1
|
Cargnin Faccin F, Perez DR. Pandemic preparedness through vaccine development for avian influenza viruses. Hum Vaccin Immunother 2024; 20:2347019. [PMID: 38807261 PMCID: PMC11141480 DOI: 10.1080/21645515.2024.2347019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Williams SL, Qi L, Sheng ZM, Xiao Y, Freeman A, Matthews L, Legaspi SF, Fodor E, Taubenberger JK. Effect of pandemic influenza A virus PB1 genes of avian origin on viral RNA polymerase activity and pathogenicity. SCIENCE ADVANCES 2024; 10:eads5735. [PMID: 39671482 PMCID: PMC11641000 DOI: 10.1126/sciadv.ads5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Zoonotic influenza A virus (IAV) infections pose a substantial threat to global health. The influenza RNA-dependent RNA polymerase (RdRp) comprises the PB2, PB1, and PA proteins. Of the last four pandemic IAVs, three featured avian-origin PB1 genes. Prior research linked these avian PB1 genes to increased viral fitness when reassorted with human IAV genes. This study evaluated chimeric RdRps with PB1 genes from the 1918, 1957, and 1968 pandemic IAVs in a low pathogenic avian influenza (LPAI) virus background to assess polymerase activity and pathogenicity. Substituting in the pandemic PB1 genes reduced polymerase activity, virulence, and altered lung pathology, while the native LPAI PB1 showed the highest pathogenicity and polymerase activity. The native LPAI PB1 virus caused severe pneumonia and high early viral RNA levels, correlating with elevated host cytokine signaling. Increased genetic distance from the LPAI PB1 sequence correlated with reduced polymerase activity, IFN-β expression, viral replication, and pathogenicity.
Collapse
Affiliation(s)
- Stephanie L. Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ashley Freeman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lex Matthews
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sharon Fong Legaspi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
3
|
Park J, Legaspi SLF, Schwartzman LM, Gygli SM, Sheng ZM, Freeman AD, Matthews LM, Xiao Y, Ramuta MD, Batchenkova NA, Qi L, Rosas LA, Williams SL, Scherler K, Gouzoulis M, Bellayr I, Morens DM, Walters KA, Memoli MJ, Kash JC, Taubenberger JK. An inactivated multivalent influenza A virus vaccine is broadly protective in mice and ferrets. Sci Transl Med 2022; 14:eabo2167. [PMID: 35857640 PMCID: PMC11022527 DOI: 10.1126/scitranslmed.abo2167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Influenza A viruses (IAVs) present major public health threats from annual seasonal epidemics and pandemics and from viruses adapted to a variety of animals including poultry, pigs, and horses. Vaccines that broadly protect against all such IAVs, so-called "universal" influenza vaccines, do not currently exist but are urgently needed. Here, we demonstrated that an inactivated, multivalent whole-virus vaccine, delivered intramuscularly or intranasally, was broadly protective against challenges with multiple IAV hemagglutinin and neuraminidase subtypes in both mice and ferrets. The vaccine is composed of four β-propiolactone-inactivated low-pathogenicity avian IAV subtypes of H1N9, H3N8, H5N1, and H7N3. Vaccinated mice and ferrets demonstrated substantial protection against a variety of IAVs, including the 1918 H1N1 strain, the highly pathogenic avian H5N8 strain, and H7N9. We also observed protection against challenge with antigenically variable and heterosubtypic avian, swine, and human viruses. Compared to control animals, vaccinated mice and ferrets demonstrated marked reductions in viral titers, lung pathology, and host inflammatory responses. This vaccine approach indicates the feasibility of eliciting broad, heterosubtypic IAV protection and identifies a promising candidate for influenza vaccine clinical development.
Collapse
Affiliation(s)
- Jaekeun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon L. Fong Legaspi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M. Schwartzman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian M. Gygli
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley D. Freeman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lex M. Matthews
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell D. Ramuta
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia A. Batchenkova
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luz Angela Rosas
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie L. Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Monica Gouzoulis
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian Bellayr
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Matthew J. Memoli
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John C. Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
White MR, Nikolaidis NM, McCormack F, Crouch EC, Hartshorn KL. Viral Evasion of Innate Immune Defense: The Case of Resistance of Pandemic H1N1 Influenza A Virus to Human Mannose-Binding Proteins. Front Microbiol 2021; 12:774711. [PMID: 34956139 PMCID: PMC8692257 DOI: 10.3389/fmicb.2021.774711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Mannose-binding lectins effectively inhibit most seasonal strains of influenza A virus and contribute to the innate host defense vs. these viruses. In contrast, pandemic IAV strains are largely resistant to these lectins, likely contributing to increased spread and worse outcomes. In this paper, we evaluated the inhibition of IAV by mannose-binding lectins of human, bacterial, and fungal origin to understand and possibly increase activity vs. the pandemic IAV. A modified version of the human surfactant protein D (SP-D) neck and carbohydrate recognition domain (NCRD) with combinatorial substitutions at the 325 and 343 positions, previously shown to inhibit pandemic H3N2 IAV in vitro and in vivo, and to inhibit pandemic H1N1 in vitro, failed to protect mice from pandemic H1N1 in vivo in the current study. We attempted a variety of maneuvers to improve the activity of the mutant NCRDs vs. the 2009 pandemic H1N1, including the formation of full-length SP-D molecules containing the mutant NCRD, cross-linking of NCRDs through the use of antibodies, combining SP-D or NCRDs with alpha-2-macroglobulin, and introducing an additional mutation to the double mutant NCRD. None of these substantially increased the antiviral activity for the pandemic H1N1. We also tested the activity of bacterial and algal mannose-binding lectins, cyanovirin, and griffithsin, against IAV. These had strong activity against seasonal IAV, which was largely retained against pandemic H1N1. We propose mechanisms to account for differences in activity of SP-D constructs against pandemic H3N2 and H1N1, and for differences in activity of cyanovirin vs. SP-D constructs.
