfer from quinol to O2 with the generation of a proton motive force without proton pumping. Apart from energy conservation, the bd enzyme plays an additional key role in the microbial cell, being involved in the response to different environmental stressors. Cytochrome bd promotes virulence in a number of pathogenic species that makes it a suitable molecular drug target candidate. This review focuses on recent advances in understanding the structure of cytochrome bd and the development of its selective inhibitors.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; (T.F.); (D.W.)
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; (T.F.); (D.W.)
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
19
|
Chen J, Xie P, Huang Y, Gao H. Complex Interplay of Heme-Copper Oxidases with Nitrite and Nitric Oxide. Int J Mol Sci 2022; 23:979. [PMID: 35055165 PMCID: PMC8780969 DOI: 10.3390/ijms23020979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/19/2022] Open
Abstract
Nitrite and nitric oxide (NO), two active and critical nitrogen oxides linking nitrate to dinitrogen gas in the broad nitrogen biogeochemical cycle, are capable of interacting with redox-sensitive proteins. The interactions of both with heme-copper oxidases (HCOs) serve as the foundation not only for the enzymatic interconversion of nitrogen oxides but also for the inhibitory activity. From extensive studies, we now know that NO interacts with HCOs in a rapid and reversible manner, either competing with oxygen or not. During interconversion, a partially reduced heme/copper center reduces the nitrite ion, producing NO with the heme serving as the reductant and the cupric ion providing a Lewis acid interaction with nitrite. The interaction may lead to the formation of either a relatively stable nitrosyl-derivative of the enzyme reduced or a more labile nitrite-derivative of the enzyme oxidized through two different pathways, resulting in enzyme inhibition. Although nitrite and NO show similar biochemical properties, a growing body of evidence suggests that they are largely treated as distinct molecules by bacterial cells. NO seemingly interacts with all hemoproteins indiscriminately, whereas nitrite shows high specificity to HCOs. Moreover, as biologically active molecules and signal molecules, nitrite and NO directly affect the activity of different enzymes and are perceived by completely different sensing systems, respectively, through which they are linked to different biological processes. Further attempts to reconcile this apparent contradiction could open up possible avenues for the application of these nitrogen oxides in a variety of fields, the pharmaceutical industry in particular.
Collapse
Affiliation(s)
| | | | | | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.C.); (P.X.); (Y.H.)
| |
Collapse
|
20
|
Mechanistic and structural diversity between cytochrome bd isoforms of Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:2114013118. [PMID: 34873041 DOI: 10.1073/pnas.2114013118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment of infectious diseases caused by multidrug-resistant pathogens is a major clinical challenge of the 21st century. The membrane-embedded respiratory cytochrome bd-type oxygen reductase is a critical survival factor utilized by pathogenic bacteria during infection, proliferation and the transition from acute to chronic states. Escherichia coli encodes for two cytochrome bd isoforms that are both involved in respiration under oxygen limited conditions. Mechanistic and structural differences between cydABX (Ecbd-I) and appCBX (Ecbd-II) operon encoded cytochrome bd variants have remained elusive in the past. Here, we demonstrate that cytochrome bd-II catalyzes oxidation of benzoquinols while possessing additional specificity for naphthoquinones. Our data show that although menaquinol-1 (MK1) is not able to directly transfer electrons onto cytochrome bd-II from E. coli, it has a stimulatory effect on its oxygen reduction rate in the presence of ubiquinol-1. We further determined cryo-EM structures of cytochrome bd-II to high resolution of 2.1 Å. Our structural insights confirm that the general architecture and substrate accessible pathways are conserved between the two bd oxidase isoforms, but two notable differences are apparent upon inspection: (i) Ecbd-II does not contain a CydH-like subunit, thereby exposing heme b 595 to the membrane environment and (ii) the AppB subunit harbors a structural demethylmenaquinone-8 molecule instead of ubiquinone-8 as found in CydB of Ecbd-I Our work completes the structural landscape of terminal respiratory oxygen reductases of E. coli and suggests that structural and functional properties of the respective oxidases are linked to quinol-pool dependent metabolic adaptations in E. coli.
