1
|
Catalan EA, Seguel-Fuentes E, Fuentes B, Aranguiz-Varela F, Castillo-Godoy DP, Rivera-Asin E, Bocaz E, Fuentes JA, Bravo D, Schinnerling K, Melo-Gonzalez F. Oral Pathobiont-Derived Outer Membrane Vesicles in the Oral-Gut Axis. Int J Mol Sci 2024; 25:11141. [PMID: 39456922 PMCID: PMC11508520 DOI: 10.3390/ijms252011141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Oral pathobionts are essential in instigating local inflammation within the oral cavity and contribute to the pathogenesis of diseases in the gastrointestinal tract and other distant organs. Among the Gram-negative pathobionts, Porphyromonas gingivalis and Fusobacterium nucleatum emerge as critical drivers of periodontitis, exerting their influence not only locally but also as inducers of gut dysbiosis, intestinal disturbances, and systemic ailments. This dual impact is facilitated by their ectopic colonization of the intestinal mucosa and the subsequent mediation of distal systemic effects by releasing outer membrane vesicles (OMVs) into circulation. This review elucidates the principal components of oral pathobiont-derived OMVs implicated in disease pathogenesis within the oral-gut axis, detailing virulence factors that OMVs carry and their interactions with host epithelial and immune cells, both in vitro and in vivo. Additionally, we shed light on the less acknowledged interplay between oral pathobionts and the gut commensal Akkermansia muciniphila, which can directly impede oral pathobionts' growth and modulate bacterial gene expression. Notably, OMVs derived from A. muciniphila emerge as promoters of anti-inflammatory effects within the gastrointestinal and distant tissues. Consequently, we explore the potential of A. muciniphila-derived OMVs to interact with oral pathobionts and prevent disease in the oral-gut axis.
Collapse
Affiliation(s)
- Eduardo A. Catalan
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Emilio Seguel-Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Brandon Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Aranguiz-Varela
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Daniela P. Castillo-Godoy
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elizabeth Rivera-Asin
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elisa Bocaz
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile;
| | - Denisse Bravo
- Cellular Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile;
| | - Katina Schinnerling
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Melo-Gonzalez
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| |
Collapse
|
2
|
Stocke K, Lamont G, Tan J, Scott DA. Delineation of global, absolutely essential and conditionally essential pangenomes of Porphyromonas gingivalis. Sci Rep 2024; 14:22247. [PMID: 39333542 PMCID: PMC11436796 DOI: 10.1038/s41598-024-72451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Porphyromonas gingivalis is a Gram-negative, anaerobic oral pathobiont, an etiological agent of periodontitis and the most commonly studied periodontal bacterium. Multiple low passage clinical isolates were sequenced, and their genomes compared to several laboratory strains. Phylogenetic distances were mapped, a gene absence-presence matrix generated, and core (present in all genomes) and accessory (absent in one or more genomes) genes delineated. Subsequently, a second pangenome delineating the prevalence of inherently essential genes was generated. The prevalence of genes conditionally essential for surviving tobacco exposure, abscess formation and epithelial invasion was also determined, in addition to genes encoding key proteolytic enzymes containing putative signal peptides. While the absolutely essential pangenome was highly conserved, significant differences in the complete and conditionally essential pangenomes were apparent. Thus, genetic plasticity appears to lie primarily in gene sets facilitating adaptation to variant disease-related environments. Those genes that are highly pervasive in the P. gingivalis absolutely essential pangenome or are highly prevalent and essential for fitness in disease-relevant models, may represent particularly attractive therapeutic targets worthy of further investigation. As mutations in absolutely essential genes are expected to be lethal, the data provided herein should also facilitate improved planning for P. gingivalis gene mutation strategies.
Collapse
Affiliation(s)
- Kendall Stocke
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY, 40292, USA
| | - Gwyneth Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY, 40292, USA
| | - Jinlian Tan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY, 40292, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY, 40292, USA.
