1
|
Roca A, Monge‐Olivares L, Matilla MA. Antibiotic-producing plant-associated bacteria, anti-virulence therapy and microbiome engineering: Integrated approaches in sustainable agriculture. Microb Biotechnol 2024; 17:e70025. [PMID: 39382042 PMCID: PMC11462315 DOI: 10.1111/1751-7915.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Plant health is crucial for maintaining the well-being of humans, animals and the environment. Plant pathogens pose significant challenges to agricultural production, global food security and ecosystem biodiversity. This problem is exacerbated by the impact of climate change, which is expected to alter the emergence and evolution of plant pathogens and their interaction with their plant hosts. Traditional approaches to managing phytopathogens involved the use of chemical pesticides, but alternative strategies are needed to address their ongoing decline in performance as well as their negative impact on the environment and public health. Here, we highlight the advancement and effectiveness of biocontrol strategies based on the use of antimicrobial-producing plant-associated bacteria, anti-virulence therapy (e.g. quorum quenching) and microbiome engineering as sustainable biotechnological approaches to promote plant health and foster sustainable agriculture. Notably, Enterobacterales are emerging as important biocontrol agents and as a source of new antimicrobials for potential agricultural use. We analysed here the genomes of over 250 plant-associated enterobacteria to examine their potential to synthesize secondary metabolites. Exploration of the plant microbiome is of major interest in the search for eco-friendly alternatives for reducing the use of chemical pesticides.
Collapse
Affiliation(s)
- Amalia Roca
- Facultad de Farmacia, Department of MicrobiologyCampus Universitario de Cartuja, Universidad de GranadaGranadaSpain
- Institute of Biotechnology, Biomedical Research Center (CIBM)University of GranadaGranadaSpain
| | - Laura Monge‐Olivares
- Department of Biotechnology and Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Miguel A. Matilla
- Department of Biotechnology and Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
2
|
Matilla MA, Monson RE, Salmond GPC. Dickeya solani. Trends Microbiol 2023; 31:1085-1086. [PMID: 36958995 DOI: 10.1016/j.tim.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Affiliation(s)
- Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, 18008, Spain.
| | - Rita E Monson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
3
|
Hugouvieux-Cotte-Pattat N, Pédron J, Van Gijsegem F. Insight into biodiversity of the recently rearranged genus Dickeya. FRONTIERS IN PLANT SCIENCE 2023; 14:1168480. [PMID: 37409305 PMCID: PMC10319131 DOI: 10.3389/fpls.2023.1168480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
The genus Dickeya includes plant pathogenic bacteria attacking a wide range of crops and ornamentals as well as a few environmental isolates from water. Defined on the basis of six species in 2005, this genus now includes 12 recognized species. Despite the description of several new species in recent years, the diversity of the genus Dickeya is not yet fully explored. Many strains have been analyzed for species causing diseases on economically important crops, such as for the potato pathogens D. dianthicola and D. solani. In contrast, only a few strains have been characterized for species of environmental origin or isolated from plants in understudied countries. To gain insights in the Dickeya diversity, recent extensive analyzes were performed on environmental isolates and poorly characterized strains from old collections. Phylogenetic and phenotypic analyzes led to the reclassification of D. paradisiaca (containing strains from tropical or subtropical regions) in the new genus, Musicola, the identification of three water species D. aquatica, D. lacustris and D. undicola, the description of a new species D. poaceaphila including Australian strains isolated from grasses, and the characterization of the new species D. oryzae and D. parazeae, resulting from the subdivision of the species D. zeae. Traits distinguishing each new species were identified from genomic and phenotypic comparisons. The high heterogeneity observed in some species, notably for D. zeae, indicates that additional species still need to be defined. The objective of this study was to clarify the present taxonomy of the genus Dickeya and to reassign the correct species to several Dickeya strains isolated before the current classification.
Collapse
Affiliation(s)
| | - Jacques Pédron
- Institute of Ecology and Environmental Sciences, Sorbonne University, CNRS, INRAE, Paris, France
| | - Frédérique Van Gijsegem
- Institute of Ecology and Environmental Sciences, Sorbonne University, CNRS, INRAE, Paris, France
| |
Collapse
|
4
|
Murphy A, Corney M, Monson RE, Matilla MA, Salmond GPC, Leeper FJ. Biosynthesis of Antifungal Solanimycin May Involve an Iterative Nonribosomal Peptide Synthetase Module. ACS Chem Biol 2023; 18:1148-1157. [PMID: 37068480 PMCID: PMC10204066 DOI: 10.1021/acschembio.2c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Dickeya solani, a plant-pathogenic bacterium, produces solanimycin, a potent hybrid polyketide/nonribosomal peptide (PKS/NRPS) anti-fungal compound. The biosynthetic gene cluster responsible for synthesis of this compound has been identified. Because of instability, the complete structure of the compound has not yet been elucidated, but LC-MS2 identified that the cluster produces two main compounds, solanimycin A and B, differing by a single hydroxyl group. The fragmentation pattern revealed that the central part of solanimycin A is a hexapeptide, Gly-Dha-Dha-Dha-Dha-Dha (where Dha is dehydroalanine). This is supported by isotopic labeling studies using labeled serine and glycine. The N-terminal group is a polyketide-derived C16 acyl group containing a conjugated hexaene, a hydroxyl, and an amino group. The additional hydroxyl group in solanimycin B is on the α-carbon of the glycine residue. The incorporation of five sequential Dha residues is unprecedented because there is only one NRPS module in the cluster that is predicted to activate and attach serine (which is subsequently dehydrated to Dha), meaning that this NRPS module must act iteratively. While a few other iterative NRPS modules are known, they all involve iteration of two or three modules. We believe that the repetitive use of a single module makes the solanimycin biosynthetic pathway unique among NRPSs so far reported.
