1
|
Besson B, Overheul GJ, Wolfinger MT, Junglen S, van Rij RP. Pan-flavivirus analysis reveals sfRNA-independent, 3' UTR-biased siRNA production from an insect-specific flavivirus. J Virol 2024; 98:e0121524. [PMID: 39404457 PMCID: PMC11575252 DOI: 10.1128/jvi.01215-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 11/20/2024] Open
Abstract
RNA interference (RNAi) plays an essential role in mosquito antiviral immunity, but it is not known whether viral small interfering RNA (siRNA) profiles differ between mosquito-borne and mosquito-specific viruses. A pan-Orthoflavivirus analysis in Aedes albopictus cells revealed that viral siRNAs were evenly distributed across the viral genome of most representatives of the Flavivirus genus. In contrast, siRNA production was biased toward the 3' untranslated region (UTR) of the genomes of classical insect-specific flaviviruses (cISF), which was most pronounced for Kamiti River virus (KRV), a virus with a unique, 1.2 kb long 3' UTR. KRV-derived siRNAs were produced in high quantities and almost exclusively mapped to the 3' UTR. We mapped the 5' end of KRV subgenomic flavivirus RNAs (sfRNAs), products of the 5'-3' exoribonuclease XRN1/Pacman stalling on secondary RNA structures in the 3' UTR of the viral genome. We found that KRV produces high copy numbers of a long, 1,017 nt sfRNA1 and a short, 421 nt sfRNA2, corresponding to two predicted XRN1-resistant elements. Expression of both sfRNA1 and sfRNA2 was reduced in Pacman-deficient Aedes albopictus cells; however, this did not correlate with a shift in viral siRNA profiles. We suggest that cISFs, particularly KRV, developed a unique mechanism to produce high amounts of siRNAs as a decoy for the antiviral RNAi response in an sfRNA-independent manner.IMPORTANCEThe Flavivirus genus contains diverse mosquito viruses ranging from insect-specific viruses circulating exclusively in mosquito populations to mosquito-borne viruses that cause disease in humans and animals. Studying the mechanisms of virus replication and antiviral immunity in mosquitoes is important to understand arbovirus transmission and may inform the development of disease control strategies. In insects, RNA interference (RNAi) provides broad antiviral activity and constitutes a major immune response against viruses. Comparing diverse members of the Flavivirus genus, we found that all flaviviruses are targeted by RNAi. However, the insect-specific Kamiti River virus was unique in that small interfering RNAs are highly skewed toward its uniquely long 3' untranslated region. These results suggest that mosquito-specific viruses have evolved unique mechanisms for genome replication and immune evasion.
Collapse
Affiliation(s)
- Benoit Besson
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael T Wolfinger
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- RNA Forecast e.U., Vienna, Austria
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University, Humboldt University, Berlin Institute of Health, Berlin, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Tang Y, He Y, Wang X, Wu Z, Du S, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Sun D, Cheng A, Chen S. Vector competence of Culex quinquefasciatus for Tembusu virus and viral factors for virus transmission by mosquitoes. Vet Res 2024; 55:109. [PMID: 39294772 PMCID: PMC11409574 DOI: 10.1186/s13567-024-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/05/2024] [Indexed: 09/21/2024] Open
Abstract
The ongoing epidemic of flaviviruses worldwide has underscored the importance of studying flavivirus vector competence, considering their close association with mosquito vectors. Tembusu virus is an avian-related mosquito-borne flavivirus that has been an epidemic in China and Southeast Asia since 2010. However, the reason for the outbreak of Tembusu virus in 2010 remains unclear, and it is unknown whether changes in vector transmission played an essential role in this process. To address these questions, we conducted a study using Culex quinquefasciatus as a model for Tembusu virus infection, employing both oral infection and microinjection methods. Our findings confirmed that both vertical and venereal transmission collectively contribute to the cycle of Tembusu virus within the mosquito population, with persistent infections observed. Importantly, our data revealed that the prototypical Tembusu virus MM_1775 strain exhibited significantly greater infectivity and transmission rates in mosquitoes than did the duck Tembusu virus (CQW1 strain). Furthermore, we revealed that the viral E protein and 3' untranslated region are key elements responsible for these differences. In conclusion, our study sheds light on mosquito transmission of Tembusu virus and provides valuable insights into the factors influencing its infectivity and transmission rates. These findings contribute to a better understanding of Tembusu virus epidemiology and can potentially aid in the development of strategies to control its spread.
Collapse
Affiliation(s)
- Yibin Tang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Xiaoli Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Senyan Du
- Research Center for Swine Diseases, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Huston NC, Tsao LH, Brackney DE, Pyle AM. The West Nile virus genome harbors essential riboregulatory elements with conserved and host-specific functional roles. Proc Natl Acad Sci U S A 2024; 121:e2312080121. [PMID: 38985757 PMCID: PMC11260092 DOI: 10.1073/pnas.2312080121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/25/2024] [Indexed: 07/12/2024] Open
Abstract
West Nile virus (WNV) is an arthropod-borne, positive-sense RNA virus that poses an increasing global threat due to warming climates and lack of effective therapeutics. Like other enzootic viruses, little is known about how host context affects the structure of the full-length RNA genome. Here, we report a complete secondary structure of the entire WNV genome within infected mammalian and arthropod cell lines. Our analysis affords structural insights into multiple, conserved aspects of flaviviral biology. We show that the WNV genome folds with minimal host dependence, and we prioritize well-folded regions for functional validation using structural homology between hosts as a guide. Using structure-disrupting, antisense locked nucleic acids, we then demonstrate that the WNV genome contains riboregulatory structures with conserved and host-specific functional roles. These results reveal promising RNA drug targets within flaviviral genomes, and they highlight the therapeutic potential of ASO-LNAs as both WNV-specific and pan-flaviviral therapeutic agents.