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
3
|
Ghods S, Muszyński A, Yang H, Seelan RS, Mohammadi A, Hilson JS, Keiser G, Nichols FC, Azadi P, Ernst RK, Moradali F. The multifaceted role of c-di-AMP signaling in the regulation of Porphyromonas gingivalis lipopolysaccharide structure and function. Front Cell Infect Microbiol 2024; 14:1418651. [PMID: 38933693 PMCID: PMC11199400 DOI: 10.3389/fcimb.2024.1418651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Background This study unveils the intricate functional association between cyclic di-3',5'-adenylic acid (c-di-AMP) signaling, cellular bioenergetics, and the regulation of lipopolysaccharide (LPS) profile in Porphyromonas gingivalis, a Gram-negative obligate anaerobe considered as a keystone pathogen involved in the pathogenesis of chronic periodontitis. Previous research has identified variations in P. gingivalis LPS profile as a major virulence factor, yet the underlying mechanism of its modulation has remained elusive. Methods We employed a comprehensive methodological approach, combining two mutants exhibiting varying levels of c-di-AMP compared to the wild type, alongside an optimized analytical methodology that combines conventional mass spectrometry techniques with a novel approach known as FLATn. Results We demonstrate that c-di-AMP acts as a metabolic nexus, connecting bioenergetic status to nuanced shifts in fatty acid and glycosyl profiles within P. gingivalis LPS. Notably, the predicted regulator gene cdaR, serving as a potent regulator of c-di-AMP synthesis, was found essential for producing N-acetylgalactosamine and an unidentified glycolipid class associated with the LPS profile. Conclusion The multifaceted roles of c-di-AMP in bacterial physiology are underscored, emphasizing its significance in orchestrating adaptive responses to stimuli. Furthermore, our findings illuminate the significance of LPS variations and c-di-AMP signaling in determining the biological activities and immunostimulatory potential of P. gingivalis LPS, promoting a pathoadaptive strategy. The study expands the understanding of c-di-AMP pathways in Gram-negative species, laying a foundation for future investigations into the mechanisms governing variations in LPS structure at the molecular level and their implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Shirin Ghods
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Ratnam S. Seelan
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Asal Mohammadi
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Jacob S. Hilson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Frank C. Nichols
- Division of Periodontology, University of Connecticut School of Dental Medicine, Farmington, CT, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Fata Moradali
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
4
|
Mizgalska D, Rodríguez-Banqueri A, Veillard F, Książęk M, Goulas T, Guevara T, Eckhard U, Potempa J, Gomis-Rüth FX. Structural and functional insights into the C-terminal signal domain of the Bacteroidetes type-IX secretion system. Open Biol 2024; 14:230448. [PMID: 38862016 DOI: 10.1098/rsob.230448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 06/13/2024] Open
Abstract
Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 β-sandwich (β1-β7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands β3 and β4 ('motif Lβ3β4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lβ3β4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mirosław Książęk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Theodoros Goulas
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Karditsa 43100, Greece
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Ulrich Eckhard
- Synthetic Structural Biology Group, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| |
Collapse
|
5
|
Śmiga M, Ślęzak P, Olczak T. Comparative analysis of Porphyromonas gingivalis A7436 and ATCC 33277 strains reveals differences in the expression of heme acquisition systems. Microbiol Spectr 2024; 12:e0286523. [PMID: 38289063 PMCID: PMC10913741 DOI: 10.1128/spectrum.02865-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/15/2023] [Indexed: 03/06/2024] Open
Abstract