Collapse
Affiliation(s)
- Mitchell R. White
- Department of Medicine, Section of Hematology and Oncology, School of Medicine, Boston University, Boston, MA, United States
| | - Nikolaos M. Nikolaidis
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Francis McCormack
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Erika C. Crouch
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevan L. Hartshorn
- Department of Medicine, Section of Hematology and Oncology, School of Medicine, Boston University, Boston, MA, United States,*Correspondence: Kevan L. Hartshorn,
| |
Collapse
|
5
|
Serologic Evidence of Occupational Exposure to Avian Influenza Viruses at the Wildfowl/Poultry/Human Interface. Microorganisms 2021; 9:microorganisms9102153. [PMID: 34683475 PMCID: PMC8539340 DOI: 10.3390/microorganisms9102153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
Ecological interactions between wild aquatic birds and outdoor-housed poultry can enhance spillover events of avian influenza viruses (AIVs) from wild reservoirs to domestic birds, thus increasing the related zoonotic risk to occupationally exposed workers. To assess serological evidence of AIV infection in workers operating in Northern Italy at the wildfowl/poultry interface or directly exposed to wildfowl, serum samples were collected between April 2005 and November 2006 from 57 bird-exposed workers (BEWs) and from 7 unexposed controls (Cs), planning three sample collections from each individual. Concurrently, AIV surveillance of 3587 reared birds identified 4 AIVs belonging to H10N7, H4N6 and H2N2 subtypes while serological analysis by hemagglutination inhibition (HI) assay showed recent infections caused by H1, H2, H4, H6, H10, H11, H12, and H13 subtypes. Human sera were analyzed for specific antibodies against AIVs belonging to antigenic subtypes from H1 to H14 by using HI and virus microneutralization (MN) assays as a screening and a confirmatory test, respectively. Overall, antibodies specific to AIV-H3, AIV-H6, AIV-H8, and AIV-H9 were found in three poultry workers (PWs) and seropositivity to AIV-11, AIV-H13—still detectable in October 2017—in one wildlife professional (WP). Furthermore, seropositivity to AIV-H2, accounting for previous exposure to the “extinct” H2N2 human influenza viruses, was found in both BEWs and Cs groups. These data further emphasize the occupational risk posed by zoonotic AIV strains and show the possible occurrence of long-lived antibody-based immunity following AIV infections in humans.
Collapse
|
6
|
Abstract
The emergence and spread of infectious diseases with pandemic potential occurred regularly throughout history. Major pandemics and epidemics such as plague, cholera, flu, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have already afflicted humanity. The world is now facing the new coronavirus disease 2019 (COVID-19) pandemic. Many infectious diseases leading to pandemics are caused by zoonotic pathogens that were transmitted to humans due to increased contacts with animals through breeding, hunting and global trade activities. The understanding of the mechanisms of transmission of pathogens to humans allowed the establishment of methods to prevent and control infections. During centuries, implementation of public health measures such as isolation, quarantine and border control helped to contain the spread of infectious diseases and maintain the structure of the society. In the absence of pharmaceutical interventions, these containment methods have still been used nowadays to control COVID-19 pandemic. Global surveillance programs of water-borne pathogens, vector-borne diseases and zoonotic spillovers at the animal-human interface are of prime importance to rapidly detect the emergence of infectious threats. Novel technologies for rapid diagnostic testing, contact tracing, drug repurposing, biomarkers of disease severity as well as new platforms for the development and production of vaccines are needed for an effective response in case of pandemics.