Collapse
|
21
|
Borisov VB, Forte E. Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. Int J Mol Sci 2021; 22:12688. [PMID: 34884491 PMCID: PMC8657789 DOI: 10.3390/ijms222312688] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria-the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to the class of endogenous gaseous signaling molecules. This compound plays critical roles in physiology and pathophysiology. Enzymes implicated in H2S metabolism and physiological actions are promising targets for novel pharmaceutical agents. The biological effects of H2S are biphasic, changing from cytoprotection to cytotoxicity through increasing the compound concentration. In mammals, H2S enhances the activity of FoF1-ATP (adenosine triphosphate) synthase and lactate dehydrogenase via their S-sulfhydration, thereby stimulating mitochondrial electron transport. H2S serves as an electron donor for the mitochondrial respiratory chain via sulfide quinone oxidoreductase and cytochrome c oxidase at low H2S levels. The latter enzyme is inhibited by high H2S concentrations, resulting in the reversible inhibition of electron transport and ATP production in mitochondria. In the branched respiratory chain of Escherichia coli, H2S inhibits the bo3 terminal oxidase but does not affect the alternative bd-type oxidases. Thus, in E. coli and presumably other bacteria, cytochrome bd permits respiration and cell growth in H2S-rich environments. A complete picture of the impact of H2S on bioenergetics is lacking, but this field is fast-moving, and active ongoing research on this topic will likely shed light on additional, yet unknown biological effects.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
22
|
Siletsky SA, Borisov VB. Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. Int J Mol Sci 2021; 22:10852. [PMID: 34639193 PMCID: PMC8509429 DOI: 10.3390/ijms221910852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Terminal respiratory oxidases are highly efficient molecular machines. These most important bioenergetic membrane enzymes transform the energy of chemical bonds released during the transfer of electrons along the respiratory chains of eukaryotes and prokaryotes from cytochromes or quinols to molecular oxygen into a transmembrane proton gradient. They participate in regulatory cascades and physiological anti-stress reactions in multicellular organisms. They also allow microorganisms to adapt to low-oxygen conditions, survive in chemically aggressive environments and acquire antibiotic resistance. To date, three-dimensional structures with atomic resolution of members of all major groups of terminal respiratory oxidases, heme-copper oxidases, and bd-type cytochromes, have been obtained. These groups of enzymes have different origins and a wide range of functional significance in cells. At the same time, all of them are united by a catalytic reaction of four-electron reduction in oxygen into water which proceeds without the formation and release of potentially dangerous ROS from active sites. The review analyzes recent structural and functional studies of oxygen reduction intermediates in the active sites of terminal respiratory oxidases, the features of catalytic cycles, and the properties of the active sites of these enzymes.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vitaliy B. Borisov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia;
| |
Collapse
|
23
|
Cai Y, Jaecklein E, Mackenzie JS, Papavinasasundaram K, Olive AJ, Chen X, Steyn AJC, Sassetti CM. Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase. PLoS Pathog 2021; 17:e1008911. [PMID: 34320028 PMCID: PMC8351954 DOI: 10.1371/journal.ppat.1008911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/09/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, the presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNγ), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that ΔcydA mutants were hypersusceptible to the low pH encountered in IFNγ-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs.
Collapse
Affiliation(s)
- Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Eleni Jaecklein
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Andrew J Olive
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | | | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
24
|
Guo K, Gao H. Physiological Roles of Nitrite and Nitric Oxide in Bacteria: Similar Consequences from Distinct Cell Targets, Protection, and Sensing Systems. Adv Biol (Weinh) 2021; 5:e2100773. [PMID: 34310085 DOI: 10.1002/adbi.202100773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/19/2021] [Indexed: 12/22/2022]
Abstract
Nitrite and nitric oxide (NO) are two active nitrogen oxides that display similar biochemical properties, especially when interacting with redox-sensitive proteins (i.e., hemoproteins), an observation serving as the foundation of the notion that the antibacterial effect of nitrite is largely attributed to NO formation. However, a growing body of evidence suggests that they are largely treated as distinct molecules by bacterial cells. Although both nitrite and NO are formed and decomposed by enzymes participating in the transformation of these nitrogen species, NO can also be generated via amino acid metabolism by bacterial NO synthetase and scavenged by flavohemoglobin. NO seemingly interacts with all hemoproteins indiscriminately, whereas nitrite shows high specificity to heme-copper oxidases. Consequently, the homeostasis of redox-sensitive proteins may be responsible for the substantial difference in NO-targets identified to date among different bacteria. In addition, most protective systems against NO damage have no significant role in alleviating inhibitory effects of nitrite. Furthermore, when functioning as signal molecules, nitrite and NO are perceived by completely different sensing systems, through which they are linked to different biological processes.
Collapse
Affiliation(s)
- Kailun Guo
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
25
|
Identification and optimization of quinolone-based inhibitors against cytochrome bd oxidase using an electrochemical assay. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
27
|
Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants (Basel) 2021; 10:antiox10060839. [PMID: 34073980 PMCID: PMC8225038 DOI: 10.3390/antiox10060839] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) comprise the superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
- Correspondence: (V.B.B.); (E.F.)
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
| | - Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
- Correspondence: (V.B.B.); (E.F.)
| |
Collapse
|
28
|
Ko EM, Oh JI. Induction of the cydAB Operon Encoding the bd Quinol Oxidase Under Respiration-Inhibitory Conditions by the Major cAMP Receptor Protein MSMEG_6189 in Mycobacterium smegmatis. Front Microbiol 2020; 11:608624. [PMID: 33343552 PMCID: PMC7739888 DOI: 10.3389/fmicb.2020.608624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022] Open
Abstract
The respiratory electron transport chain (ETC) of Mycobacterium smegmatis is terminated with two terminal oxidases, the aa 3 cytochrome c oxidase and the cytochrome bd quinol oxidase. The bd quinol oxidase with a higher binding affinity for O2 than the aa 3 oxidase is known to play an important role in aerobic respiration under oxygen-limiting conditions. Using relevant crp1 (MSMEG_6189) and crp2 (MSMEG_0539) mutant strains of M. smegmatis, we demonstrated that Crp1 plays a predominant role in induction of the cydAB operon under ETC-inhibitory conditions. Two Crp-binding sequences were identified upstream of the cydA gene, both of which are necessary for induction of cydAB expression under ETC-inhibitory conditions. The intracellular level of cAMP in M. smegmatis was found to be increased under ETC-inhibitory conditions. The crp2 gene was found to be negatively regulated by Crp1 and Crp2, which appears to lead to significantly low cellular abundance of Crp2 relative to Crp1 in M. smegmatis. Our RNA sequencing analyses suggest that in addition to the SigF partner switching system, Crp1 is involved in induction of gene expression in M. smegmatis exposed to ETC-inhibitory conditions.