Porphyromonas gingivalis strains exhibit different phenotypes in vitro, different virulence potential in animal models, and different associations with human diseases, with strains classified as virulent/more virulent (e.g., A7436 and W83) or as less virulent/avirulent (e.g., ATCC 33277). In this study, we comparatively analyzed the A7436 and ATCC 33277 strains to better understand their variability. Global gene expression analysis in response to heme and iron limitation revealed more pronounced differences in the A7436 than in the ATCC 33277 strain; however, in both strains, the largest changes were observed in genes encoding hypothetical proteins, genes whose products participate in energy metabolism, and in genes encoding proteins engaged in transport and binding proteins. Our results confirmed that variability between P. gingivalis strains is due to differences in the arrangement of their genomes. Analysis of gene expression of heme acquisition systems demonstrated that not only the availability of iron and heme in the external environment but also the ability to store iron intracellularly can influence the P. gingivalis phenotype. Therefore, we assume that differences in virulence potential may also be due to differences in the production of systems involved in iron and heme acquisition, mainly the Hmu system. In addition, our study showed that hemoglobin, in a concentration-dependent manner, differentially influences the virulence potential of P. gingivalis strains. We conclude that iron and heme homeostasis may add to the variability observed between P. gingivalis strains. IMPORTANCE Periodontitis belongs to a group of multifactorial diseases, characterized by inflammation and destruction of tooth-supporting tissues. P. gingivalis is one of the most important microbial factors involved in the initiation and progression of periodontitis. To survive in the host, the bacterium must acquire heme as a source of iron and protoporphyrin IX. P. gingivalis strains respond differently to changing iron and heme concentrations, which may be due to differences in the expression of systems involved in iron and heme acquisition. The ability to accumulate iron intracellularly, being different in more and less virulent P. gingivalis strains, may influence their phenotypes, production of virulence factors (including proteins engaged in heme acquisition), and virulence potential of this bacterium.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
6
|
Maphosa S, Moleleki LN, Motaung TE. Bacterial secretion system functions: evidence of interactions and downstream implications. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37083586 DOI: 10.1099/mic.0.001326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unprecedented insights into the biology and functions of bacteria have been and continue to be gained through studying bacterial secretion systems in isolation. This method, however, results in our understanding of the systems being primarily based on the idea that they operate independently, ignoring the subtleties of downstream interconnections. Gram-negative bacteria are naturally able to adapt to and navigate their frequently varied and dynamic surroundings, mostly because of the covert connections between secretion systems. Therefore, to comprehend some of the linked downstream repercussions for organisms that follow this discourse, it is vital to have mechanistic insights into how the intersecretion system functions in bacterial rivalry, virulence, and survival, among other things. To that purpose, this paper discusses a few key instances of molecular antagonistic and interdependent relationships between bacterial secretion systems and their produced functional products.
Collapse
Affiliation(s)
- Silindile Maphosa
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Lucy N Moleleki
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Thabiso E Motaung
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
7
|
Dorgan B, Liu Y, Wang S, Aduse-Opoku J, Whittaker SBM, Roberts MAJ, Lorenz CD, Curtis MA, Garnett JA. Structural Model of a Porphyromonas gingivalis type IX Secretion System Shuttle Complex. J Mol Biol 2022; 434:167871. [PMID: 36404438 DOI: 10.1016/j.jmb.2022.167871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Porphyromonas gingivalis is a gram-negative oral anaerobic pathogen and is one of the key causative agents of periodontitis. P. gingivalis utilises a range of virulence factors, including the cysteine protease RgpB, to drive pathogenesis and these are exported and attached to the cell surface via the type IX secretion system (T9SS). All cargo proteins possess a conserved C-terminal signal domain (CTD) which is recognised by the T9SS, and the outer membrane β-barrel protein PorV (PG0027/LptO) can interact with cargo proteins as they are exported to the bacterial surface. Using a combination of solution nuclear magnetic resonance (NMR) spectroscopy, biochemical analyses, machine-learning-based modelling and molecular dynamics (MD) simulations, we present a structural model of a PorV:RgpB-CTD complex from P. gingivalis. This is the first structural insight into CTD recognition by the T9SS and shows how the conserved motifs in the CTD are the primary sites that mediate binding. In PorV, interactions with extracellular surface loops are important for binding the CTD, and together these appear to cradle and lock RgpB-CTD in place. This work provides insight into cargo recognition by PorV but may also have important implications for understanding other aspects of type-IX dependent secretion.