Collapse
Affiliation(s)
- Jocelyne Piret
- CHU de Québec - Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- CHU de Québec - Laval University, Quebec City, QC, Canada
| |
Collapse
|
7
|
Hartshorn KL. Innate Immunity and Influenza A Virus Pathogenesis: Lessons for COVID-19. Front Cell Infect Microbiol 2020; 10:563850. [PMID: 33194802 PMCID: PMC7642997 DOI: 10.3389/fcimb.2020.563850] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
There is abundant evidence that the innate immune response to influenza A virus (IAV) is highly complex and plays a key role in protection against IAV induced infection and illness. Unfortunately it also clear that aspects of innate immunity can lead to severe morbidity or mortality from IAV, including inflammatory lung injury, bacterial superinfection, and exacerbation of reactive airways disease. We review broadly the virus and host factors that result in adverse outcomes from IAV and show evidence that inflammatory responses can become damaging even apart from changes in viral replication per se, with special focus on the positive and adverse effects of neutrophils and monocytes. We then evaluate in detail the role of soluble innate inhibitors including surfactant protein D and antimicrobial peptides that have a potential dual capacity for down-regulating viral replication and also inhibiting excessive inflammatory responses and how these innate host factors could possibly be harnessed to treat IAV infection. Where appropriate we draw comparisons and contrasts the SARS-CoV viruses and IAV in an effort to point out where the extensive knowledge existing regarding severe IAV infection could help guide research into severe COVID 19 illness or vice versa.
Collapse
Affiliation(s)
- Kevan L Hartshorn
- Section of Hematology Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Taubenberger JK, Morens DM. The 1918 Influenza Pandemic and Its Legacy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038695. [PMID: 31871232 DOI: 10.1101/cshperspect.a038695] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Just over a century ago in 1918-1919, the "Spanish" influenza pandemic appeared nearly simultaneously around the world and caused extraordinary mortality-estimated at 50-100 million fatalities-associated with unexpected clinical and epidemiological features. The pandemic's sudden appearance and high fatality rate were unprecedented, and 100 years later still serve as a stark reminder of the continual threat influenza poses. Sequencing and reconstruction of the 1918 virus have allowed scientists to answer many questions about its origin and pathogenicity, although many questions remain. Several of the unusual features of the 1918-1919 pandemic, including age-specific mortality patterns and the high frequency of severe pneumonias, are still not fully understood. The 1918 pandemic virus initiated a pandemic era still ongoing. The descendants of the 1918 virus remain today as annually circulating and evolving influenza viruses causing significant mortality each year. This review summarizes key findings and unanswered questions about this deadliest of human events.
Collapse
Affiliation(s)
- Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Everest H, Hill SC, Daines R, Sealy JE, James J, Hansen R, Iqbal M. The Evolution, Spread and Global Threat of H6Nx Avian Influenza Viruses. Viruses 2020; 12:v12060673. [PMID: 32580412 PMCID: PMC7354632 DOI: 10.3390/v12060673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Avian influenza viruses of the subtype H6Nx are being detected globally with increasing frequency. Some H6Nx lineages are becoming enzootic in Asian poultry and sporadic incursions into European poultry are occurring more frequently. H6Nx viruses that contain mammalian adaptation motifs pose a zoonotic threat and have caused human cases. Although currently understudied globally, H6Nx avian influenza viruses pose a substantial threat to both poultry and human health. In this review we examine the current state of knowledge of H6Nx viruses including their global distribution, tropism, transmission routes and human health risk.
Collapse
Affiliation(s)
- Holly Everest
- The Pirbright Institute, Woking GU24 0NF, UK
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Sarah C Hill
- Department of Zoology, University of Oxford, Oxford OX1 3SZ UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Rebecca Daines
- The Pirbright Institute, Woking GU24 0NF, UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | | | - Joe James
- Department of Virology, Animal and Plant Health Agency, Addlestone KT15 3NB, UK
| | - Rowena Hansen
- Department of Virology, Animal and Plant Health Agency, Addlestone KT15 3NB, UK
| | - Munir Iqbal
- The Pirbright Institute, Woking GU24 0NF, UK
| |
Collapse
|
10
|
Yang H, Carney PJ, Chang JC, Stevens J. Molecular characterization and three-dimensional structures of avian H8, H11, H14, H15 and swine H4 influenza virus hemagglutinins. Heliyon 2020; 6:e04068. [PMID: 32529072 PMCID: PMC7281811 DOI: 10.1016/j.heliyon.2020.e04068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/25/2020] [Accepted: 05/21/2020] [Indexed: 11/08/2022] Open
Abstract
Of the eighteen hemagglutinin (HA) subtypes (H1–H18) that have been identified in bats and aquatic birds, many HA subtypes have been structurally characterized. However, several subtypes (H8, H11 and H12) still require characterization. To better understand all of these HA subtypes at the molecular level, HA structures from an A(H4N6) (A/swine/Missouri/A01727926/2015), an A(H8N4) (A/turkey/Ontario/6118/1968), an A(H11N9) (A/duck/Memphis/546/1974), an A(H14N5) A/mallard/Gurjev/263/1982, and an A(H15N9) (A/wedge-tailed shearwater/Western Australia/2576/1979 were determined by X-ray crystallography at 2.2Å, 2.3Å, 2.8Å, 3.0Å and 2.5Å resolution, respectively. The interactions between these viruses and host receptors were studied utilizing glycan-binding analyses with their recombinant HA. The data show that all avian HAs retain their strict binding preference to avian receptors, whereas swine H4 has a weak human receptor binding. The molecular characterization and structural analyses of the HA from these zoonotic influenza viruses not only provide a deeper appreciation and understanding of the structure of all HA subtypes, but also re-iterate why continuous global surveillance is needed.
