1
|
Min X, Wang Y, Dong X, Dong X, Wang N, Wang Z, Shi L. Epidemiological characteristics of human metapneumovirus among children in Nanjing, China. Eur J Clin Microbiol Infect Dis 2024; 43:1445-1452. [PMID: 38801487 DOI: 10.1007/s10096-024-04858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE The objective of this study was to examine the molecular epidemiology and clinical characteristics of HMPV infection among children with ARIs in Nanjing. METHODS The respiratory samples were collected from 2078 children (≤ 14 years) with acute respiratory infections and were tested for HMPV using real-time RT-PCR. Amplification and sequencing of the HMPV G gene were followed by phylogenetic analysis using MEGA 7.0. RESULT The detection rate of HMPV among children was 4.7% (97/2078), with a concentration in those under 5 years of age. Notably, the peak season for HMPV prevalence was observed in winter. Among the 97 HMPV-positive samples, 51.5% (50/97) were available for characterization of the HMPV G protein gene. Phylogenetic analysis indicated that the sequenced HMPV strains were classified into three sublineages: A2c111nt - dup (84.0%), B1 (2.0%), and B2 (14.0%). CONCLUSION There was an incidence of HMPV among hospitalized children during 2021-2022 in Nanjing with A2c111nt - dup being the dominant strain. This study demonstrated the molecular epidemiological characteristics of HMPV among children with respiratory infections in Nanjing, China.
Collapse
Affiliation(s)
- Xiaoyu Min
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Yaqian Wang
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Xiaoxiao Dong
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Xiaoqing Dong
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Nan Wang
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Ziyu Wang
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Liming Shi
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Shirato K, Suwa R, Nao N, Kawase M, Sugimoto S, Kume Y, Chishiki M, Ono T, Okabe H, Norito S, Sato M, Sakuma H, Suzuki S, Hosoya M, Takeda M, Hashimoto K. Molecular Epidemiology of Human Metapneumovirus in East Japan before and after COVID-19, 2017-2022. Jpn J Infect Dis 2024; 77:137-143. [PMID: 38171847 DOI: 10.7883/yoken.jjid.2023.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human metapneumovirus (hMPV) is genetically classified into two major subgroups, A and B, based on attachment glycoprotein (G protein) gene sequences. The A2 subgroup is further separated into three subdivisions, A2a, A2b (A2b1), and A2c (A2b2). Subgroup A2c viruses carrying 180- or 111-nucleotide duplications in the G gene (A2c 180nt-dup or A2c 111nt-dup ) have been reported in Japan and Spain. The coronavirus disease 2019 (COVID-19) pandemic disrupted the epidemiological kinetics of other respiratory viruses, including hMPV. In this study, we analyzed the sequences of hMPV isolates in Tokyo and Fukushima obtained from 2017 to 2022, i.e., before and after the COVID-19 pandemic. Subgroup A hMPV strains were detected from 2017 to 2019, and most cases were A2c 111nt-dup, suggesting ongoing transmission of this clade, consistent with global transmission dynamics. Subgroup B viruses, but not subgroup A viruses, were detected in 2022 after the COVID-19 peak. Phylogenetic analysis showed that the subgroup B viruses were closely related to strains detected in Yokohama from 2013 to 2016, and strains detected in Fukushima in 2019, suggesting the reappearance of local endemic viruses in East Japan.