Collapse
Affiliation(s)
- Ben Dorgan
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Yichao Liu
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Sunjun Wang
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Joseph Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Sara B-M Whittaker
- Institute of Cancer & Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark A J Roberts
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Christian D Lorenz
- Biological Physics & Soft Matter Research Group, Department of Physics, King's College London, London, UK
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
8
|
Phillips PL, Wu XJ, Reyes L. Differential affinity chromatography reveals a link between Porphyromonas gingivalis-induced changes in vascular smooth muscle cell differentiation and the type 9 secretion system. Front Cell Infect Microbiol 2022; 12:983247. [PMID: 36483452 PMCID: PMC9722745 DOI: 10.3389/fcimb.2022.983247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Porphyromonas gingivalis is implicated in adverse pregnancy outcome. We previously demonstrated that intrauterine infection with various strains of P. gingivalis impairs the physiologic remodeling of the uterine spiral arteries (IRSA) during pregnancy, which underlies the major obstetrical syndromes. Women diagnosed with IRSA also have a greater risk for premature cardiovascular disease in later life. The dysregulated plasticity of vascular smooth muscle cells (VSMCs) is present in both IRSA and premature cardiovascular events. We hypothesized that VSMCs could serve as a bait to identify P. gingivalis proteins associated with dysregulated VSMC plasticity as seen in IRSA. We first confirmed that dams with P. gingivalis A7UF-induced IRSA also show perturbed aortic smooth muscle cell (AoSMC) plasticity along with the P. gingivalis colonization of the tissue. The in vitro infection of AoSMCs with IRSA-inducing strain A7UF also perturbed AoSMC plasticity that did not occur with infection by non-IRSA-inducing strain W83. Far-Western blotting with strain W83 and strain A7UF showed a differential binding pattern to the rat aorta and primary rat AoSMCs. The affinity chromatography/pull-down assay combined with mass spectrometry was used to identify P. gingivalis/AoSMC protein interactions specific to IRSA. Membrane proteins with a high binding affinity to AoSMCs were identified in the A7UF pull-down but not in the W83 pull-down, most of which were the outer membrane components of the Type 9 secretion system (T9SS) and T9SS cargo proteins. Additional T9SS cargo proteins were detected in greater abundance in the A7UF pull-down eluate compared to W83. None of the proteins enriched in the W83 eluate were T9SS components nor T9SS cargo proteins despite their presence in the prey preparations used in the pull-down assay. In summary, differential affinity chromatography established that the components of IRSA-inducing P. gingivalis T9SS as well as its cargo directly interact with AoSMCs, which may play a role in the infection-induced dysregulation of VSMC plasticity. The possibility that the T9SS is involved in the microbial manipulation of host cell events important for cell differentiation and tissue remodeling would constitute a new virulence function for this system.
Collapse
Affiliation(s)
- Priscilla L. Phillips
- Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, United States
| | - Xiao-jun Wu
- Department of Pathobiological Sciences, University of Wisconsin - Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin - Madison, School of Veterinary Medicine, Madison, WI, United States,*Correspondence: Leticia Reyes,
| |
Collapse
|
9
|
Glycosyltransferase-Related Protein GtrA Is Essential for Localization of Type IX Secretion System Cargo Protein Cellulase Cel9A and Affects Cellulose Degradation in Cytophaga hutchinsonii. Appl Environ Microbiol 2022; 88:e0107622. [PMID: 36197104 PMCID: PMC9599414 DOI: 10.1128/aem.01076-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Cytophaga hutchinsonii digests cellulose through a novel cellulose degradation mechanism. It possesses the lately characterized type IX secretion system (T9SS). We recently discovered that N-glycosylation of the C-terminal domain (CTD) of a hypothetical T9SS substrate protein in the periplasmic space of C. hutchinsonii affects protein secretion and localization. In this study, green fluorescent protein (GFP)-CTDCel9A recombinant protein was found with increased molecular weight in the periplasm of C. hutchinsonii. Site-directed mutagenesis studies on the CTD of cellulase Cel9A demonstrated that asparagine residue 900 in the D-X-N-X-S motif is important for the processing of the recombinant protein. We found that the glycosyltransferase-related protein GtrA (CHU_0012) located in the cytoplasm of C. hutchinsonii is essential for outer membrane localization of the recombinant protein. The deletion of gtrA decreased the abundance of the outer membrane proteins and affected cellulose degradation by C. hutchinsonii. This study provided a link between the glycosylation system and cellulose degradation in C. hutchinsonii. IMPORTANCE N-Glycosylation systems are generally limited to some pathogenic bacteria in prokaryotes. The disruption of the N-glycosylation pathway is related to adherence, invasion, colonization, and other phenotypic characteristics. We recently found that the cellulolytic bacterium Cytophaga hutchinsonii also has an N-glycosylation system. The cellulose degradation mechanism of C. hutchinsonii is novel and mysterious; cellulases and other proteins on the cell surface are involved in utilizing cellulose. In this study, we identified an asparagine residue in the C-terminal domain of cellulase Cel9A that is necessary for the processing of the T9SS cargo protein. Moreover, the glycosyltransferase-related protein GtrA is essential for the localization of the GFP-CTDCel9A recombinant protein. Deletion of gtrA affected cellulose degradation and the abundance of outer membrane proteins. This study enriched the understanding of the N-glycosylation system in C. hutchinsonii and provided a link between N-glycosylation and cellulose degradation, which also expanded the role of the N-glycosylation system in bacteria.
