1
|
Lv N, Ni J, Fang S, Liu Y, Wan S, Sun C, Li J, Zhou A. Potential Convergence to Accommodate Pathogenicity Determinants and Antibiotic Resistance Revealed in Salmonella Mbandaka. Microorganisms 2024; 12:1667. [PMID: 39203510 PMCID: PMC11357217 DOI: 10.3390/microorganisms12081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Salmonella species are causal pathogens instrumental in human food-borne diseases. The pandemic survey related to multidrug resistant (MDR) Salmonella genomics enables the prevention and control of their dissemination. Currently, serotype Mbandaka is notorious as a multiple host-adapted non-typhoid Salmonella. However, its epidemic and MDR properties are still obscure, especially its genetic determinants accounting for virulence and MD resistance. Here, we aim to characterize the genetic features of a strain SMEH pertaining to Salmonella Mbandaka (S. Mbandaka), isolated from the patient's hydropericardium, using cell infections, a mouse model, antibiotic susceptibility test and comparative genomics. The antibiotic susceptibility testing showed that it could tolerate four antibiotics, including chloramphenicol, tetracycline, fisiopen and doxycycline by Kirby-Bauer (K-B) testing interpreted according to the Clinical and Laboratory Standards Institute (CLSI). Both the reproducibility in RAW 264.7 macrophages and invasion ability to infect HeLa cells with strain SMEH were higher than those of S. Typhimurium strain 14028S. In contrast, its attenuated virulence was determined in the survival assay using a mouse model. As a result, the candidate genetic determinants responsible for antimicrobial resistance, colonization/adaptability and their transferability were comparatively investigated, such as bacterial secretion systems and pathogenicity islands (SPI-1, SPI-2 and SPI-6). Moreover, collective efforts were made to reveal a potential role of the plasmid architectures in S. Mbandaka as the genetic reservoir to transfer or accommodate drug-resistance genes. Our findings highlight the essentiality of antibiotic resistance and risk assessment in S. Mbandaka. In addition, genomic surveillance is an efficient method to detect pathogens and monitor drug resistance. The genetic determinants accounting for virulence and antimicrobial resistance underscore the increasing clinical challenge of emerging MDR Mbandaka isolates, and provide insights into their prevention and treatment.
Collapse
Affiliation(s)
- Na Lv
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (N.L.); (S.F.); (S.W.); (C.S.)
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Shiqi Fang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (N.L.); (S.F.); (S.W.); (C.S.)
| | - Yue Liu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Shuang Wan
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (N.L.); (S.F.); (S.W.); (C.S.)
| | - Chao Sun
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (N.L.); (S.F.); (S.W.); (C.S.)
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (N.L.); (S.F.); (S.W.); (C.S.)
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| |
Collapse
|
2
|
Tang H, Zhan Z, Liu X, Zhang Y, Huang X, Xu M. Propionate reduces the viability of Salmonella enterica Serovar Typhi in macrophages by propionylation of PhoP K102. Microb Pathog 2023; 178:106078. [PMID: 36965832 DOI: 10.1016/j.micpath.2023.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Propionate, a major constituent of short chain fatty acids, has recently been reported to be involved in both prokaryotic and eukaryotic lysine propionylation (Kpr). However, the propionylation characteristics of the enteric pathogen Salmonella enterica serovar Typhi (S. Typhi) following invasion of the human gut under the influence of propionate, whether virulence is affected, and the underlying mechanisms are not yet known. In the present study, we report that propionate significantly reduces the viability of S. Typhi in macrophages through intra-macrophage survival assays. We also demonstrate that the concentration of propionate and the propionate metabolic intermediate propionyl coenzyme A can affect the level of modification of PhoP by propionylation, which is tightly linked to intracellular survival. By expressing and purifying PhoP protein in vitro and performing EMSA and protein phosphorylation analyses, We provide evidence that K102 of PhoP is modified by Kpr propionate, which regulates S. Typhi viability in macrophages by decreasing the phosphorylation and DNA-binding ability of PhoP. In conclusion, our study reveals a potential molecular mechanism by which propionate reduces the viability of S. Typhi in macrophages via Kpr.
Collapse
Affiliation(s)
- Hao Tang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziyang Zhan
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiucheng Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Zhu Y, Dou Q, Du L, Wang Y. QseB/QseC: a two-component system globally regulating bacterial behaviors. Trends Microbiol 2023:S0966-842X(23)00046-X. [PMID: 36849330 DOI: 10.1016/j.tim.2023.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
QseB/QseC is a two-component system that is involved in the regulation of multiple bacterial behaviors by regulating quorum sensing, bacterial pathogenicity, and antibiotic resistance. Thus, QseB/QseC could provide a target for new antibiotic development. Recently, QseB/QseC has been found to confer survival advantages to environmental bacteria under stress conditions. The molecular mechanistic understanding of QseB/QseC has become an active area of research and revealed some emerging themes, including a deeper understanding of QseB/QseC regulation in different pathogens and environmental bacteria, the functional difference of QseB/QseC among species, and the possibility of analyzing QseB/QseC evolution. Here, we discuss the progression of QseB/QseC studies and describe several unresolved issues and future directions. Resolving these issues is among the challenges of future QseB/QseC studies.