Collapse
Affiliation(s)
- Hua Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Paul J Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessie C Chang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
11
|
Abstract
The year 2018 marked the 100th anniversary of the deadliest event in human history. In 1918-1919, pandemic influenza spread globally and caused an estimated 50-100 million deaths associated with unexpected clinical and epidemiological features. The descendants of the 1918 virus continue to circulate as annual epidemic viruses causing significant mortality each year. The 1918 influenza pandemic serves as a benchmark for the development of universal influenza vaccines. Challenges to producing a truly universal influenza vaccine include eliciting broad protection against antigenically different influenza viruses that can prevent or significantly downregulate viral replication and reduce morbidity by preventing development of viral and secondary bacterial pneumonia. Perhaps the most important goal of such vaccines is not to prevent influenza, but to prevent influenza deaths.
Collapse
Affiliation(s)
- David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Nelson SW, Lorbach JN, Nolting JM, Stull JW, Jackwood DJ, Davis IC, Bowman AS. Madin-Darby canine kidney cell sialic acid receptor modulation induced by culture medium conditions: Implications for the isolation of influenza A virus. Influenza Other Respir Viruses 2019; 13:593-602. [PMID: 31392833 PMCID: PMC6800301 DOI: 10.1111/irv.12671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The influenza A virus (IAV) binds to α-2,3- and α-2,6-linked sialic acid (SA) receptors expressed by Madin-Darby canine kidney (MDCK) cells. The receptor distribution may therefore be important in regulating IAV propagation. Serum-free medium (SFM) avoids variability in conventional culture medium containing fetal bovine serum (FBS), which can have variable composition and may contain endotoxins. However, little is known about the distribution of SA receptors on cells maintained in SFM. OBJECTIVES We assessed the influence of culture media on MDCK cell SA receptor distribution along with the effect of SA receptor distribution on IAV recovery. We hypothesized that SFM would increase the proportion of α-2,6-linked SA receptors present and alter isolate recovery. METHODS Madin-Darby canine kidney cells were cultured in medium containing FBS and two SFMs. Cell surface distribution of α-2,6- and α-2,3-linked receptors was determined using flow cytometry. Recovery of swine- and avian-lineage IAVs from MDCK cells maintained in each medium was quantified as TCID50 . RESULTS Madin-Darby canine kidney cells cultured in UltraMDCK SFM expressed both SA receptors and supported the growth of both swine- and avian-lineage IAVs. Cells maintained in other medium inconsistently expressed each receptor and the avian IAV grew to lower titers in cells cultured with FBS. CONCLUSIONS Medium conditions altered the distribution of SA receptors present on MDCK cells and affected IAV recovery. Culture in UltraMDCK SFM resulted in cells expressing both receptors and IAVs grew to higher titers than in the other culture condition, indicating that this medium may be useful for culturing IAV from multiple species.
Collapse
Affiliation(s)
- Sarah W. Nelson
- Veterinary Preventive MedicineThe Ohio State UniversityColumbusOhio
| | | | | | - Jason W. Stull
- Veterinary Preventive MedicineThe Ohio State UniversityColumbusOhio
| | - Daral J. Jackwood
- Veterinary Preventive MedicineThe Ohio State UniversityColumbusOhio
- Food Animal Health Research Program, The Ohio State UniversityWoosterOhio
| | - Ian C. Davis
- Veterinary Biosciences, The Ohio State UniversityColumbusOhio
| | - Andrew S. Bowman
- Veterinary Preventive MedicineThe Ohio State UniversityColumbusOhio
| |
Collapse
|
13
|
Taubenberger JK, Kash JC, Morens DM. The 1918 influenza pandemic: 100 years of questions answered and unanswered. Sci Transl Med 2019; 11:eaau5485. [PMID: 31341062 PMCID: PMC11000447 DOI: 10.1126/scitranslmed.aau5485] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
The 2018-2019 period marks the centennial of the "Spanish" influenza pandemic, which caused at least 50 million deaths worldwide. The unprecedented nature of the pandemic's sudden appearance and high fatality rate serve as a stark reminder of the threat influenza poses. Unusual features of the 1918-1919 pandemic, including age-specific mortality and the high frequency of severe pneumonias, are still not fully understood. Sequencing and reconstruction of the 1918 virus has allowed scientists to answer many questions about its origin and pathogenicity, although many questions remain. This Review summarizes key findings and still-to-be answered questions about this deadliest of human events.