Collapse
|
10
|
Sharma G, Garg N, Hasan S, Shirodkar S. Prevotella: An insight into its characteristics and associated virulence factors. Microb Pathog 2022; 169:105673. [PMID: 35843443 DOI: 10.1016/j.micpath.2022.105673] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Prevotella species, a gram-negative obligate anaerobe, is commonly associated with human infections such as dental caries and periodontitis, as well as other conditions such as chronic osteomyelitis, bite-related infections, rheumatoid arthritis and intestinal diseases like ulcerative colitis. This generally harmless commensal possesses virulence factors such as adhesins, hemolysins, secretion systems exopolysaccharide, LPS, proteases, quorum sensing molecules and antibiotic resistance to evolve into a well-adapted pathogen capable of causing successful infection and proliferation in the host tissue. This review describes several of these virulence factors and their advantage to Prevotella spp. in causing inflammatory diseases like periodontitis. In addition, using genome analysis of Prevotella reference strains, we examined other putative virulence determinants which can provide insights as biomarkers and be the targets for effective interventions in Prevotella related diseases like periodontitis.
Collapse
Affiliation(s)
- Geetika Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Nancy Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India.
| |
Collapse
|
11
|
Trivedi A, Gosai J, Nakane D, Shrivastava A. Design Principles of the Rotary Type 9 Secretion System. Front Microbiol 2022; 13:845563. [PMID: 35620107 PMCID: PMC9127263 DOI: 10.3389/fmicb.2022.845563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/05/2023] Open
Abstract
The Fo ATP synthase, the bacterial flagellar motor, and the bacterial type 9 secretion system (T9SS) are the three known proton motive force driven biological rotary motors. In this review, we summarize the current information on the nuts and bolts of T9SS. Torque generation by T9SS, its role in gliding motility of bacteria, and the mechanism via which a T9SS-driven swarm shapes the microbiota are discussed. The knowledge gaps in our current understanding of the T9SS machinery are outlined.
Collapse
Affiliation(s)
- Abhishek Trivedi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Jitendrapuri Gosai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Daisuke Nakane
- Department of Engineering Science, The University of Electro-Communications, Tokyo, Japan
| | - Abhishek Shrivastava
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
12
|
Vincent MS, Comas Hervada C, Sebban-Kreuzer C, Le Guenno H, Chabalier M, Kosta A, Guerlesquin F, Mignot T, McBride MJ, Cascales E, Doan T. Dynamic proton-dependent motors power type IX secretion and gliding motility in Flavobacterium. PLoS Biol 2022; 20:e3001443. [PMID: 35333857 PMCID: PMC8986121 DOI: 10.1371/journal.pbio.3001443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/06/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Motile bacteria usually rely on external apparatus like flagella for swimming or pili for twitching. By contrast, gliding bacteria do not rely on obvious surface appendages to move on solid surfaces. Flavobacterium johnsoniae and other bacteria in the Bacteroidetes phylum use adhesins whose movement on the cell surface supports motility. In F. johnsoniae, secretion and helicoidal motion of the main adhesin SprB are intimately linked and depend on the type IX secretion system (T9SS). Both processes necessitate the proton motive force (PMF), which is thought to fuel a molecular motor that comprises the GldL and GldM cytoplasmic membrane proteins. Here, we show that F. johnsoniae gliding motility is powered by the pH gradient component of the PMF. We further delineate the interaction network between the GldLM transmembrane helices (TMHs) and show that conserved glutamate residues in GldL TMH2 are essential for gliding motility, although having distinct roles in SprB secretion and motion. We then demonstrate that the PMF and GldL trigger conformational changes in the GldM periplasmic domain. We finally show that multiple GldLM complexes are distributed in the membrane, suggesting that a network of motors may be present to move SprB along a helical path on the cell surface. Altogether, our results provide evidence that GldL and GldM assemble dynamic membrane channels that use the proton gradient to power both T9SS-dependent secretion of SprB and its motion at the cell surface.