Collapse
Affiliation(s)
- Nicholas C. Huston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
| | - Lucille H. Tsao
- Department of Chemistry, Yale University, New Haven, CT06511
| | - Doug E. Brackney
- Department of Entomology, Connecticut Agricultural Experimental Station, New Haven, CT06511
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, CT06511
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
4
|
Ramos-Lorente SE, Berzal-Herranz B, Romero-López C, Berzal-Herranz A. Recruitment of the 40S ribosomal subunit by the West Nile virus 3' UTR promotes the cross-talk between the viral genomic ends for translation regulation. Virus Res 2024; 343:199340. [PMID: 38387694 PMCID: PMC10907855 DOI: 10.1016/j.virusres.2024.199340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Flaviviral RNA genomes are composed of discrete RNA structural units arranged in an ordered fashion and grouped into complex folded domains that regulate essential viral functions, e.g. replication and translation. This is achieved by adjusting the overall structure of the RNA genome via the establishment of inter- and intramolecular interactions. Translation regulation is likely the main process controlling flaviviral gene expression. Although the genomic 3' UTR is a key player in this regulation, little is known about the molecular mechanisms underlying this role. The present work provides evidence for the specific recruitment of the 40S ribosomal subunit by the 3' UTR of the West Nile virus RNA genome, showing that the joint action of both genomic ends contributes the positioning of the 40S subunit at the 5' end. The combination of structural mapping techniques revealed specific conformational requirements at the 3' UTR for 40S binding, involving the highly conserved SL-III, 5'DB, 3'DB and 3'SL elements, all involved in the translation regulation. These results point to the 40S subunit as a bridge to ensure cross-talk between both genomic ends during viral translation and support a link between 40S recruitment by the 3' UTR and translation control.
Collapse
Affiliation(s)
- Sara Esther Ramos-Lorente
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain.
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain.
| |
Collapse
|
5
|
Abram QH, Landry BN, Wang AB, Kothe RF, Hauch HC, Sagan SM. The myriad roles of RNA structure in the flavivirus life cycle. RNA Biol 2024; 21:14-30. [PMID: 38797925 PMCID: PMC11135854 DOI: 10.1080/15476286.2024.2357857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.
Collapse
Affiliation(s)
- Quinn H. Abram
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Breanna N. Landry
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Alex B. Wang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Ronja F. Kothe
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hannah C.H. Hauch
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Selena M. Sagan
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Xu M, Qian K, Shao H, Yao Y, Nair V, Ye J, Qin A. 3'UTR of ALV-J can affect viral replication through promoting transcription and mRNA nuclear export. J Virol 2023; 97:e0115223. [PMID: 37902396 PMCID: PMC10688361 DOI: 10.1128/jvi.01152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE 3'UTRs can affect gene transcription and post-transcriptional regulation in multiple ways, further influencing the function of proteins in a unique manner. Recently, ALV-J has been mutating and evolving rapidly, especially the 3'UTR of viral genome. Meanwhile, clinical symptoms caused by ALV-J have changed significantly. In this study, we found that the ALV-J strains containing △-r-TM-type 3'UTR are the most abundant. By constructing ALV-J infectious clones and subgenomic vectors containing different 3'UTRs, we prove that 3'UTRs directly affect viral tissue preference and can promote virus replication as an enhancer. ALV-J strain containing 3'UTR of △-r-TM proliferated fastest in primary cells. All five forms of 3'UTRs can assist intron-containing viral mRNA nuclear export, with similar efficiency. ALV-J mRNA half-life is not influenced by different 3'UTRs. Our results dissect the roles of 3'UTR on regulating viral replication and pathogenicity, providing novel insights into potential anti-viral strategies.
Collapse
Affiliation(s)
- Moru Xu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence on Avian Disease Research, Surrey, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence on Avian Disease Research, Surrey, United Kingdom
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Liu Y, Guan W, Liu H. Subgenomic Flaviviral RNAs of Dengue Viruses. Viruses 2023; 15:2306. [PMID: 38140548 PMCID: PMC10747610 DOI: 10.3390/v15122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are produced during flavivirus infections in both arthropod and vertebrate cells. They are undegraded products originating from the viral 3' untranslated region (3' UTR), a result of the action of the host 5'-3' exoribonuclease, Xrn1, when it encounters specific RNA structures known as Xrn1-resistant RNAs (xrRNAs) within the viral 3' UTR. Dengue viruses generate three to four distinct species of sfRNAs through the presence of two xrRNAs and two dumbbell structures (DBs). The tertiary structures of xrRNAs have been characterized to form a ringlike structure around the 5' end of the viral RNA, effectively inhibiting the activity of Xrn1. The most important role of DENV sfRNAs is to inhibit host antiviral responses by interacting with viral and host proteins, thereby influencing viral pathogenicity, replicative fitness, epidemiological fitness, and transmission. In this review, we aimed to summarize the biogenesis, structures, and functions of DENV sfRNAs, exploring their implications for viral interference.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Wuxiang Guan
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| | - Haibin Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| |
Collapse
|
8
|
Graham ME, Merrick C, Akiyama BM, Szucs MJ, Leach S, Kieft JS, Beckham JD. Zika virus dumbbell-1 structure is critical for sfRNA presence and cytopathic effect during infection. mBio 2023; 14:e0110823. [PMID: 37417764 PMCID: PMC10470596 DOI: 10.1128/mbio.01108-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