Collapse
Affiliation(s)
- Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Morens DM, Taubenberger JK. The Mother of All Pandemics Is 100 Years Old (and Going Strong)! Am J Public Health 2018; 108:1449-1454. [PMID: 30252528 DOI: 10.2105/ajph.2018.304631] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This year marks the 100th anniversary of the deadliest event in human history. In 1918-1919, pandemic influenza appeared nearly simultaneously around the globe and caused extraordinary mortality (an estimated 50-100 million deaths) associated with unexpected clinical and epidemiological features. The descendants of the 1918 virus remain today; as endemic influenza viruses, they cause significant mortality each year. Although the ability to predict influenza pandemics remains no better than it was a century ago, numerous scientific advances provide an important head start in limiting severe disease and death from both current and future influenza viruses: identification and substantial characterization of the natural history and pathogenesis of the 1918 causative virus itself, as well as hundreds of its viral descendants; development of moderately effective vaccines; improved diagnosis and treatment of influenza-associated pneumonia; and effective prevention and control measures. Remaining challenges include development of vaccines eliciting significantly broader protection (against antigenically different influenza viruses) that can prevent or significantly downregulate viral replication; more complete characterization of natural history and pathogenesis emphasizing the protective role of mucosal immunity; and biomarkers of impending influenza-associated pneumonia.
Collapse
Affiliation(s)
- David M Morens
- David M. Morens and Jeffery K. Taubenberger are with the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD. David M. Morens is Senior Adsvisor to the Director in the Office of the Director, and Jeffery K. Taubenberger is Chief, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases
| | - Jeffery K Taubenberger
- David M. Morens and Jeffery K. Taubenberger are with the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD. David M. Morens is Senior Adsvisor to the Director in the Office of the Director, and Jeffery K. Taubenberger is Chief, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases
| |
Collapse
|
15
|
Xiao Y, Nolting JM, Sheng ZM, Bristol T, Qi L, Bowman AS, Taubenberger JK. Design and validation of a universal influenza virus enrichment probe set and its utility in deep sequence analysis of primary cloacal swab surveillance samples of wild birds. Virology 2018; 524:182-191. [PMID: 30212665 DOI: 10.1016/j.virol.2018.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 11/25/2022]
Abstract
Influenza virus infections in humans and animals are major public health concerns. In the current study, a set of universal influenza enrichment probes was developed to increase the sensitivity of sequence-based virus detection and characterization for all influenza viruses. This universal influenza enrichment probe set contains 46,953 120nt RNA biotin-labeled probes designed based on all available influenza viral sequences and it can be used to enrich for influenza sequences without prior knowledge of type or subtype. Marked enrichment was demonstrated in influenza A/H1N1, influenza B, and H1-to-H16 hemagglutinin plasmids spiked into human DNA and in cultured influenza A/H2N1 virus. Furthermore, enrichment effects and mixed influenza A virus infections were revealed in wild bird cloacal swab samples. Therefore, this universal influenza virus enrichment probe system can capture and enrich influenza viral sequences selectively and effectively in different samples, especially ones with degraded RNA or containing low amount of influenza RNA.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA.
| | - Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| | - Tyler Bristol
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| |
Collapse
|
16
|
Peng C, Sun H, Li J, Hou G, Wang S, Liu S, Zhuang Q, Cheng S, Chen J, Jiang W. Molecular epidemiological survey and complete genomic phylogenetic analysis of H6 subtype avian influenza viruses in poultry in China from 2011 to 2016. INFECTION GENETICS AND EVOLUTION 2018; 65:91-95. [PMID: 30031927 DOI: 10.1016/j.meegid.2018.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 12/09/2022]
Abstract
To investigate the prevalence and evolution of the H6 subtype avian influenza viruses (AIVs) circulating in poultry in China from 2011 to 2016, 11 molecular epidemiological surveys was performed in this study. In total, 893 H6 subtype viral strains were isolated from 67,639 swab samples and 360 environmental samples. From these strains, 35 representative strains were selected and their whole genomic sequences determined. According to a phylogenetic analysis and molecular characterization, all 35 viral strains belonged to the Eurasian avian lineage. All of them were categorized as 'low pathogenic' and a few strains had some bioinformatical mutations. This epidemiological survey shows that the prevalence of H6 subtype AIVs increased from 2012 to 2016 in China, and suggests that infections by H6 subtype AIVs in China has increased in recent years.
Collapse
Affiliation(s)
- Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hongtao Sun
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinping Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Suchun Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shuo Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Qingye Zhuang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shanju Cheng
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jiming Chen
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China.