Collapse
Affiliation(s)
- Maxence S. Vincent
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Caterina Comas Hervada
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Corinne Sebban-Kreuzer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Hugo Le Guenno
- Microscopy Core Facility, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université, Marseille, France
| | - Maïalène Chabalier
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université, Marseille, France
| | - Françoise Guerlesquin
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7283, Marseille, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Eric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Thierry Doan
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| |
Collapse
|
13
|
Protein Interactome Analysis of the Type IX Secretion System Identifies PorW as the Missing Link between the PorK/N Ring Complex and the Sov Translocon. Microbiol Spectr 2022; 10:e0160221. [PMID: 35019767 PMCID: PMC8754138 DOI: 10.1128/spectrum.01602-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type IX secretion system (T9SS) transports cargo proteins through the outer membrane of Bacteroidetes and attaches them to the cell surface for functions including pathogenesis, gliding motility, and degradation of carbon sources. The T9SS comprises at least 20 different proteins and includes several modules: the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, the outer membrane Sov translocon, and the cell attachment complex. However, the spatial organization of these modules is unknown. We have characterized the protein interactome of the Sov translocon in Porphyromonas gingivalis and identified Sov-PorV-PorA as well as Sov-PorW-PorN-PorK to be novel networks. PorW also interacted with PGN_1783 (PorD), which was required for maximum secretion efficiency. The identification of PorW as the missing link completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore. IMPORTANCE The T9SS is a newly identified protein secretion system of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum used by pathogens associated with diseases of humans, fish, and poultry for the secretion and cell surface attachment of virulence factors. The T9SS comprises three known modules: (i) the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, (ii) the outer membrane Sov translocon, and (iii) the cell surface attachment complex. The spatial organization and interaction of these modules have been a mystery. Here, we describe the protein interactome of the Sov translocon in the human pathogen Porphyromonas gingivalis and have identified PorW as the missing link which bridges PorN with Sov and so completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing, for the first time, a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore.
Collapse
|
14
|
Fuchsbauer O, Lunar Silva I, Cascales E, Roussel A, Leone P. Structural and functional analyses of the Porphyromonas gingivalis type IX secretion system PorN protein. J Biol Chem 2022; 298:101618. [PMID: 35065963 PMCID: PMC8861641 DOI: 10.1016/j.jbc.2022.101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis, the major human pathogen bacterium associated with periodontal diseases, secretes virulence factors through the Bacteroidetes-specific type IX secretion system (T9SS). Effector proteins of the T9SS are recognized by the complex via their conserved C-terminal domains (CTDs). Among the 18 proteins essential for T9SS function in P. gingivalis, PorN is a periplasmic protein that forms large ring-shaped structures in association with the PorK outer membrane lipoprotein. PorN also mediates contacts with the PorM subunit of the PorLM energetic module, and with the effector’s CTD. However, no information is available on the PorN structure and on the implication of PorN domains for T9SS assembly and effector recognition. Here we present the crystal structure of PorN at 2.0-Å resolution, which represents a novel fold with no significant similarity to any known structure. In agreement with in silico analyses, we also found that the N- and C-terminal regions of PorN are intrinsically disordered. Our functional studies showed that the N-terminal disordered region is involved in PorN dimerization while the C-terminal disordered region is involved in the interaction with PorK. Finally, we determined that the folded PorN central domain is involved in the interaction with PorM, as well as with the effector’s CTD. Altogether, these results lay the foundations for a more comprehensive model of T9SS architecture and effector transport.