Collapse
Affiliation(s)
- Eon-Min Ko
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
29
|
Role of the Nitric Oxide Reductase NorVW in the Survival and Virulence of Enterohaemorrhagic Escherichia coli during Infection. Pathogens 2020; 9:pathogens9090683. [PMID: 32825770 PMCID: PMC7558590 DOI: 10.3390/pathogens9090683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/20/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are bacterial pathogens responsible for life-threatening diseases in humans, such as hemolytic and uremic syndrome. It has been previously demonstrated that the interplay between EHEC and nitric oxide (NO), a mediator of the host immune innate response, is critical for infection outcome, since NO affects both Shiga toxin (Stx) production and adhesion to enterocytes. In this study, we investigated the role of the NO reductase NorVW in the virulence and fitness of two EHEC strains in a murine model of infection. We determined that the deletion of norVW in the strain O91:H21 B2F1 has no impact on its virulence, whereas it reduces the ability of the strain O157:H7 620 to persist in the mouse gut and to produce Stx. We also revealed that the fitness defect of strain 620 ΔnorVW is strongly attenuated when mice are treated with an NO synthase inhibitor. Altogether, these results demonstrate that the NO reductase NorVW participates in EHEC resistance against NO produced by the host and promotes virulence through the modulation of Stx synthesis. The contribution of NorVW in the EHEC infectious process is, however, strain-dependent and suggests that the EHEC response to nitrosative stress is complex and multifactorial.
Collapse
|
30
|
Abstract
Flavohaemoglobins were first described in yeast as early as the 1970s but their functions were unclear. The surge in interest in nitric oxide biology and both serendipitous and hypothesis-driven discoveries in bacterial systems have transformed our understanding of this unusual two-domain globin into a comprehensive, yet undoubtedly incomplete, appreciation of its pre-eminent role in nitric oxide detoxification. Here, I focus on research on the flavohaemoglobins of microorganisms, especially of bacteria, and update several earlier and more comprehensive reviews, emphasising advances over the past 5 to 10 years and some controversies that have arisen. Inevitably, in light of space restrictions, details of nitric oxide metabolism and globins in higher organisms are brief.
Collapse
Affiliation(s)
- Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| |
Collapse
|
31
|
The Small Protein CydX Is Required for Cytochrome bd Quinol Oxidase Stability and Function in Salmonella enterica Serovar Typhimurium: a Phenotypic Study. J Bacteriol 2020; 202:JB.00348-19. [PMID: 31659011 DOI: 10.1128/jb.00348-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/21/2019] [Indexed: 01/12/2023] Open
Abstract
Cytochrome bd quinol oxidases, which have a greater affinity for oxygen than heme-copper cytochrome oxidases (HCOs), promote bacterial respiration and fitness in low-oxygen environments, such as host tissues. Here, we show that, in addition to the CydA and CydB subunits, the small protein CydX is required for the assembly and function of the cytochrome bd complex in the enteric pathogen Salmonella enterica serovar Typhimurium. Mutant S Typhimurium lacking CydX showed a loss of proper heme arrangement and impaired oxidase activity comparable to that of a ΔcydABX mutant lacking all cytochrome bd subunits. Moreover, both the ΔcydX mutant and the ΔcydABX mutant showed increased sensitivity to β-mercaptoethanol and nitric oxide (NO). Cytochrome bd-mediated protection from β-mercaptoethanol was not a result of resistance to reducing damage but, rather, was due to cytochrome bd oxidase managing Salmonella respiration, while β-mercaptoethanol interacted with the copper ions necessary for the HCO activity of the cytochrome bo-type quinol oxidase. Interactions between NO and hemes in cytochrome bd and cytochrome bd-dependent respiration during nitrosative stress indicated a direct role for cytochrome bd in mediating Salmonella resistance to NO. Additionally, CydX was required for S Typhimurium proliferation inside macrophages. Mutants deficient in cytochrome bd, however, showed a significant increase in resistance to antibiotics, including aminoglycosides, d-cycloserine, and ampicillin. The essential role of CydX in cytochrome bd assembly and function suggests that targeting this small protein could be a useful antimicrobial strategy, but potential drug tolerance responses should also be considered.IMPORTANCE Cytochrome bd quinol oxidases, which are found only in bacteria, govern the fitness of many facultative anaerobic pathogens by promoting respiration in low-oxygen environments and by conferring resistance to antimicrobial radicals. Thus, cytochrome bd complex assembly and activity are considered potential therapeutic targets. Here we report that the small protein CydX is required for the assembly and function of the cytochrome bd complex in S Typhimurium under stress conditions, including exposure to β-mercaptoethanol, nitric oxide, or the phagocytic intracellular environment, demonstrating its crucial function for Salmonella fitness. However, cytochrome bd inactivation also leads to increased resistance to some antibiotics, so considerable caution should be taken when developing therapeutic strategies targeting the CydX-dependent cytochrome bd.