| |
Collapse
|
17
|
Hsieh IN, De Luna X, White MR, Hartshorn KL. The Role and Molecular Mechanism of Action of Surfactant Protein D in Innate Host Defense Against Influenza A Virus. Front Immunol 2018; 9:1368. [PMID: 29951070 PMCID: PMC6008380 DOI: 10.3389/fimmu.2018.01368] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Influenza A viruses (IAVs) continue to pose major risks of morbidity and mortality during yearly epidemics and periodic pandemics. The genomic instability of IAV allows it to evade adaptive immune responses developed during prior infection. Of particular concern are pandemics which result from wholesale incorporation of viral genome sections from animal sources. These pandemic strains are radically different from circulating human strains and pose great risk for the human population. For these reasons, innate immunity plays a strong role in the initial containment of IAV infection. Soluble inhibitors present in respiratory lining fluids and blood provide a level of early protection against IAV. In general, these inhibitors act by binding to the viral hemagglutinin (HA). Surfactant protein D (SP-D) and mannose-binding lectin (MBL) attach to mannosylated glycans on the HA in a calcium dependent manner. In contrast, surfactant protein A, ficolins, and other inhibitors present sialic acid rich ligands to which the HA can bind. Among these inhibitors, SP-D seems to be the most potent due to its specific mode of binding to viral carbohydrates and its ability to strongly aggregate viral particles. We have studied specific properties of the N-terminal and collagen domain of SP-D that enable formation of highly multimerized molecules and cooperative binding among the multiple trimeric lectin domains in the protein. In addition, we have studied in depth the lectin activity of SP-D through expression of isolated lectin domains and targeted mutations of the SP-D lectin binding site. Through modifying specific residues around the saccharide binding pocket, antiviral activity of isolated lectin domains of SP-D can be markedly increased for seasonal strains of IAV. Wild-type SP-D causes little inhibition of pandemic IAV, but mutated versions of SP-D were able to inhibit pandemic IAV through enhanced binding to the reduced number of mannosylated glycans present on the HA of these strains. Through collaborative studies involving crystallography of isolated lectin domains of SP-D, glycomics analysis of the HA, and molecular modeling, the mechanism of binding of wild type and mutant forms of SP-D have been determined. These studies could guide investigation of the interactions of SP-D with other pathogens.
Collapse
Affiliation(s)
- I-Ni Hsieh
- Boston University School of Medicine, Boston, MA, United States
| | - Xavier De Luna
- Boston University School of Medicine, Boston, MA, United States
| | | | | |
Collapse
|
18
|
Schneider EK, Li J, Velkov T. A Portrait of the Sialyl Glycan Receptor Specificity of the H10 Influenza Virus Hemagglutinin-A Picture of an Avian Virus on the Verge of Becoming a Pandemic? Vaccines (Basel) 2017; 5:vaccines5040051. [PMID: 29236069 PMCID: PMC5748617 DOI: 10.3390/vaccines5040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/26/2022] Open
Abstract
Pandemic influenza is a constant global threat to human health. In particular, the pandemic potential of novel avian influenza viruses such as the H10N7 and H10N8 avian strains, which recently managed to cross the species barrier from birds to humans, are always of great concern as we are unlikely to have any prior immunity. Human and avian isolates of H10 influenza display the ability to rapidly adapt to replication in mammalian hosts. Fortunately, so far there is no evidence of efficient human-to-human transmission of any avian influenza virus. This review examines all of the available clinical and biological data for H10 influenza viruses with an emphasis on hemagglutinin as it is a major viral antigen that determines host range and immunity. The available glycan binding data on the influenza H10 hemagglutinin are discussed in a structure-recognition perspective. Importantly, this review raises the question of whether the emerging novel avian H10 influenza viruses truly represents a threat to global health that warrants close monitoring.
Collapse
Affiliation(s)
- Elena K Schneider
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
19
|
Unique Structural Features of Influenza Virus H15 Hemagglutinin. J Virol 2017; 91:JVI.00046-17. [PMID: 28404848 DOI: 10.1128/jvi.00046-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/04/2017] [Indexed: 01/01/2023] Open
Abstract
Influenza A H15 viruses are members of a subgroup (H7-H10-H15) of group 2 hemagglutinin (HA) subtypes that include H7N9 and H10N8 viruses that were isolated from humans during 2013. The isolation of avian H15 viruses is, however, quite rare and, until recently, geographically restricted to wild shorebirds and waterfowl in Australia. The HAs of H15 viruses contain an insertion in the 150-loop (loop beginning at position 150) of the receptor-binding site common to this subgroup and a unique insertion in the 260-loop compared to any other subtype. Here, we show that the H15 HA has a high preference for avian receptor analogs by glycan array analyses. The H15 HA crystal structure reveals that it is structurally closest to H7N9 HA, but the head domain of the H15 trimer is wider than all other HAs due to a tilt and opening of the HA1 subunits of the head domain. The extended 150-loop of the H15 HA retains the conserved conformation as in H7 and H10 HAs. Furthermore, the elongated 260-loop increases the exposed HA surface and can contribute to antigenic variation in H15 HAs. Since avian-origin H15 HA viruses have been shown to cause enhanced disease in mammalian models, further characterization and immune surveillance of H15 viruses are warranted.IMPORTANCE In the last 2 decades, an apparent increase has been reported for cases of human infection by emerging avian influenza A virus subtypes, including H7N9 and H10N8 viruses isolated during 2013. H15 is the other member of the subgroup of influenza A virus group 2 hemagglutinins (HAs) that also include H7 and H10. H15 viruses have been restricted to Australia, but recent isolation of H15 viruses in western Siberia suggests that they could be spread more globally via the avian flyways that converge and emanate from this region. Here we report on characterization of the three-dimensional structure and receptor specificity of the H15 hemagglutinin, revealing distinct features and specificities that can aid in global surveillance of such viruses for potential spread and emerging threat to the human population.