Collapse
Affiliation(s)
- Yuxiang Zhu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qin Dou
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Study on spoilage potential and its molecular basis of Shewanella putrefaciens in response to cold conditions by Label-free quantitative proteomic analysis. World J Microbiol Biotechnol 2022; 39:40. [PMID: 36512125 DOI: 10.1007/s11274-022-03479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
To elucidate how Shewanella putrefaciens survives and produces spoilage products in response to cold conditions, the metabolic and protease activity of S. putrefaciens DSM6067 cultured at three different temperatures (30 °C, 10 °C, and 4 °C) was studied by determining the bacterial growth, total volatile basic nitrogen (TVB-N), biogenic amines, extracellular protease activity, as well as the differential expressed proteins via Label-free quantitative proteomics analysis. The lag phase of the strain cultured at 10 °C and 4 °C was about 20 h and 120 h longer than at 30 °C, respectively. The TVB-N increased to 89.23 mg N/100 g within 28 h at 30 °C, and it needed at least 72 h and 224 h at 10 °C and 4 °C, respectively. Cold temperatures (10 °C and 4 °C) also inhibited the yield factors and the extracellular protease activity per cell at the lag phase. However, the protease activity per cell and the yield factors of the sample cultivated at 10 °C and 4 °C well recovered, especially at the mid and latter stages of the log phase. The further quantitative proteomic analysis displayed a complex biological network to tackle cold stress: cold stress responses, nutrient uptake, and energy conservation strategy. It was observed that the protease and peptidase were upregulated, so as to the degradation pathways of serine, arginine, and aspartate, which might lead to the accumulation of spoilage products. This study highlighted the spoilage potential of S. putrefaciens still should be concerned even at low temperatures.
Collapse
|
5
|
Pseudomonas aeruginosa Alters Peptidoglycan Composition under Nutrient Conditions Resembling Cystic Fibrosis Lung Infections. mSystems 2022; 7:e0015622. [PMID: 35545925 PMCID: PMC9239049 DOI: 10.1128/msystems.00156-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidemic strains of Pseudomonas aeruginosa are highly virulent opportunistic pathogens with increased transmissibility and enhanced antimicrobial resistance. Understanding the cellular mechanisms behind this heightened virulence and resistance is critical. Peptidoglycan (PG) is an integral component of P. aeruginosa cells that is essential to its survival and a target for antimicrobials. Here, we examined the global PG composition of two P. aeruginosa epidemic strains, LESB58 and LESlike1, and compared them to the common laboratory strains PAO1 and PA14. We also examined changes in PG composition when the strains were cultured under nutrient conditions that resembled cystic fibrosis lung infections. We identified 448 unique muropeptides and provide the first evidence for stem peptides modified with O-methylation, meso-diaminopimelic acid (mDAP) deamination, and novel substitutions of mDAP residues within P. aeruginosa PG. Our results also present the first evidence for both d,l- and l,d-endopeptidase activity on the PG sacculus of a Gram-negative organism. The PG composition of the epidemic strains varied significantly when grown under conditions resembling cystic fibrosis (CF) lung infections, showing increases in O-methylated stem peptides and decreases in l,d-endopeptidase activity as well as an increased abundance of de-N-acetylated sugars and l,d-transpeptidase activity, which are related to bacterial virulence and antibiotic resistance, respectively. We also identified strain-specific changes where LESlike1 increased the addition of unique amino acids to the terminus of the stem peptide and LESB58 increased amidase activity. Overall, this study demonstrates that P. aeruginosa PG composition is primarily influenced by nutrient conditions that mimic the CF lung; however, inherent strain-to-strain differences also exist. IMPORTANCE Using peptidoglycomics to examine the global composition of the peptidoglycan (PG) allows insights into the enzymatic activity that functions on this important biopolymer. Changes within the PG structure have implications for numerous physiological processes, including virulence and antimicrobial resistance. The identification of highly unique PG modifications illustrates the complexity of this biopolymer in Pseudomonas aeruginosa. Analyzing the PG composition of clinical P. aeruginosa epidemic strains provides insights into the increased virulence and antimicrobial resistance of these difficult-to-eradicate infections.
Collapse
|
6
|
Xue J, Huang Y, Zhang H, Hu J, Pan X, Peng T, Lv J, Meng K, Li S. Arginine GlcNAcylation and Activity Regulation of PhoP by a Type III Secretion System Effector in Salmonella. Front Microbiol 2022; 12:825743. [PMID: 35126337 PMCID: PMC8811161 DOI: 10.3389/fmicb.2021.825743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella type III secretion system (T3SS) effector SseK3 is a glycosyltransferase delivered directly into the host cells to modify host protein substrates, thus manipulating host cellular signal transduction. Here, we identify and characterize the Arg-GlcNAcylation activity of SseK3 inside bacterial cells. Combining Arg-GlcNAc protein immunoprecipitation and mass spectrometry, we found that 60 bacterial proteins were GlcNAcylated during Salmonella infection, especially the two-component signal transduction system regulatory protein PhoP. Moreover, the Arg-GlcNAcylation of PhoP by SseK3 was detected in vivo and in vitro, and four arginine residues, Arg65, Arg66, Arg118, and Arg215 were identified as the GlcNAcylation sites. Site-directed mutagenesis showed that the PhoP R215A change significantly reduced the DNA-binding ability and arginine to alanine change at all four sites (PhoP 4RA) completely eliminated the DNA-binding ability, suggesting that Arg215 is essential for the DNA-binding activity of PhoP and GlcNAcylation of PhoP affects this activity. Additionally, GlcNAcylation of PhoP negatively regulated the activity of PhoP and decreased the expression of its downstream genes. Overall, our work provides an example of the intra-bacterial activities of the T3SS effectors and increases our understanding of endogenous Arg-GlcNAcylation.
Collapse
Affiliation(s)
- Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yuxuan Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jiaqingzi Hu
- Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Xing Pan
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Ting Peng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jun Lv
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Shan Li,
| |
Collapse
|