All flaviviruses contain conserved RNA structures in the 3' untranslated region (3' UTR) that are important for flavivirus RNA replication, translation, and pathogenesis. Flaviviruses like Zika virus (ZIKV) contain multiple conserved RNA structures in the viral 3' UTR, including the structure known as dumbbell-1 (DB-1). Previous research has shown that the DB-1 structure is important for flavivirus positive-strand genome replication, but the functional role of the flavivirus DB-1 structure and the mechanism by which it contributes to viral pathogenesis are not known. Using the recently solved flavivirus DB RNA structural data, we designed two DB-1 mutant ZIKV infectious clones, termed ZIKV-TL.PK and ZIKV-p.2.5', which disrupt DB-1 tertiary folding. We found that viral positive-strand genome replication of both ZIKV DB-1 mutant clones is similar to wild-type (WT) ZIKV, but ZIKV DB-1 mutants exhibit significantly decreased cytopathic effect due to reduced caspase-3 activation. We next show that ZIKV DB-1 mutants exhibit decreased levels of sfRNA species compared to ZIKV-WT during infection. However, ZIKV DB-1 mutant 3' UTRs exhibit unchanged sfRNA biogenesis following XRN1 degradation in vitro. We also found that ZIKV DB-1 mutant virus (ZIKV-p.2.5') exhibited enhanced sensitivity to type I interferon treatment, and both ZIKV-DB-1 mutants exhibit reduced morbidity and mortality due to tissue-specific attenuated viral replication in brain tissue of interferon type I/II receptor knockout mice. We propose that the flavivirus DB-1 RNA structure maintains sfRNA levels during infection despite maintained sfRNA biogenesis, and these results indicate that ZIKV DB-dependent maintenance of sfRNA levels support caspase-3-dependent, cytopathic effect, type I interferon resistance, and viral pathogenesis in mammalian cells and in a ZIKV murine model of disease. IMPORTANCE The group of viruses termed flaviviruses cause important disease throughout the world and include dengue virus, Zika virus, Japanese encephalitis virus, and many more. All of these flaviviruses have highly conserved RNA structures in the untranslated regions of the virus genome. One of the shared RNA structures, termed the dumbbell region, is not well studied, but mutations in this region are important for vaccine development. In this study, we made structure-informed targeted mutations in the Zika virus dumbbell region and studied the effect on the virus. We found that Zika virus dumbbell mutants are significantly weakened or attenuated due to a decreased ability to produce non-coding RNA that is needed to support infection, support virus-induced cell death, and support escape from the host immune system. These data show that targeted mutations in the flavivirus dumbbell RNA structure may be an important approach to develop future vaccine candidates.
Collapse
Affiliation(s)
- Monica E. Graham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Camille Merrick
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Benjamin M. Akiyama
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew J. Szucs
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sarah Leach
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jeffery S. Kieft
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. David Beckham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
9
|
Álvarez-Díaz DA, Usme-Ciro JA, Corchuelo S, Naizaque JR, Rivera JA, Castiblanco-Martínez HD, Torres-Fernández O, Rengifo AC. 5'/3' RACE method for sequencing the 5' and 3' untranslated regions of Zika virus. Arch Virol 2023; 168:204. [PMID: 37428234 DOI: 10.1007/s00705-023-05820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 07/11/2023]
Abstract
The spread of Zika virus (ZIKV) from the African continent to the Americas promoted its molecular evolution, as reflected by mutations in its RNA genome. Most of the ZIKV genome sequences in the GenBank database have incomplete 5' and 3' UTR sequences, reflecting the deficiency of whole-genome sequencing technologies to resolve the sequences of the genome ends. We modified a protocol for rapid amplification of cDNA ends (RACE) to determine the complete sequences of the 5' and 3' UTRs of a previously reported ZIKV isolate (GenBank no. MH544701.1). This strategy is useful for determining 5' and 3' UTR sequences of ZIKV isolates and will be useful for comparative genomics applications.
Collapse
Affiliation(s)
- Diego Alejandro Álvarez-Díaz
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | - José Aldemar Usme-Ciro
- Centro de Investigación en Salud para el Trópico-CIST, Universidad Cooperativa de Colombia, Santa Marta, Colombia
| | - Sheryll Corchuelo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | - Julián Ricardo Naizaque
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | - Jorge Alonso Rivera
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | | | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | - Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| |
Collapse
|
10
|
Li D, Lu HT, Ding YZ, Wang HJ, Ye JL, Qin CF, Liu ZY. Specialized cis-Acting RNA Elements Balance Genome Cyclization to Ensure Efficient Replication of Yellow Fever Virus. J Virol 2023; 97:e0194922. [PMID: 37017533 PMCID: PMC10134800 DOI: 10.1128/jvi.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Genome cyclization is essential for viral RNA (vRNA) replication of the vertebrate-infecting flaviviruses, and yet its regulatory mechanisms are not fully understood. Yellow fever virus (YFV) is a notorious pathogenic flavivirus. Here, we demonstrated that a group of cis-acting RNA elements in YFV balance genome cyclization to govern efficient vRNA replication. It was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) is conserved in the YFV clade and is important for efficient YFV propagation. By using two different replicon systems, we found that the function of the DCS-HP is determined primarily by its secondary structure and, to a lesser extent, by its base-pair composition. By combining in vitro RNA binding and chemical probing assays, we found that the DCS-HP orchestrates the balance of genome cyclization through two different mechanisms, as follows: the DCS-HP assists the correct folding of the 5' end in a linear vRNA to promote genome cyclization, and it also limits the overstabilization of the circular form through a potential crowding effect, which is influenced by the size and shape of the DCS-HP structure. We also provided evidence that an A-rich sequence downstream of the DCS-HP enhances vRNA replication and contributes to the regulation of genome cyclization. Interestingly, diversified regulatory mechanisms of genome cyclization, involving both the downstream of the 5'-cyclization sequence (CS) and the upstream of the 3'-CS elements, were identified among different subgroups of the mosquito-borne flaviviruses. In summary, our work highlighted how YFV precisely controls the balance of genome cyclization to ensure viral replication. IMPORTANCE Yellow fever virus (YFV), the prototype of the Flavivirus genus, can cause devastating yellow fever disease. Although it is preventable by vaccination, there are still tens of thousands of yellow fever cases per year, and no approved antiviral medicine is available. However, the understandings about the regulatory mechanisms of YFV replication are obscure. In this study, by a combination of bioinformatics, reverse genetics, and biochemical approaches, it was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) promotes efficient YFV replication by modulating the conformational balance of viral RNA. Interestingly, we found specialized combinations for the downstream of the 5'-cyclization sequence (CS) and upstream of the 3'-CS elements in different groups of the mosquito-borne flaviviruses. Moreover, possible evolutionary relationships among the various downstream of the 5'-CS elements were implied. This work highlighted the complexity of RNA-based regulatory mechanisms in the flaviviruses and will facilitate the design of RNA structure-targeted antiviral therapies.