Collapse
|
20
|
Leyva-Grado VH, Palese P. Aerosol administration increases the efficacy of oseltamivir for the treatment of mice infected with influenza viruses. Antiviral Res 2017; 142:12-15. [PMID: 28286235 DOI: 10.1016/j.antiviral.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 11/24/2022]
Abstract
Oseltamivir is an influenza neuraminidase inhibitor that along with supportive therapy has shown to help critically ill patients infected with H7N9 and H1N1pdm influenza virus strains to recover from disease. The standard of care recommends the administration of oseltamivir via oral route which represents difficulties in patients with gastrointestinal complications. Here we tested the use of aerosol administration of oseltamivir to treat mice infected with influenza A/H7N9 virus or influenza A/H1N1pdm virus and directly compared this approach to the standard of care, oral administration. Using nose only delivery of aerosolized oseltamivir we observed a significant increase in efficacy of the treatment compared to oral administration characterized by reduced body weight loss, increased survival rate and dose sparing. The preclinical data presented here supports the possibility of using this approach in clinical settings.
Collapse
Affiliation(s)
- Victor H Leyva-Grado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Zanin M, Koçer ZA, Poulson RL, Gabbard JD, Howerth EW, Jones CA, Friedman K, Seiler J, Danner A, Kercher L, McBride R, Paulson JC, Wentworth DE, Krauss S, Tompkins SM, Stallknecht DE, Webster RG. Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model. J Virol 2017; 91:e01934-16. [PMID: 27852855 PMCID: PMC5244340 DOI: 10.1128/jvi.01934-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/10/2016] [Indexed: 11/20/2022] Open
Abstract
H7 subtype influenza A viruses are widely distributed and have been responsible for human infections and numerous outbreaks in poultry with significant impact. Despite this, the disease-causing potential of the precursor low-pathogenic (LP) H7 viruses from the wild bird reservoir has not been investigated. Our objective was to assess the disease-causing potential of 30 LP H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Without prior mammalian adaptation, the majority of viruses, 27 (90%), caused mortality in mice. Of these, 17 (56.7%) caused 100% mortality and 24 were of pathogenicity similar to that of A/Anhui/1/2013 (H7N9), which is highly pathogenic in mice. Viruses of duck origin were more pathogenic than those of shorebird origin, as 13 of 18 (72.2%) duck origin viruses caused 100% mortality while 4 of 12 (33.3%) shorebird origin viruses caused 100% mortality, despite there being no difference in mean lung viral titers between the groups. Replication beyond the respiratory tract was also evident, particularly in the heart and brain. Of the 16 viruses studied for fecal shedding, 11 were detected in fecal samples. These viruses exhibited a strong preference for avian-type α2,3-linked sialic acids; however, binding to mammalian-type α2,6-linked sialic acids was also detected. These findings indicate that LP avian H7 influenza A viruses are able to infect and cause disease in mammals without prior adaptation and therefore pose a potential public health risk. IMPORTANCE Low-pathogenic (LP) avian H7 influenza A viruses are widely distributed in the avian reservoir and are the precursors of numerous outbreaks of highly pathogenic avian influenza viruses in commercial poultry farms. However, unlike highly pathogenic H7 viruses, the disease-causing potential of LP H7 viruses from the wild bird reservoir has not been investigated. To address this, we studied 30 LP avian H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Surprisingly, the majority of these viruses, 90%, caused mortality in mice without prior mammalian adaptation, and 56.7% caused 100% mortality. There was also evidence of spread beyond the respiratory tract and fecal shedding. Therefore, the disease-causing potential of LP avian H7 influenza A viruses in mammals may be underestimated, and these viruses therefore pose a potential public health risk.
Collapse
Affiliation(s)
- Mark Zanin
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zeynep A Koçer
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rebecca L Poulson
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - Jon D Gabbard
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Elizabeth W Howerth
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Cheryl A Jones
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Kimberly Friedman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jon Seiler
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Angela Danner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ryan McBride
- Departments of Cell and Molecular Biology and Chemical Physiology, Scripps Research Institute, La Jolla, California, USA
| | - James C Paulson
- Departments of Cell and Molecular Biology and Chemical Physiology, Scripps Research Institute, La Jolla, California, USA
| | | | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stephen M Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - David E Stallknecht
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
22
|
Zhang M, Zhang X, Xu K, Teng Q, Liu Q, Li X, Yang J, Xu J, Chen H, Zhang X, Li Z. Characterization of the Pathogenesis of H10N3, H10N7, and H10N8 Subtype Avian Influenza Viruses Circulating in Ducks. Sci Rep 2016; 6:34489. [PMID: 27678170 PMCID: PMC5039634 DOI: 10.1038/srep34489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/14/2016] [Indexed: 01/13/2023] Open
Abstract
Three H10 subtype avian influenza viruses were isolated from domestic ducks in China, designated as SH602/H10N8, FJ1761/H10N3 and SX3180/H10N7, with an intravenous pathogenicity index (IVPI) of 0.39, 1.60, and 1.27, respectively. These H10 viruses showed a complex pathology pattern in different species, although full genome characterizations of the viruses could not identify any molecular determinant underlying the observed phenotypes. Our findings describe the pathobiology of the three H10 subtype AIVs in chickens, ducks, and mice. FJ1761/H10N3 evolved E627K and Q591K substitutions in the gene encoding the PB2 protein in infected mice with severe lung damage, suggesting that H10 subtype avian influenza viruses are a potential threat to mammals.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Shanghai Public Health Clinical Center, Fudan University Shanghai 201508 P. R. China.,Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China
| | - Xingxing Zhang
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China
| | - Kaidi Xu
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University Shanghai 201508 P. R. China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University Shanghai 201508 P. R. China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| |
Collapse
|
23
|
Davis AS, Chertow DS, Kindrachuk J, Qi L, Schwartzman LM, Suzich J, Alsaaty S, Logun C, Shelhamer JH, Taubenberger JK. 1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity. Virology 2016; 493:238-46. [PMID: 27062579 DOI: 10.1016/j.virol.2016.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 01/19/2023]
Abstract
The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model.