Collapse
|
32
|
Mascolo L, Bald D. Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 152:55-63. [PMID: 31738981 DOI: 10.1016/j.pbiomolbio.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
The branched respiratory chain of Mycobacterium tuberculosis has attracted attention as a highly promising target for next-generation antibacterials. This system includes two terminal oxidases of which the exclusively bacterial cytochrome bd represents the less energy-efficient one. Albeit dispensable for growth under standard laboratory conditions, cytochrome bd is important during environmental stress. In this review, we discuss the role of cytochrome bd during infection of the mammalian host and in the defense against antibacterials. Deeper insight into the biochemistry of mycobacterial cytochrome bd is needed to understand the physiological role of this bacteria-specific defense factor. Conversely, cytochrome bd may be utilized to gain information on mycobacterial physiology in vitro and during host infection. Knowledge-based manipulation of cytochrome bd function may assist in designing the next-generation tuberculosis combination chemotherapy.
Collapse
Affiliation(s)
- Ludovica Mascolo
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kühlbrandt W, Michel H. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science 2019; 366:100-104. [DOI: 10.1126/science.aay0967] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022]
Abstract
Cytochrome bd–type quinol oxidases catalyze the reduction of molecular oxygen to water in the respiratory chain of many human-pathogenic bacteria. They are structurally unrelated to mitochondrial cytochrome c oxidases and are therefore a prime target for the development of antimicrobial drugs. We determined the structure of theEscherichia colicytochrome bd-I oxidase by single-particle cryo–electron microscopy to a resolution of 2.7 angstroms. Our structure contains a previously unknown accessory subunit CydH, the L-subfamily–specific Q-loop domain, a structural ubiquinone-8 cofactor, an active-site density interpreted as dioxygen, distinct water-filled proton channels, and an oxygen-conducting pathway. Comparison with another cytochrome bd oxidase reveals structural divergence in the family, including rearrangement of high-spin hemes and conformational adaption of a transmembrane helix to generate a distinct oxygen-binding site.
Collapse
Affiliation(s)
- S. Safarian
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt/Main, Germany
| | - A. Hahn
- Department of Structural Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt/Main, Germany
| | - D. J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt/Main, Germany
| | - M. Radloff
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt/Main, Germany
| | - M. L. Eisinger
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt/Main, Germany
| | - A. Nikolaev
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - J. Meier-Credo
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt/Main, Germany
| | - F. Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - H. Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - R. B. Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - J. Sakamoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan
| | - J. D. Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt/Main, Germany
| | - P. Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study, Strasbourg, France
| | - W. Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt/Main, Germany
| | - H. Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
34
|
Reactive nitrogen species in host-bacterial interactions. Curr Opin Immunol 2019; 60:96-102. [PMID: 31200187 DOI: 10.1016/j.coi.2019.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Reactive nitrogen species play diverse and essential roles in host-pathogen interactions. Here, we review selected recent discoveries regarding nitric oxide (NO) in host defense and the pathogenesis of infection, mechanisms of bacterial NO resistance, production of NO by human macrophages, NO-based antimicrobial therapeutics and NO interactions with the gut microbiota.
Collapse
|
35
|
Characterization and Transcriptome Studies of Autoinducer Synthase Gene from Multidrug Resistant Acinetobacter baumannii Strain 863. Genes (Basel) 2019; 10:genes10040282. [PMID: 30965610 PMCID: PMC6523755 DOI: 10.3390/genes10040282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 01/17/2023] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication system that uses autoinducers as signaling molecules to enable inter-species and intra-species interactions in response to external stimuli according to the population density. QS allows bacteria such as Acinetobacter baumannii to react rapidly in response to environmental changes and hence, increase the chances of survival. A. baumannii is one of the causative agents in hospital-acquired infections and the number of cases has increased remarkably in the past decade. In this study, A. baumannii strain 863, a multidrug-resistant pathogen, was found to exhibit QS activity by producing N-acyl homoserine lactone. We identified the autoinducer synthase gene, which we named abaI, by performing whole genome sequencing analysis of A. baumannii strain 863. Using high resolution tandem triple quadrupole mass spectrometry, we reported that abaI of A. baumannii strain 863 produced 3-hydroxy-dodecanoyl-homoserine lactone. A gene deletion mutant was constructed, which confirmed the functionality of abaI. A growth defect was observed in the QS-deficient mutant strain. Transcriptome profiling was performed to determine the possible genes regulated by QS. Four groups of genes that showed differential expression were discovered, namely those involved in carbon source metabolism, energy production, stress response and the translation process.