Collapse
Affiliation(s)
- Dan Li
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hai-Tao Lu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yu-Zhen Ding
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hong-Jiang Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The Chinese People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Jing-Long Ye
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhong-Yu Liu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Sun B, Ni M, Liu H, Liu D. Viral intra-host evolutionary dynamics revealed via serial passage of Japanese encephalitis virus in vitro. Virus Evol 2023; 9:veac103. [PMID: 37205166 PMCID: PMC10185921 DOI: 10.1093/ve/veac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/04/2022] [Accepted: 03/21/2023] [Indexed: 12/02/2023] Open
Abstract
Analyses of viral inter- and intra-host mutations could better guide the prevention and control of infectious diseases. For a long time, studies on viral evolution have focused on viral inter-host variations. Next-generation sequencing has accelerated the investigations of viral intra-host diversity. However, the theoretical basis and dynamic characteristics of viral intra-host mutations remain unknown. Here, using serial passages of the SA14-14-2 vaccine strain of Japanese encephalitis virus (JEV) as the in vitro model, the distribution characteristics of 1,788 detected intra-host single-nucleotide variations (iSNVs) and their mutated frequencies from 477 deep-sequenced samples were analyzed. Our results revealed that in adaptive (baby hamster kidney (BHK)) cells, JEV is under a nearly neutral selection pressure, and both non-synonymous and synonymous mutations represent an S-shaped growth trend over time. A higher positive selection pressure was observed in the nonadaptive (C6/36) cells, and logarithmic growth in non-synonymous iSNVs and linear growth in synonymous iSNVs were observed over time. Moreover, the mutation rates of the NS4B protein and the untranslated region (UTR) of the JEV are significantly different between BHK and C6/36 cells, suggesting that viral selection pressure is regulated by different cellular environments. In addition, no significant difference was detected in the distribution of mutated frequencies of iSNVs between BHK and C6/36 cells.
Collapse
Affiliation(s)
- Bangyao Sun
- School of Medical Laboratory, Weifang Medical University, Baotong West Street, Weifang 261053, China
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- University of Chinese Academy of Sciences, Yuquan Road 19#, Beijing 100049, China
| | - Ming Ni
- Beijing Institute of Radiation Medicine, Taiping Road 27#, Beijing 100850, China
| | - Haizhou Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- University of Chinese Academy of Sciences, Yuquan Road 19#, Beijing 100049, China
| |
Collapse
|
12
|
Romero-López C, Roda-Herreros M, Berzal-Herranz B, Ramos-Lorente SE, Berzal-Herranz A. Inter- and Intramolecular RNA–RNA Interactions Modulate the Regulation of Translation Mediated by the 3′ UTR in West Nile Virus. Int J Mol Sci 2023; 24:ijms24065337. [PMID: 36982407 PMCID: PMC10049277 DOI: 10.3390/ijms24065337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
RNA viruses rely on genomic structural elements to accomplish the functions necessary to complete the viral cycle. These elements participate in a dynamic network of RNA–RNA interactions that determine the overall folding of the RNA genome and may be responsible for the fine regulation of viral replication and translation as well as the transition between them. The genomes of members of the genus Flavivirus are characterized by a complexly folded 3′ UTR with a number of RNA structural elements that are conserved across isolates of each species. The present work provides evidence of intra- and intermolecular RNA–RNA interactions involving RNA structural elements in the 3′ UTR of the West Nile virus genome. The intermolecular interactions can be visualized in vitro by the formation of molecular dimers involving the participation of at least the SLI and 3′DB elements. Certainly, the 3′ UTR of dengue virus, which lacks the SLI element, forms molecular dimers in lower quantities via a single interaction site, probably 3′DB. The functional analysis of sequence or deletion mutants revealed an inverse relationship between 3′ UTR dimerization and viral translation efficiency in cell cultures. A network of RNA–RNA interactions involving 3′ UTR structural elements might therefore exist, helping to regulate viral translation.