Collapse
Affiliation(s)
- Olivier Fuchsbauer
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Marseille, France; Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Marseille, France
| | - Ignacio Lunar Silva
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université - Centre National de la Recherche Scientifique (UMR7255), Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université - Centre National de la Recherche Scientifique (UMR7255), Marseille Cedex 20, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Marseille, France; Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Marseille, France
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Marseille, France; Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Marseille, France.
| |
Collapse
|
15
|
Veith PD, Glew MD, Gorasia DG, Cascales E, Reynolds EC. The Type IX Secretion System and Its Role in Bacterial Function and Pathogenesis. J Dent Res 2021; 101:374-383. [PMID: 34889148 DOI: 10.1177/00220345211051599] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas, Tannerella, and Prevotella species found in severe periodontitis use the Type IX Secretion System (T9SS) to load their outer membrane surface with an array of virulence factors. These virulence factors are then released on outer membrane vesicles (OMVs), which penetrate the host to dysregulate the immune response to establish a positive feedback loop of chronic, inflammatory destruction of the tooth's supporting tissues. In this review, we present the latest information on the molecular architecture of the T9SS and provide mechanistic insight into its role in secretion and attachment of cargo proteins to produce a virulence coat on cells and OMVs. The recent molecular structures of the T9SS motor comprising PorL and PorM as well as the secretion pore Sov, together with advances in the overall interactome, have provided insight into the possible mechanisms of secretion. We propose the presence of PorL/M motors arranged in a circle at the inner membrane with bent periplasmic rotors interacting with the PorN protein. At the outer membrane, we envisage a slide carousel model where the PorN protein is driven around a circular track composed of PorK. Cargo proteins are transported by PorN to PorW and the Sov translocon just as slides are rotated to the projection window. Secreted proteins are proposed to then be shuttled along highways consisting of the PorV shuttle protein to an array of attachment complexes distributed around the cell. The cell surface attachment of cargo is a hallmark of the T9SS, and in Porphyromonas gingivalis and Tannerella forsythia, this attachment is achieved via covalent bonding to a linking sugar synthesized by the Wbp/Vim pathway. The cell-surface attached cargo are enriched on OMVs, which are then released from the cell.
Collapse
Affiliation(s)
- P D Veith
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - M D Glew
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - D G Gorasia
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - E Cascales
- Laboratoire d'Ingénierie des Syst èmes Macromol éculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR7255, Marseille Cedex, France
| | - E C Reynolds
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Mizgalska D, Goulas T, Rodríguez-Banqueri A, Veillard F, Madej M, Małecka E, Szczesniak K, Ksiazek M, Widziołek M, Guevara T, Eckhard U, Solà M, Potempa J, Gomis-Rüth FX. Intermolecular latency regulates the essential C-terminal signal peptidase and sortase of the Porphyromonas gingivalis type-IX secretion system. Proc Natl Acad Sci U S A 2021; 118:e2103573118. [PMID: 34593635 PMCID: PMC8501833 DOI: 10.1073/pnas.2103573118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen of the human dysbiotic oral microbiome that causes severe periodontitis. It employs a type-IX secretion system (T9SS) to shuttle proteins across the outer membrane (OM) for virulence. Uniquely, T9SS cargoes carry a C-terminal domain (CTD) as a secretion signal, which is cleaved and replaced with anionic lipopolysaccharide by transpeptidation for extracellular anchorage to the OM. Both reactions are carried out by PorU, the only known dual-function, C-terminal signal peptidase and sortase. PorU is itself secreted by the T9SS, but its CTD is not removed; instead, intact PorU combines with PorQ, PorV, and PorZ in the OM-inserted "attachment complex." Herein, we revealed that PorU transits between active monomers and latent dimers and solved the crystal structure of the ∼260-kDa dimer. PorU has an elongated shape ∼130 Å in length and consists of seven domains. The first three form an intertwined N-terminal cluster likely engaged in substrate binding. They are followed by a gingipain-type catalytic domain (CD), two immunoglobulin-like domains (IGL), and the CTD. In the first IGL, a long "latency β-hairpin" protrudes ∼30 Å from the surface to form an intermolecular β-barrel with β-strands from the symmetric CD, which is in a latent conformation. Homology modeling of the competent CD followed by in vivo validation through a cohort of mutant strains revealed that PorU is transported and functions as a monomer through a C690/H657 catalytic dyad. Thus, dimerization is an intermolecular mechanism for PorU regulation to prevent untimely activity until joining the attachment complex.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, 43100 Karditsa, Greece
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ewelina Małecka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Szczesniak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Miroslaw Ksiazek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Magda Widziołek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Ulrich Eckhard
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Maria Solà
- Structural MitoLab, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain;
| |
Collapse
|