Collapse
|
36
|
Potts AH, Guo Y, Ahmer BMM, Romeo T. Role of CsrA in stress responses and metabolism important for Salmonella virulence revealed by integrated transcriptomics. PLoS One 2019; 14:e0211430. [PMID: 30682134 PMCID: PMC6347204 DOI: 10.1371/journal.pone.0211430] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
To cause infection, Salmonella must survive and replicate in host niches that present dramatically different environmental conditions. This requires a flexible metabolism and physiology, responsive to conditions of the local milieu. The sequence specific RNA binding protein CsrA serves as a global regulator that governs gene expression required for pathogenicity, metabolism, biofilm formation, and motility in response to nutritional conditions. Its activity is determined by two noncoding small RNAs (sRNA), CsrB and CsrC, which sequester and antagonize this protein. Here, we used ribosome profiling and RNA-seq analysis to comprehensively examine the effects of CsrA on mRNA occupancy with ribosomes, a measure of translation, transcript stability, and the steady state levels of transcripts under in vitro SPI-1 inducing conditions, to simulate growth in the intestinal lumen, and under in vitro SPI-2-inducing conditions, to simulate growth in the Salmonella containing vacuole (SCV) of the macrophage. Our findings uncovered new roles for CsrA in controlling the expression of structural and regulatory genes involved in stress responses, metabolism, and virulence systems required for infection. We observed substantial variation in the CsrA regulon under the two growth conditions. In addition, CsrB/C sRNA levels were greatly reduced under the simulated intracellular conditions and were responsive to nutritional factors that distinguish the intracellular and luminal environments. Altogether, our results reveal CsrA to be a flexible regulator, which is inferred to be intimately involved in maintaining the distinct gene expression patterns associated with growth in the intestine and the macrophage.
Collapse
Affiliation(s)
- Anastasia H Potts
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Yinping Guo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
37
|
Zinc-dependent substrate-level phosphorylation powers Salmonella growth under nitrosative stress of the innate host response. PLoS Pathog 2018; 14:e1007388. [PMID: 30365536 PMCID: PMC6221366 DOI: 10.1371/journal.ppat.1007388] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/07/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022] Open
Abstract
The metabolic processes that enable the replication of intracellular Salmonella under nitrosative stress conditions engendered in the innate response of macrophages are poorly understood. A screen of Salmonella transposon mutants identified the ABC-type high-affinity zinc uptake system ZnuABC as a critical determinant of the adaptation of Salmonella to the nitrosative stress generated by the enzymatic activity of inducible nitric oxide (NO) synthase of mononuclear phagocytic cells. NO limits the virulence of a znuB mutant in an acute murine model of salmonellosis. The ZnuABC transporter is crucial for the glycolytic function of fructose bisphosphate aldolase, thereby fueling growth of Salmonella during nitrosative stress produced in the innate response of macrophages. Our investigations demonstrate that glycolysis mediates resistance of Salmonella to the antimicrobial activity of NO produced in an acute model of infection. The ATP synthesized by substrate-level phosphorylation at the payoff phase of glycolysis and acetate fermentation powers the replication of Salmonella experiencing high levels of nitrosative stress. In contrast, despite its high potential for ATP synthesis, oxidative phosphorylation is a major target of inhibition by NO and contributes little to the antinitrosative defenses of intracellular Salmonella. Our investigations have uncovered a previously unsuspected conjunction between zinc homeostasis, glucose metabolism and cellular energetics in the adaptation of intracellular Salmonella to the reactive nitrogen species synthesized in the innate host response. Microbial pathogens are exposed to multiple antimicrobial defenses during their associations with host cells. Nitric oxide generated in the innate response exerts widespread antimicrobial activity against a variety of pathogenic microorganisms. Nitric oxide has high affinity for metal groups of terminal cytochromes of the respiratory chain, and thus nitrosative stress exerts extreme deleterious actions against the cellular energetics that rely on oxidative phosphorylation. Intracellular Salmonella have resolved this dilemma by satisfying a significant portion of their energetic demands via substrate level phosphorylation in the payoff phase of glycolysis and acetate fermentation. A high affinity zinc uptake system promotes antinitrosative defense of intracellular Salmonella by in great part supporting the enzymatic activity of an essential enzyme in the preparatory phase of glycolysis. Our research provides novel insights into the metabolic and energetic adaptations that allow a bacterial pathogen to thrive in the midst of the innate host response of vertebrate cells.