Collapse
|
13
|
Slonchak A, Wang X, Aguado J, Sng JDJ, Chaggar H, Freney ME, Yan K, Torres FJ, Amarilla AA, Balea R, Setoh YX, Peng N, Watterson D, Wolvetang E, Suhrbier A, Khromykh AA. Zika virus noncoding RNA cooperates with the viral protein NS5 to inhibit STAT1 phosphorylation and facilitate viral pathogenesis. SCIENCE ADVANCES 2022; 8:eadd8095. [PMID: 36449607 PMCID: PMC9710884 DOI: 10.1126/sciadv.add8095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 05/25/2023]
Abstract
All flaviviruses, including Zika virus, produce noncoding subgenomic flaviviral RNA (sfRNA), which plays an important role in viral pathogenesis. However, the exact mechanism of how sfRNA enables viral evasion of antiviral response is not well defined. Here, we show that sfRNA is required for transplacental virus dissemination in pregnant mice and subsequent fetal brain infection. We also show that sfRNA promotes apoptosis of neural progenitor cells in human brain organoids, leading to their disintegration. In infected human placental cells, sfRNA inhibits multiple antiviral pathways and promotes apoptosis, with signal transducer and activator of transcription 1 (STAT1) identified as a key shared factor. We further show that the production of sfRNA leads to reduced phosphorylation and nuclear translocation of STAT1 via a mechanism that involves sfRNA binding to and stabilizing viral protein NS5. Our results suggest the cooperation between viral noncoding RNA and a viral protein as a novel strategy for counteracting antiviral responses.
Collapse
Affiliation(s)
- Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaohui Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Harman Chaggar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Morgan E. Freney
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Francisco J. Torres
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Rickyle Balea
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nias Peng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Center of Excellence, Brisbane, QLD, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Center of Excellence, Brisbane, QLD, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Mao L, He Y, Wu Z, Wang X, Guo J, Zhang S, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Mao S, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Cheng A, Chen S. Stem-Loop I of the Tembusu Virus 3'-Untranslated Region Is Responsible for Viral Host-Specific Adaptation and the Pathogenicity of the Virus in Mice. Microbiol Spectr 2022; 10:e0244922. [PMID: 36214697 PMCID: PMC9602528 DOI: 10.1128/spectrum.02449-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/17/2022] [Indexed: 01/04/2023] Open
Abstract
Tembusu virus (TMUV), an avian mosquito-borne flavivirus, was first identified from Culex tritaeniorhynchus in 1955. To validate the effects of the 3'-untranslated region (3'UTR) in viral host-specific adaptation, we generated a set of chimeric viruses using CQW1 (duck strain) and MM 1775 (mosquito strain) as backbones with heterogeneous 3'UTRs. Compared with rMM 1775, rMM-CQ3'UTR (recombinant MM 1775 virus carrying the 3'UTR of CQW1) exhibited enhanced proliferation in vitro, with peak titers increasing by 5-fold in duck embryonic fibroblast (DEF) cells or 12-fold in baby hamster kidney (BHK-21) cells; however, the neurovirulence of rMM-CQ3'UTR was attenuated in 14-day-old Kunming mice via intracranial injection, with slower weight loss, lower mortality, and reduced viral loads. In contrast, rCQ-MM3'UTR showed similar growth kinetics in vitro and neurovirulence in mice compared with those of rCQW1. Then, the Stem-loop I (SLI) structure, which showed the highest variation within the 3'UTR between CQW1 and MM 1775, was further chosen for making chimeric viruses. The peak titers of rMM-CQ3'UTRSLI displayed a 15- or 4-fold increase in vitro, and the neurovirulence in mice was attenuated, compared with that of rMM 1775; rCQ-MM3'UTRSLI displayed comparable multiplication ability in vitro but was significantly attenuated in mice, in contrast with rCQW1. In conclusion, we demonstrated that the TMUV SLI structure of the 3'UTR was responsible for viral host-specific adaptation of the mosquito-derived strain in DEF and BHK-21 cells and regulated viral pathogenicity in 14-day-old mice, providing a new understanding of the functions of TMUV 3'UTR in viral host switching and the pathogenicity changes in mice. IMPORTANCE Mosquito-borne flaviviruses (MBFVs) constitute a large number of mosquito-transmitted viruses. The 3'-untranslated region (3'UTR) of MBFV has been suggested to be relevant to viral host-specific adaptation. However, the evolutionary strategies for host-specific fitness among MBFV are different, and the virulence-related structures within the 3'UTR are largely unknown. Here, using Tembusu virus (TMUV), an avian MBFV as models, we observed that the duck-derived SLI of the 3'UTR significantly enhanced the proliferation ability of mosquito-derived TMUV in baby hamster kidney (BHK-21) and duck embryonic fibroblast (DEF) cells, suggesting that the SLI structure was crucial for viral host-specific adaptation of mosquito-derived TMUVs in mammalian and avian cells. In addition, all SLI mutant viruses exhibited reduced viral pathogenicity in mice, indicating that SLI structure was a key factor for the pathogenicity in mice. This study provides a new insight into the functions of the MBFV 3'UTR in viral host switching and pathogenicity changes in mice.