Collapse
Affiliation(s)
- Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Reiko Suwa
- Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Naganori Nao
- Department of Virology III, National Institute of Infectious Diseases, Japan
- One Health Research Center, International Institute for Zoonosis Control, Hokkaido University, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Miyuki Kawase
- Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Diseases, Japan
- Management Department of Biosafety, Laboratory Animals, and Pathogen Bank, National Institute of Infectious Diseases, Japan
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Hisao Okabe
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Sakurako Norito
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Masatoki Sato
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | | | | | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Japan
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| |
Collapse
|
3
|
Xie Z, Zhu Z, Xu J, Mao N, Cui A, Wang W, Wang Y, Zhang Z, Xia B, Wang H, Sun Z, Zhang Y. Seasonal and Genetic Characteristics of Human Metapneumovirus Circulating - Henan Province, China, 2017-2023. China CDC Wkly 2024; 6:450-456. [PMID: 38846360 PMCID: PMC11150164 DOI: 10.46234/ccdcw2024.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/11/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction This study examines the seasonal and genetic characteristics of human metapneumovirus (HMPV) in Henan from 2017 to 2023. Methods Samples from patients with acute respiratory infection (ARI) testing positive for HMPV were subjected to real-time reverse transcription polymerase chain reaction The G gene was amplified and sequenced from these samples for epidemiological and phylogenetic analysis. Results We enrolled 2,707 ARI patients from October 2017 to March 2023, finding an HMPV positivity rate of 6.17% (167/2,707). Children under five exhibited the highest infection rate at 7.78% (138/1,774). The 2018 and 2019 HMPV outbreaks predominantly occurred in spring (March to May), with peak positivity rates of 31.11% in May 2018 and 19.57% in May 2019. A notable increase occurred in November 2020, when positivity reached a historic high of 42.11%, continuing until January 2021. From February 2021 through March 2023, no significant seasonal peaks were observed, with rates ranging from 0% to 8.70%. Out of 81 G gene sequences analyzed, 46.91% (38/81) were identified as subtype A (A2c: 45.67%, 37/81; A2b: 1.23%, 1/81) and 53.09% (43/81) as subtype B (B1: 9.88%, 8/81; B2: 43.21%, 35/81). Notably, an AAABBA switch pattern was observed in HMPV subtypes. The dominant strains were A2c111nt-dup in subtype A and B2 in subtype B. Conclusions Six years of surveillance in Henan Province has detailed the seasonal and genetic dynamics of HMPV, contributing valuable insights for the control and prevention of HMPV infections in China. These findings support the development of targeted HMPV vaccines and immunization strategies.
Collapse
Affiliation(s)
- Zhibo Xie
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Xu
- Henan Provincial Center for Disease Control and Prevention, Luohe City, Henan Province, China
| | - Naiying Mao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aili Cui
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenhui Wang
- Henan Provincial Center for Disease Control and Prevention, Luohe City, Henan Province, China
| | - Yage Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhibo Zhang
- Luohe Center for Disease Control and Prevention, Luohe City, Henan Province, China
| | - Baicheng Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoran Wang
- Luohe Central Hospital, Luohe City, Henan Province, China
| | - Zhen Sun
- Luohe Central Hospital, Luohe City, Henan Province, China
| | - Yan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Ji CM, Feng XY, Huang YW, Chen RA. The Applications of Nanopore Sequencing Technology in Animal and Human Virus Research. Viruses 2024; 16:798. [PMID: 38793679 PMCID: PMC11125791 DOI: 10.3390/v16050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, an increasing number of viruses have triggered outbreaks that pose a severe threat to both human and animal life, as well as caused substantial economic losses. It is crucial to understand the genomic structure and epidemiology of these viruses to guide effective clinical prevention and treatment strategies. Nanopore sequencing, a third-generation sequencing technology, has been widely used in genomic research since 2014. This technology offers several advantages over traditional methods and next-generation sequencing (NGS), such as the ability to generate ultra-long reads, high efficiency, real-time monitoring and analysis, portability, and the ability to directly sequence RNA or DNA molecules. As a result, it exhibits excellent applicability and flexibility in virus research, including viral detection and surveillance, genome assembly, the discovery of new variants and novel viruses, and the identification of chemical modifications. In this paper, we provide a comprehensive review of the development, principles, advantages, and applications of nanopore sequencing technology in animal and human virus research, aiming to offer fresh perspectives for future studies in this field.