Collapse
|
38
|
Cytochromes c Constitute a Layer of Protection against Nitric Oxide but Not Nitrite. Appl Environ Microbiol 2018; 84:AEM.01255-18. [PMID: 29934335 DOI: 10.1128/aem.01255-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/20/2018] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is a radical gas that reacts with various biological molecules in complex ways to inhibit growth as a bacteriostatic agent. NO is nearly ubiquitous because it can be generated both biotically and abiotically. To protect the cell from NO damage, bacteria have evolved many strategies, with the production of detoxifying enzymatic systems being the most efficient. Here, we report that c-type cytochromes (cytochromes c) constitute a primary NO protection system in Shewanella oneidensis, a Gram-negative environmental bacterium renowned for respiratory versatility due to its high cytochrome c content. By using mutants producing cytochromes c at varying levels, we found that the content of these proteins is inversely correlated with the growth inhibition imposed by NO, whereas the effect of each individual cytochrome c is negligible. This NO-protecting system has no effect on nitrite inhibition. In the absence of cytochromes c, other NO targets and protective proteins, such as NnrS, emerge to show physiological influences during the NO stress. We further demonstrate that cytochromes c also play a similar role in Escherichia coli, albeit only modestly. Our data thus identify the in vivo function of an important group of proteins in alleviating NO stress.IMPORTANCE It is widely accepted that the antibacterial effects of nitrite are attributable to nitric oxide (NO) formation, suggesting a correlation of bacterial susceptibilities to these two chemicals. However, compared to E. coli, S. oneidensis is highly sensitive to nitrite but resistant to NO, implying the presence of robust NO-protective systems. Here, we show that c-type cytochromes (cytochromes c) play a main role in protecting S. oneidensis against damages from NO but not from nitrite. In their absence, impacts of proteins that promote NO tolerance and that are targets of NO inhibition become evident. Our data thus reveal the specific activity of cytochromes c in alleviating the stress caused by NO but not nitrite.
Collapse
|
39
|
Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev 2018; 31:31/4/e00023-18. [PMID: 30068737 DOI: 10.1128/cmr.00023-18] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogens that infect the gastrointestinal and respiratory tracts are subjected to intense pressure due to the environmental conditions of the surroundings. This pressure has led to the development of mechanisms of bacterial tolerance or persistence which enable microorganisms to survive in these locations. In this review, we analyze the general stress response (RpoS mediated), reactive oxygen species (ROS) tolerance, energy metabolism, drug efflux pumps, SOS response, quorum sensing (QS) bacterial communication, (p)ppGpp signaling, and toxin-antitoxin (TA) systems of pathogens, such as Escherichia coli, Salmonella spp., Vibrio spp., Helicobacter spp., Campylobacter jejuni, Enterococcus spp., Shigella spp., Yersinia spp., and Clostridium difficile, all of which inhabit the gastrointestinal tract. The following respiratory tract pathogens are also considered: Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cenocepacia, and Mycobacterium tuberculosis Knowledge of the molecular mechanisms regulating the bacterial tolerance and persistence phenotypes is essential in the fight against multiresistant pathogens, as it will enable the identification of new targets for developing innovative anti-infective treatments.
Collapse
|
40
|
Distinct Nitrite and Nitric Oxide Physiologies in Escherichia coli and Shewanella oneidensis. Appl Environ Microbiol 2018; 84:AEM.00559-18. [PMID: 29654177 DOI: 10.1128/aem.00559-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Nitrite has been used as a bacteriostatic agent for centuries in food preservation. It is widely accepted that this biologically inert molecule functions indirectly, serving as a stable reservoir of bioactive nitric oxide (NO) and other reactive nitrogen species to impact physiology. As a result, to date, we know surprisingly little about in vivo targets of nitrite. Here, we carry out comparative analyses of nitrite and NO physiology in Escherichia coli and in Shewanella oneidensis, a Gram-negative environmental bacterium renowned for respiratory versatility. These two bacteria differ from each other in many aspects of nitrite and NO physiology, including NO generation, NO degradation, and unexpectedly, their contrary susceptibility to nitrite and NO. In cell extracts of both bacteria, most of the NO targets are also susceptible to nitrite, and vice versa. However, with respect to growth inhibition caused by NO, the targets are impacted distinctly; NO targets are responsible for the inhibition of growth of E. coli but not of S. oneidensis More surprisingly, all proteins identified to be implicated in NO tolerance in other bacteria appear to play a dispensable role in protecting S. oneidensis against NO. These data suggest that S. oneidensis is equipped with a robust but yet unknown NO protecting system. In the case of nitrite, it is clear that the target of physiological significance in both bacteria is cytochrome heme-copper oxidase.IMPORTANCE Nitrite is toxic to living organisms at high levels, but such antibacterial effects of nitrite are attributable to the formation of nitric oxide (NO), a highly reactive radical gas molecule. Here, we report that Shewanella oneidensis is highly resistant to NO but sensitive to nitrite compared to Escherichia coli by approximately 4-fold. In both bacteria, nitrite inhibits bacterial growth by targeting cytochrome heme-copper oxidase. In contrast, the targets of NO are diverse. Although these targets are similar in E. coli and S. oneidensis, they are responsible for growth inhibition caused by NO in the former but not in the latter. Overall, the presented data, along with the previous data, solidify a proposal that the in vivo targets of NO and nitrite in bacteria are largely different.