Collapse
Affiliation(s)
- Li Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaqi Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Senzhao Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Avila-Bonilla RG, Salas-Benito JS. Interactions of host miRNAs in the flavivirus 3´UTR genome: From bioinformatics predictions to practical approaches. Front Cell Infect Microbiol 2022; 12:976843. [PMID: 36310869 PMCID: PMC9606609 DOI: 10.3389/fcimb.2022.976843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Flavivirus of the Flaviviridae family includes important viruses, such as Dengue, Zika, West Nile, Japanese encephalitis, Murray Valley encephalitis, tick-borne encephalitis, Yellow fever, Saint Louis encephalitis, and Usutu viruses. They are transmitted by mosquitoes or ticks, and they can infect humans, causing fever, encephalitis, or haemorrhagic fever. The treatment resources for these diseases and the number of vaccines available are limited. It has been discovered that eukaryotic cells synthesize small RNA molecules that can bind specifically to sequences present in messenger RNAs to inhibit the translation process, thus regulating gene expression. These small RNAs have been named microRNAs, and they have an important impact on viral infections. In this review, we compiled the available information on miRNAs that can interact with the 3’ untranslated region (3’UTR) of the flavivirus genome, a conserved region that is important for viral replication and translation.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Rodolfo Gamaliel Avila-Bonilla, ; Juan Santiago Salas-Benito,
| | - Juan Santiago Salas-Benito
- Laboratorio de Biomedicina Moleculart 3, Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Rodolfo Gamaliel Avila-Bonilla, ; Juan Santiago Salas-Benito,
| |
Collapse
|
16
|
Delli Ponti R, Wang J, Wan Y, Huber RG. RNAvigator: A Pipeline to Identify Candidates for Functional RNA Structure Elements. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.878679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Identifying structural elements in long and complex RNAs, such as long non-coding and RNA viruses, can shed light on the functionality and mechanisms of such RNAs. Here we present RNAvigator, a tool able to identify elements of structural importance by using experimental SHAPE data or SHAPE-like predictions in conjunction with stability and entropy assessments. RNAvigator recognizes regions that are the most stable, unambiguous, and structured on RNA molecules, and thus potentially functional. When relying on predictions, RNAvigator uses the CROSS algorithm, a neural network trained on experimental data that achieved an AUC of 0.74 on hepatitis C virus SHAPE-MaP data and which was able to improve the predictive power of Superfold. By using RNAvigator, we can identify known functional regions on the complete hepatitis C virus genome, including the regulatory regions CRE and IRES, and the 3’ UTR of dengue virus, a region known for the presence of structural elements essential for its replication, and functional regions of long non-coding RNAs such as XIST and HOTAIR. We envision that RNAvigator will be a useful tool for studying long and complex RNA molecules using known chemical probing data or, if they are not available, by employing predicted profiles.
Collapse
|
17
|
Dai Z, Etebari K, Asgari S. N 6-methyladenosine modification of the Aedes aegypti transcriptome and its alteration upon dengue virus infection in Aag2 cell line. Commun Biol 2022; 5:607. [PMID: 35725909 PMCID: PMC9209429 DOI: 10.1038/s42003-022-03566-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The N6-methyladenosine (m6A) modification of RNA has been reported to affect viral infections. Studies have confirmed the role of m6A in replication of several vector-borne flaviviruses, including dengue virus (DENV), in mammalian cells. Here, we explored the role of m6A in DENV replication in the mosquito Aedes aegypti Aag2 cell line. We first determined the presence of m6A on the RNAs from mosquito cells and using methylated RNA immunoprecipitation and sequencing (MeRIP-Seq) identified m6A modification of the mosquito transcriptome and those that changed upon DENV infection. Depletion of m6A methyltransferases and the m6A binding protein YTHDF3 RNAs decreased the replication of DENV. In particular, we found that the Ae. aegypti ubiquitin carrier protein 9 (Ubc9) is m6A modified and its expression increases after DENV infection. Silencing of the gene and ectopic expression of Ubc9 led to reduced and increased DENV replication, respectively. The abundance of Ubc9 mRNA and its stability were reduced with the inhibition of m6A modification, implying that m6A modification of Ubc9 might enhance expression of the gene. We also show that the genome of DENV is m6A modified at five sites in mosquito cells. Altogether, this work reveals the involvement of m6A modification in Ae. aegypti-DENV interaction. Analysis of m6A RNA modifications in the mosquito transcriptome and their changes upon dengue virus infection provides insight into the role of epigenetics in regulating viral replication in mosquitoes.
Collapse
Affiliation(s)
- Zhenkai Dai
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
18
|
Sherman TJ, Petty D, Schountz T, Hodges N, Hawkinson AC. Increased Ifng and Il10 Expression Correlate with Disease in Rodent Models Experimentally Infected with Modoc Virus. Viruses 2022; 14:v14051026. [PMID: 35632766 PMCID: PMC9146023 DOI: 10.3390/v14051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Flaviviruses present an ongoing threat to global public health, although the factors that contribute to the disease remain incompletely understood. We examined an acute Modoc virus (MODV) infection of two rodent models. Viral RNA was detected in the kidneys, spleen, liver, brain, urine, and sera of experimentally infected deer mice, a reservoir host of MODV, and Syrian hamsters, a known disease model. As expected, clinical outcomes differed between species, and the levels of viral RNA recovered from various tissues demonstrated signs of differential replication and tissue tropism. Multivariate analysis indicated significance in the profile of expressed genes between species when analyzed across tissues and over time (p = 0.02). Between-subject effects with corrected models revealed a significance specific to the expression of Ifng (p = 0.01). the expression of Ifng was elevated in hamsters as compared to deer mice in brain tissues at all timepoints. As the over-expression of Ifng has been shown to correlate with decreased vascular integrity, the findings presented here offer a potential mechanism for viral dissemination into the CNS. The expression of IL10 also differed significantly between species at certain timepoints in brain tissues; however, it is uncertain how increased expression of this cytokine may influence the outcome of MODV-induced pathology.