Collapse
Affiliation(s)
- Chun-Miao Ji
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
| | - Xiao-Yin Feng
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
| | - Yao-Wei Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rui-Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
5
|
Ribó-Molina P, van Nieuwkoop S, Mykytyn AZ, van Run P, Lamers MM, Haagmans BL, Fouchier RAM, van den Hoogen BG. Human metapneumovirus infection of organoid-derived human bronchial epithelium represents cell tropism and cytopathology as observed in in vivo models. mSphere 2024; 9:e0074323. [PMID: 38265200 PMCID: PMC10900881 DOI: 10.1128/msphere.00743-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Human metapneumovirus (HMPV), a member of the Pneumoviridae family, causes upper and lower respiratory tract infections in humans. In vitro studies with HMPV have mostly been performed in monolayers of undifferentiated epithelial cells. In vivo studies in cynomolgus macaques and cotton rats have shown that ciliated epithelial cells are the main target of HMPV infection, but these observations cannot be studied in monolayer systems. Here, we established an organoid-derived bronchial culture model that allows physiologically relevant studies on HMPV. Inoculation with multiple prototype HMPV viruses and recent clinical virus isolates led to differences in replication among HMPV isolates. Prolific HMPV replication in this model caused damage to the ciliary layer, including cilia loss at advanced stages post-infection. These cytopathic effects correlated with those observed in previous in vivo studies with cynomolgus macaques. The assessment of the innate immune responses in three donors upon HMPV and RSV inoculation highlighted the importance of incorporating multiple donors to account for donor-dependent variation. In conclusion, these data indicate that the organoid-derived bronchial cell culture model resembles in vivo findings and is therefore a suitable and robust model for future HMPV studies. IMPORTANCE Human metapneumovirus (HMPV) is one of the leading causative agents of respiratory disease in humans, with no treatment or vaccine available yet. The use of primary epithelial cultures that recapitulate the tissue morphology and biochemistry of the human airways could aid in defining more relevant targets to prevent HMPV infection. For this purpose, this study established the first primary organoid-derived bronchial culture model suitable for a broad range of HMPV isolates. These bronchial cultures were assessed for HMPV replication, cellular tropism, cytopathology, and innate immune responses, where the observations were linked to previous in vivo studies with HMPV. This study exposed an important gap in the HMPV field since extensively cell-passaged prototype HMPV B viruses did not replicate in the bronchial cultures, underpinning the need to use recently isolated viruses with a controlled passage history. These results were reproducible in three different donors, supporting this model to be suitable to study HMPV infection.
Collapse
Affiliation(s)
- Pau Ribó-Molina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Anna Z. Mykytyn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mart M. Lamers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
6
|
Ballegeer M, van Scherpenzeel RC, Delgado T, Iglesias-Caballero M, García Barreno B, Pandey S, Rush SA, Kolkman JA, Mas V, McLellan JS, Saelens X. A neutralizing single-domain antibody that targets the trimer interface of the human metapneumovirus fusion protein. mBio 2024; 15:e0212223. [PMID: 38117059 PMCID: PMC10790764 DOI: 10.1128/mbio.02122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Human metapneumovirus (hMPV) is an important respiratory pathogen for which no licensed antivirals or vaccines exist. Single-domain antibodies represent promising antiviral biologics that can be easily produced and formatted. We describe the isolation and detailed characterization of two hMPV-neutralizing single-domain antibodies that are directed against the fusion protein F. One of these single-domain antibodies broadly neutralizes hMPV A and B strains, can prevent proteolytic maturation of F, and binds to an epitope in the F trimer interface. This suggests that hMPV pre-F undergoes trimer opening or "breathing" on infectious virions, exposing a vulnerable site for neutralizing antibodies. Finally, we show that this single-domain antibody, fused to a human IgG1 Fc, can protect cotton rats against hMPV replication, an important finding for potential future clinical applications.