Collapse
|
41
|
Abstract
The adaptations that protect pathogenic microorganisms against the cytotoxicity of nitric oxide (NO) engendered in the immune response are incompletely understood. We show here that salmonellae experiencing nitrosative stress suffer dramatic losses of the nucleoside triphosphates ATP, GTP, CTP, and UTP while simultaneously generating a massive burst of the alarmone nucleotide guanosine tetraphosphate. RelA proteins associated with ribosomes overwhelmingly synthesize guanosine tetraphosphate in response to NO as a feedback mechanism to transient branched-chain amino acid auxotrophies. Guanosine tetraphosphate activates the transcription of valine biosynthetic genes, thereby reestablishing branched-chain amino acid biosynthesis that enables the translation of the NO-consuming flavohemoglobin Hmp. Guanosine tetraphosphate synthesized by RelA protects salmonellae from the metabolic stress inflicted by reactive nitrogen species generated in the mammalian host response. This research illustrates the importance of nucleotide metabolism in the adaptation of salmonellae to the nutritional stress imposed by NO released in the innate host response. Nitric oxide triggers dramatic drops in nucleoside triphosphates, the building blocks that power DNA replication; RNA transcription; translation; cell division; and the biosynthesis of fatty acids, lipopolysaccharide, and peptidoglycan. Concomitantly, this diatomic gas stimulates a burst of guanosine tetraphosphate. Global changes in nucleotide metabolism may contribute to the potent bacteriostatic activity of nitric oxide. In addition to inhibiting numerous growth-dependent processes, guanosine tetraphosphate positively regulates the transcription of branched-chain amino acid biosynthesis genes, thereby facilitating the translation of antinitrosative defenses that mediate recovery from nitrosative stress.
Collapse
|
42
|
Salmonella small RNA fragment Sal-1 facilitates bacterial survival in infected cells via suppressing iNOS induction in a microRNA manner. Sci Rep 2017; 7:16979. [PMID: 29208934 PMCID: PMC5717148 DOI: 10.1038/s41598-017-17205-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/22/2017] [Indexed: 11/16/2022] Open
Abstract
Salmonella can hijack host atypical miRNA processing machinery to cleave its small non-coding RNA into a ~22-nt RNA fragment, Sal-1, which facilitates Salmonella survival in the infected host. The mechanism through which Sal-1 promotes Salmonella survival, however, remains unknown. In the present study, we reported that Sal-1 targets cellular inducible nitric oxide synthase (iNOS) in a miRNA manner, leading to attenuation of host cell iNOS/NO-mediated anti-microbial capacity. First, depletion of Sal-1 in Salmonella-infected epithelial cells significantly increased the iNOS level but not the levels of various inflammatory cytokines. Bioinformatics analysis and mutagenesis strategies were consistent with the identification of mRNA of iNOS as a target of Sal-1 in both human and mice. Second, western blot and immunohistochemical analysis confirmed that Sal-1 suppressed iNOS expression in vitro and in vivo, thus reducing the production of NO. Finally, Sal-1 facilitating Salmonella survival through suppressing iNOS induction was confirmed in mouse model by expressing mutated iNOS that is not targeted by Sal-1 in mice colon. In conclusion, our study provides new insight into the pathogenic mechanism of intracellular bacteria to modulate host innate immune response.
Collapse
|
43
|
Bourret TJ, Liu L, Shaw JA, Husain M, Vázquez-Torres A. Magnesium homeostasis protects Salmonella against nitrooxidative stress. Sci Rep 2017; 7:15083. [PMID: 29118452 PMCID: PMC5678156 DOI: 10.1038/s41598-017-15445-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
The PhoPQ two-component regulatory system coordinates the response of Salmonella enterica serovar Typhimurium to diverse environmental challenges encountered during infection of hosts, including changes in Mg2+ concentrations, pH, and antimicrobial peptides. Moreover, PhoPQ-dependent regulation of gene expression promotes intracellular survival of Salmonella in macrophages, and contributes to the resistance of this pathogen to reactive nitrogen species (RNS) generated from the nitric oxide produced by the inducible nitric oxide (NO) synthase of macrophages. We report here that Salmonella strains with mutations of phoPQ are hypersensitive to killing by RNS generated in vitro. The increased susceptibility of ∆phoQ Salmonella to RNS requires molecular O2 and coincides with the nitrotyrosine formation, the oxidation of [4Fe-4S] clusters of dehydratases, and DNA damage. Mutations of respiratory NADH dehydrogenases prevent nitrotyrosine formation and abrogate the cytotoxicity of RNS against ∆phoQ Salmonella, presumably by limiting the formation of peroxynitrite (ONOO-) arising from the diffusion-limited reaction of exogenous NO and endogenous superoxide (O2•-) produced in the electron transport chain. The mechanism underlying PhoPQ-mediated resistance to RNS is linked to the coordination of Mg2+ homeostasis through the PhoPQ-regulated MgtA transporter. Collectively, our investigations are consistent with a model in which PhoPQ-dependent Mg2+ homeostasis protects Salmonella against nitrooxidative stress.
Collapse
Affiliation(s)
- Travis J Bourret
- Department of Medical Microbiology and Immunology, 2500 California Plaza, Creighton University, Criss I, Rm 521, Omaha, NE 68178, USA.