Collapse
Affiliation(s)
- A Sally Davis
- Viral Pathogenesis and Evolution Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States; Diagnostic Medicine and Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Daniel S Chertow
- Viral Pathogenesis and Evolution Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States; Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Jason Kindrachuk
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Li Qi
- Viral Pathogenesis and Evolution Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Louis M Schwartzman
- Viral Pathogenesis and Evolution Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jon Suzich
- Viral Pathogenesis and Evolution Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States; Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Sara Alsaaty
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Carolea Logun
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - James H Shelhamer
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
24
|
Abstract
In June 2013, the first human infection by avian influenza A(H6N1) virus was reported in Taiwan. This incident raised the concern for possible human epidemics and pandemics from H6 viruses. In this study, we performed structural and functional investigation on the hemagglutinin (HA) proteins of the human-infecting A/Taiwan/2/2013(H6N1) (TW H6) virus and an avian A/chicken/Guangdong/S1311/2010(H6N6) (GD H6) virus that transmitted efficiently in guinea pigs. Our results revealed that in the presence of HA1 Q226, the triad of HA1 S137, E190 and G228 in GD H6 HA allows the binding to both avian- and human-like receptors with a slight preference for avian receptors. Its conservation among the majority of H6 HAs provides an explanation for the broader host range of this subtype. Furthermore, the triad of N137, V190 and S228 in TW H6 HA may alleviate the requirement for a hydrophobic residue at HA1 226 of H2 and H3 HAs when binding to human-like receptors. Consequently, TW H6 HA has a slight preference for human receptors, thus may represent an intermediate towards a complete human adaptation. Importantly, the triad observed in TW H6 HA is detected in 74% H6 viruses isolated from Taiwan in the past 14 years, suggesting an elevated threat of H6 viruses from this region to human health. The novel roles of the triad at HA1 137, 190 and 228 of H6 HA in binding to receptors revealed here may also be used by other HA subtypes to achieve human adaptation, which needs to be further tested in laboratory and closely monitored in field surveillance.
Collapse
Affiliation(s)
- Fengyun Ni
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Elena Kondrashkina
- Life Sciences Collaborative Access Team (LS-CAT), Synchrotron Research Center, Northwestern University, Argonne, Illinois, United States of America
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
An Intranasal Virus-Like Particle Vaccine Broadly Protects Mice from Multiple Subtypes of Influenza A Virus. mBio 2015. [PMID: 26199334 PMCID: PMC4513078 DOI: 10.1128/mbio.01044-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza virus infections are a global public health problem, with a significant impact of morbidity and mortality from both annual epidemics and pandemics. The current strategy for preventing annual influenza is to develop a new vaccine each year against specific circulating virus strains. Because these vaccines are unlikely to protect against an antigenically divergent strain or a new pandemic virus with a novel hemagglutinin (HA) subtype, there is a critical need for vaccines that protect against all influenza A viruses, a so-called "universal" vaccine. Here we show that mice were broadly protected against challenge with a wide variety of lethal influenza A virus infections (94% aggregate survival following vaccination) with a virus-like particle (VLP) vaccine cocktail. The vaccine consisted of a mixture of VLPs individually displaying H1, H3, H5, or H7 HAs, and vaccinated mice showed significant protection following challenge with influenza viruses expressing 1918 H1, 1957 H2, and avian H5, H6, H7, H10, and H11 hemagglutinin subtypes. These experiments suggest a promising and practical strategy for developing a broadly protective "universal" influenza vaccine. IMPORTANCE The rapid and unpredictable nature of influenza A virus evolution requires new vaccines to be produced annually to match circulating strains. Human infections with influenza viruses derived from animals can cause outbreaks that may be associated with high mortality, and such strains may also adapt to humans to cause a future pandemic. Thus, there is a large public health need to create broadly protective, or "universal," influenza vaccines that could prevent disease from a wide variety of human and animal influenza A viruses. In this study, a noninfectious virus-like particle (VLP) vaccine was shown to offer significant protection against a variety of influenza A viruses in mice, suggesting a practical strategy to develop a universal influenza vaccine.
Collapse
|