Collapse
Affiliation(s)
- Tyler J. Sherman
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
- Correspondence:
| | - Douglas Petty
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
| | - Natasha Hodges
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
| | - Ann C. Hawkinson
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO 80524, USA;
| |
Collapse
|
19
|
Rodriguez-Salazar CA, Recalde-Reyes DP, Bedoya JP, Padilla-Sanabria L, Castaño-Osorio JC, Giraldo MI. In Vitro Inhibition of Replication of Dengue Virus Serotypes 1-4 by siRNAs Bound to Non-Toxic Liposomes. Viruses 2022; 14:339. [PMID: 35215929 PMCID: PMC8875542 DOI: 10.3390/v14020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus is a ssRNA+ flavivirus, which produces the dengue disease in humans. Currently, no specific treatment exists. siRNAs regulate gene expression and have been used systematically to silence viral genomes; however, they require controlled release. Liposomes show favorable results encapsulating siRNA for gene silencing. The objective herein was to design and evaluate in vitro siRNAs bound to liposomes that inhibit DENV replication. siRNAs were designed against DENV1-4 from conserved regions using siDirect2.0 and Web-BLOCK-iT™ RNAiDesigner; the initial in vitro evaluation was carried out through transfection into HepG2 cells. siRNA with silencing capacity was encapsulated in liposomes composed of D-Lin-MC3-DMA, DSPC, Chol. Cytotoxicity, hemolysis, pro-inflammatory cytokine release and antiviral activity were evaluated using plaque assay and RT-qPCR. A working concentration of siRNA was established at 40 nM. siRNA1, siRNA2, siRNA3.1, and siRNA4 were encapsulated in liposomes, and their siRNA delivery through liposomes led to a statistically significant decrease in viral titers, yielded no cytotoxicity or hemolysis and did not stimulate release of pro-inflammatory cytokines. Finally, liposomes were designed with siRNA against DENV, which proved to be safe in vitro.
Collapse
Affiliation(s)
- Carlos Andrés Rodriguez-Salazar
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander Von Humboldt, Armenia 630003, Colombia
| | - Delia Piedad Recalde-Reyes
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander Von Humboldt, Armenia 630003, Colombia
| | - Juan Pablo Bedoya
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
| | - Leonardo Padilla-Sanabria
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
| | - Jhon Carlos Castaño-Osorio
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
| | - Maria Isabel Giraldo
- Department of Microbiology, Immunology University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
20
|
Zhang QY, Liu SQ, Li XD, Li JQ, Zhang YN, Deng CL, Zhang HL, Li XF, Fang CX, Yang FX, Zhang B, Xu Y, Ye HQ. Sequence duplication in 3' UTR modulates virus replication and virulence of Japanese encephalitis virus. Emerg Microbes Infect 2021; 11:123-135. [PMID: 34877923 PMCID: PMC8725919 DOI: 10.1080/22221751.2021.2016354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Japanese encephalitis virus (JEV), an important neurotropic pathogen, belongs to the genus Flavivirus of the family Flaviviridae and has caused huge threat to public health. It is still obscure regarding the functions of stem-loop (SL) and dumbbell (DB) domains of JEV 3' UTR in viral replication and virulence. In the current study, using the infectious clone of JEV SA14 strain as a backbone, we constructed a series of deletion mutants of 3' UTR to investigate their effects on virus replication. The results showed that partial deletions within SL or DB domain had no apparent effects on virus replication in both mammalian (BHK-21) and mosquito (C6/36) cells, suggesting that they were not involved in viral host-specific replication. However, the entire SL domain deletion (ΔVR) significantly reduced virus replication in both cell lines, indicating the important role of the complete SL domain in virus replication. The revertant of ΔVR mutant virus was obtained by serial passage in BHK-21 cells that acquired a duplication of DB domain (DB-dup) in the 3' UTR, which greatly restored virus replication as well as the capability to produce the subgenomic flavivirus RNAs (sfRNAs). Interestingly, the DB-dup mutant virus was highly attenuated in C57BL/6 mice despite replicating similar to WT JEV. These findings demonstrate the significant roles of the duplicated structures in 3' UTR in JEV replication and provide a novel strategy for the design of live-attenuated vaccines.
Collapse
Affiliation(s)
- Qiu-Yan Zhang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China.,The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Si-Qing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xiao-Dan Li
- School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Jia-Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Hong-Lei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xu-Fang Li
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Chun-Xiao Fang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Feng-Xia Yang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Bo Zhang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China.,The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yi Xu
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China.,The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
21
|
In Silico Analysis of Dengue Virus Serotype 2 Mutations Detected at the Intrahost Level in Patients with Different Clinical Outcomes. Microbiol Spectr 2021; 9:e0025621. [PMID: 34468189 PMCID: PMC8557815 DOI: 10.1128/spectrum.00256-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intrahost genetic diversity is thought to facilitate arbovirus adaptation to changing environments and hosts, and it may also be linked to viral pathogenesis. Intending to shed light on the viral determinants for severe dengue pathogenesis, we previously analyzed the DENV-2 intrahost genetic diversity in 68 patients clinically classified as dengue fever (n = 31), dengue with warning signs (n = 19), and severe dengue (n = 18), performing viral whole-genome deep sequencing from clinical samples with an amplicon-free approach. From it, we identified a set of 141 relevant mutations distributed throughout the viral genome that deserved further attention. Therefore, we employed molecular modeling to recreate three-dimensional models of the viral proteins and secondary RNA structures to map the mutations and assess their potential effects. Results showed that, in general lines, disruptive variants were identified primarily among dengue fever cases. In contrast, potential immune-escape variants were associated mainly with warning signs and severe cases, in line with the latter's longer intrahost evolution times. Furthermore, several mutations were located on protein-surface regions, with no associated function. They could represent sites of further investigation, as the interaction of viral and host proteins is critical for both host immunomodulation and virus hijacking of the cellular machinery. The present analysis provides new information about the implications of the intrahost genetic diversity of DENV-2, contributing to the knowledge about the viral factors possibly involved in its pathogenesis within the human host. Strengthening our results with functional studies could allow many of these variants to be considered in the design of therapeutic or prophylactic compounds and the improvement of diagnostic assays. IMPORTANCE Previous evidence showed that intrahost genetic diversity in arboviruses may be linked to viral pathogenesis and that one or a few amino acid replacements within a single protein are enough to modify a biological feature of an RNA virus. To assess dengue virus serotype 2 determinants potentially involved in pathogenesis, we previously analyzed the intrahost genetic diversity of the virus in patients with different clinical outcomes and identified a set of 141 mutations that deserved further study. Thus, through a molecular modeling approach, we showed that disruptive variants were identified primarily among cases with mild dengue fever, while potential immune-escape variants were mainly associated with cases of greater severity. We believe that some of the variants pointed out in this study were attractive enough to be potentially considered in future intelligent designs of therapeutic or prophylactic compounds or the improvement of diagnostic tools. The present analysis provides new information about DENV-2 viral factors possibly involved in its pathogenesis within the human host.