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jeff A Shaw
- Department of Medical Microbiology and Immunology, 2500 California Plaza, Creighton University, Criss I, Rm 521, Omaha, NE 68178, USA
| | - Maroof Husain
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama, 35294, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Veterans Affairs Eastern Colorado Health Care System, 1055 Clermont Street, Denver, DO 80220, USA
| |
Collapse
|
44
|
Corbett D, Goldrick M, Fernandes VE, Davidge K, Poole RK, Andrew PW, Cavet J, Roberts IS. Listeria monocytogenes Has Both Cytochrome bd-Type and Cytochrome aa 3-Type Terminal Oxidases, Which Allow Growth at Different Oxygen Levels, and Both Are Important in Infection. Infect Immun 2017; 85:e00354-17. [PMID: 28808161 PMCID: PMC5649020 DOI: 10.1128/iai.00354-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/02/2017] [Indexed: 01/06/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen responsible for a number of life-threatening infections of humans. During an infection, it invades epithelial cells before spreading from the intestine to the cells of the liver and spleen. This requires an ability to adapt to varying oxygen levels. Here, we demonstrate that L. monocytogenes has two terminal oxidases, a cytochrome bd-type (CydAB) and a cytochrome aa 3-type menaquinol (QoxAB) oxidase, and that both are used for respiration under different oxygen tensions. Furthermore, we show that possession of both terminal oxidases is important in infection. In air, the CydAB bd-type oxidase is essential for aerobic respiration and intracellular replication, and cydAB mutants are highly attenuated in mice. In contrast, the QoxAB aa 3-type oxidase is required neither for aerobic respiration in air nor for intracellular growth. However, the qoxAB mutants are attenuated in mice, with a delay in the onset of disease signs and with increased survival time, indicating a role for the QoxAB aa 3-type oxidase in the initial stages of infection. Growth of bacteria under defined oxygen conditions revealed that at 1% (vol/vol), both oxidases are functional, and the presence of either is sufficient for aerobic respiration and intracellular replication. However, at 0.2% (vol/vol), both oxidases are necessary for maximum growth. These findings are consistent with the ability of L. monocytogenes to switch between terminal oxidases under different oxygen conditions, providing exquisite adaptation to different conditions encountered within the infected host.
Collapse
Affiliation(s)
- David Corbett
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Marie Goldrick
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Vitor E Fernandes
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Kelly Davidge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Jennifer Cavet
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ian S Roberts
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
45
|
Boot M, Jim KK, Liu T, Commandeur S, Lu P, Verboom T, Lill H, Bitter W, Bald D. A fluorescence-based reporter for monitoring expression of mycobacterial cytochrome bd in response to antibacterials and during infection. Sci Rep 2017; 7:10665. [PMID: 28878275 PMCID: PMC5587683 DOI: 10.1038/s41598-017-10944-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cytochrome bd is a component of the oxidative phosphorylation pathway in many Gram-positive and Gram-negative bacteria. Next to its role as a terminal oxidase in the respiratory chain this enzyme plays an important role as a survival factor in the bacterial stress response. In Mycobacterium tuberculosis and related mycobacterial strains, cytochrome bd is an important component of the defense system against antibacterial drugs. In this report we describe and evaluate an mCherry-based fluorescent reporter for detection of cytochrome bd expression in Mycobacterium marinum. Cytochrome bd was induced by mycolic acid biosynthesis inhibitors such as isoniazid and most prominently by drugs targeting oxidative phosphorylation. We observed no induction by inhibitors of protein-, DNA- or RNA-synthesis. The constructed expression reporter was suitable for monitoring mycobacterial cytochrome bd expression during mouse macrophage infection and in a zebrafish embryo infection model when using Mycobacterium marinum. Interestingly, in both these infection models cytochrome bd levels were considerably higher than during in vitro culturing of M. marinum. The expression reporter described here can be a valuable tool for elucidating the role of cytochrome bd as a survival factor.
Collapse
Affiliation(s)
- Maikel Boot
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ting Liu
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Susanna Commandeur
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ping Lu
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Theo Verboom
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.,Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Abstract
Cytochrome bd is a unique prokaryotic respiratory terminal oxidase that does not belong to the extensively investigated family of haem-copper oxidases (HCOs). The enzyme catalyses the four-electron reduction of O2 to 2H2O, using quinols as physiological reducing substrates. The reaction is electrogenic and cytochrome bd therefore sustains bacterial energy metabolism by contributing to maintain the transmembrane proton motive force required for ATP synthesis. As compared to HCOs, cytochrome bd displays several distinctive features in terms of (i) metal composition (it lacks Cu and harbours a d-type haem in addition to two haems b), (ii) overall three-dimensional structure, that only recently has been solved, and arrangement of the redox cofactors, (iii) lesser energetic efficiency (it is not a proton pump), (iv) higher O2 affinity, (v) higher resistance to inhibitors such as cyanide, nitric oxide (NO) and hydrogen sulphide (H2S) and (vi) ability to efficiently metabolize potentially toxic reactive oxygen and nitrogen species like hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). Compelling evidence suggests that, beyond its bioenergetic role, cytochrome bd plays multiple functions in bacterial physiology and affords protection against oxidative and nitrosative stress. Relevant to human pathophysiology, thanks to its peculiar properties, the enzyme has been shown to promote virulence in several bacterial pathogens, being currently recognized as a target for the development of new antibiotics. This review aims to give an update on our current understanding of bd-type oxidases with a focus on their reactivity with gaseous ligands and its potential impact on bacterial physiology and human pathophysiology.
Collapse
|