Collapse
Affiliation(s)
- Marlies Ballegeer
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Teresa Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Shubham Pandey
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Scott A. Rush
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Vicente Mas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Sugimoto S, Kawase M, Suwa R, Kakizaki M, Kume Y, Chishiki M, Ono T, Okabe H, Norito S, Hosoya M, Hashimoto K, Shirato K. Development of a duplex real-time RT-PCR assay for the detection and identification of two subgroups of human metapneumovirus in a single tube. J Virol Methods 2023; 322:114812. [PMID: 37741464 DOI: 10.1016/j.jviromet.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Human metapneumovirus (hMPV) is a common cause of respiratory infections in children. Many genetic diagnostic assays have been developed, but most detect hMPV regardless of the subgroup. In this study, we developed a real-time RT-PCR assay that can detect and identify the two major subgroups of hMPV (A and B) in one tube. Primers and probes were designed based on the sequences of recent clinical isolates in Japan. The assay showed comparable analytical sensitivity to a previously reported real-time RT-PCR assay and specific reactions to hMPV subgroups. The assay also showed no cross-reactivity to clinical isolates of 19 species of other respiratory viruses. In a validation assay using post-diagnosed clinical specimens, 98% (167/170) positivity was confirmed for the duplex assay, and the three specimens not detected were of low copy number. The duplex assay also successfully distinguished the two major subgroups for all 12 clinical specimens, for which the subgroup had already been determined by genomic sequencing analysis. The duplex assay described here will contribute to the rapid and accurate identification and surveillance of hMPV infections.
Collapse
Affiliation(s)
- Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Management Department of Biosafety, Laboratory Animals, and Pathogen Bank, National Institute of Infectious Disease, Musashimurayama, Tokyo, Japan
| | - Miyuki Kawase
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Reiko Suwa
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masatoshi Kakizaki
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hisao Okabe
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Sakurako Norito
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.
| |
Collapse
|
8
|
Cho SJ, Kim SH, Lee H, Lee YU, Mun J, Park S, Park J, Park JS, Lee K, Lee CM, Seo J, Kim Y, Chung YS. Re-Emergence of HMPV in Gwangju, South Korea, after the COVID-19 Pandemic. Pathogens 2023; 12:1218. [PMID: 37887734 PMCID: PMC10609798 DOI: 10.3390/pathogens12101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The non-pharmaceutical interventions implemented to prevent the spread of COVID-19 have affected the epidemiology of other respiratory viruses. In South Korea, Human metapneumovirus (HMPV) typically occurs from winter to the following spring; however, it was not detected for two years during the COVID-19 pandemic and re-emerged in the fall of 2022, which is a non-epidemic season. To examine the molecular genetic characteristics of HMPV before and after the COVID-19 pandemic, we analyzed 427 HMPV-positive samples collected in the Gwangju area from 2018 to 2022. Among these, 24 samples were subjected to whole-genome sequencing. Compared to the period before the COVID-19 pandemic, the incidence rate of HMPV in 2022 increased by 2.5-fold. Especially in the age group of 6-10 years, the incidence rate increased by more than 4.5-fold. In the phylogenetic analysis results, before the COVID-19 pandemic, the A2.2.2 lineage was predominant, while in 2022, the A2.2.1 and B2 lineage were observed. The non-pharmaceutical interventions implemented after COVID-19, such as social distancing, have reduced opportunities for exposure to HMPV, subsequently leading to decreased acquisition of immunity. As a result, HMPV occurred during non-epidemic seasons, influencing the age distribution of its occurrences.
Collapse
Affiliation(s)
- Sun-Ju Cho
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Sun-Hee Kim
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Hongsu Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Yeong-Un Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Jeongeun Mun
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Sujung Park
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Jungwook Park
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Ji-Su Park
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Kwangho Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Cheong-mi Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Jinjong Seo
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Yonghwan Kim
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Yoon-Seok Chung
- Division of High-Risk Pathogen, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea
| |
Collapse
|