Collapse
Affiliation(s)
- Annabel
C. Murphy
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Matthew Corney
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Rita E. Monson
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - Miguel A. Matilla
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - George P. C. Salmond
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
5
|
Robic K, Munier E, Effantin G, Lachat J, Naquin D, Gueguen E, Faure D. Dissimilar gene repertoires of Dickeya solani involved in the colonization of lesions and roots of Solanum tuberosum. FRONTIERS IN PLANT SCIENCE 2023; 14:1154110. [PMID: 37223796 PMCID: PMC10202176 DOI: 10.3389/fpls.2023.1154110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023]
Abstract
Dickeya and Pectobacterium species are necrotrophic pathogens that macerate stems (blackleg disease) and tubers (soft rot disease) of Solanum tuberosum. They proliferate by exploiting plant cell remains. They also colonize roots, even if no symptoms are observed. The genes involved in pre-symptomatic root colonization are poorly understood. Here, transposon-sequencing (Tn-seq) analysis of Dickeya solani living in macerated tissues revealed 126 genes important for competitive colonization of tuber lesions and 207 for stem lesions, including 96 genes common to both conditions. Common genes included acr genes involved in the detoxification of plant defense phytoalexins and kduD, kduI, eda (=kdgA), gudD, garK, garL, and garR genes involved in the assimilation of pectin and galactarate. In root colonization, Tn-seq highlighted 83 genes, all different from those in stem and tuber lesion conditions. They encode the exploitation of organic and mineral nutrients (dpp, ddp, dctA, and pst) including glucuronate (kdgK and yeiQ) and synthesis of metabolites: cellulose (celY and bcs), aryl polyene (ape), and oocydin (ooc). We constructed in-frame deletion mutants of bcsA, ddpA, apeH, and pstA genes. All mutants were virulent in stem infection assays, but they were impaired in the competitive colonization of roots. In addition, the ΔpstA mutant was impaired in its capacity to colonize progeny tubers. Overall, this work distinguished two metabolic networks supporting either an oligotrophic lifestyle on roots or a copiotrophic lifestyle in lesions. This work revealed novel traits and pathways important for understanding how the D. solani pathogen efficiently survives on roots, persists in the environment, and colonizes progeny tubers.
Collapse
Affiliation(s)
- Kévin Robic
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Euphrasie Munier
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Géraldine Effantin
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA Lyon, UMR5240 MAP, Lyon, France
| | - Joy Lachat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Erwan Gueguen
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA Lyon, UMR5240 MAP, Lyon, France
| | - Denis Faure
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
6
|
Cigna J, Robic K, Dewaegeneire P, Hélias V, Beury A, Faure D. Efficacy of Soft-Rot Disease Biocontrol Agents in the Inhibition of Production Field Pathogen Isolates. Microorganisms 2023; 11:microorganisms11020372. [PMID: 36838337 PMCID: PMC9961933 DOI: 10.3390/microorganisms11020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The Dickeya and Pectobacterium bacterial species cause blackleg and soft-rot diseases on potato plants and tubers. Prophylactic actions are essential to conserve a high quality of seed potato tubers. Biocontrol approaches are emerging, but we need to know how efficient biocontrol agents are when facing the natural diversity of pathogens. In this work, we sampled 16 production fields, which were excluded from the seed tuber certification scheme, as well as seven experimental parcels, which were planted with seed tubers from those production fields. We collected and characterized 669 Dickeya and Pectobacterium isolates, all characterized using nucleotide sequence of the gapA gene. This deep sampling effort highlighted eleven Dickeya and Pectobacterium species, including four dominant species namely D. solani, D. dianthicola, P. atrosepticum and P. parmentieri. Variations in the relative abundance of pathogens revealed different diversity patterns at a field or parcel level. The Dickeya-enriched patterns were maintained in parcels planted with rejected seed tubers, suggesting a vertical transmission of the pathogen consortium. Then, we retained 41 isolates representing the observed species diversity of pathogens and we tested each of them against six biocontrol agents. From this work, we confirmed the importance of prophylactic actions to discard contaminated seed tubers. We also identified a couple of biocontrol agents of the Pseudomonas genus that were efficient against a wide range of pathogen species.
Collapse
Affiliation(s)
- Jérémy Cigna
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
- Correspondence: (J.C.); (D.F.)
| | - Kévin Robic
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
- Institute for Integrative Biology of the Cell (I2BC), Paris-Saclay University, CEA, CNRS, 91190 Gif-sur-Yvette, France
| | | | - Valérie Hélias
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
| | - Amélie Beury
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), Paris-Saclay University, CEA, CNRS, 91190 Gif-sur-Yvette, France
- Correspondence: (J.C.); (D.F.)
| |
Collapse
|