Collapse
|
22
|
Xing J, Zhang Y, Lin Z, Liu L, Xu Q, Liang J, Yuan Z, Huang C, Liao M, Qi W. 3'UTR SL-IV and DB1 Regions Contribute to Japanese Encephalitis Virus Replication and Pathogenicity. Front Vet Sci 2021; 8:703147. [PMID: 34409089 PMCID: PMC8366024 DOI: 10.3389/fvets.2021.703147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes fatal neurological disease in humans, is one of the most important emerging pathogens of public health significance. JEV is maintained in an enzootic cycle and causes reproductive failure in pigs. Notably, the shift in JEV genotypes is not fully protected by existing vaccines, so the development of a candidate vaccine is urgently needed. In this study, we compared pathogenicity between Japanese encephalitis virus SA14 and BJB (isolated from humans in the 1970s) strains. We found that the BJB strain was attenuated in mice and that there was no case fatality rate. The growth rate of BJB was higher than SA14 virus in BHK-21 cells. Based on the sequence alignment of the viral genome between the SA14 and BJB virus strains, some mutations at sites 248, 254, 258, and 307 were observed in the 3′ untranslated region (3′UTR). The 3′UTR of JEV plays a very important role in the viral life cycle. Furthermore, using a reverse genetic system, we conducted and rescued the parental JEV strain SA14 (T248, A254, and A258) and the mutant virus rSA14-3′UTRmut (T248C, A254G, A258G, and 307G). Through an analysis of the RNA secondary structure model of the 3′UTR, we discovered that the mutations of T248C, A254G, and A258G reduced the apiculus ring and increased the lateral ring significantly in the stem-loop structures IV (SL-IV) structure region of 3′UTR. Moreover, the insertion of 307G added a ring to the dumbbell structure 1 (DB1) structure region. Strikingly, these RNA secondary structure changes in 3′UTR of rSA14-3′UTRmut increased viral negative chain RNA production and enhanced the replication ability of the virus in BHK-21 cells. However, in vivo mouse experiments illustrated that the rSA14-3′UTRmut virus significantly decreased the neurovirulence of JEV. These results affirmed that the JEV SL-IV and DB1 regions play an important role in viral proliferation and pathogenicity. Taken together, we complement the study of RNA element function in the 3′UTR region of JEV by providing a new target for the rational design of live attenuated candidate vaccines and the increase of virus production.
Collapse
Affiliation(s)
- Jinchao Xing
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Youyue Zhang
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziying Lin
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China
| | - Lele Liu
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China
| | - Qiang Xu
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China
| | - Jiaqi Liang
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China
| | - Zhaoxia Yuan
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Cuiqin Huang
- The Key Laboratory of Fujian Animal Diseases Control, Longyan University, Longyan, China
| | - Ming Liao
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenbao Qi
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
23
|
Akiyama BM, Graham ME, O′Donoghue Z, Beckham J, Kieft J. Three-dimensional structure of a flavivirus dumbbell RNA reveals molecular details of an RNA regulator of replication. Nucleic Acids Res 2021; 49:7122-7138. [PMID: 34133732 PMCID: PMC8266583 DOI: 10.1093/nar/gkab462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
Mosquito-borne flaviviruses (MBFVs) including dengue, West Nile, yellow fever, and Zika viruses have an RNA genome encoding one open reading frame flanked by 5' and 3' untranslated regions (UTRs). The 3' UTRs of MBFVs contain regions of high sequence conservation in structured RNA elements known as dumbbells (DBs). DBs regulate translation and replication of the viral RNA genome, functions proposed to depend on the formation of an RNA pseudoknot. To understand how DB structure provides this function, we solved the x-ray crystal structure of the Donggang virus DB to 2.1Å resolution and used structural modeling to reveal the details of its three-dimensional fold. The structure confirmed the predicted pseudoknot and molecular modeling revealed how conserved sequences form a four-way junction that appears to stabilize the pseudoknot. Single-molecule FRET suggests that the DB pseudoknot is a stable element that can regulate the switch between translation and replication during the viral lifecycle by modulating long-range RNA conformational changes.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Monica E Graham
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
| | - Zoe O′Donoghue
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
| | - J David Beckham
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
- Department of Medicine Division of Infectious Diseases, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Yong XE, Palur VR, Anand GS, Wohland T, Sharma KK. Dengue virus 2 capsid protein chaperones the strand displacement of 5'-3' cyclization sequences. Nucleic Acids Res 2021; 49:5832-5844. [PMID: 34037793 PMCID: PMC8191770 DOI: 10.1093/nar/gkab379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
By virtue of its chaperone activity, the capsid protein of dengue virus strain 2 (DENV2C) promotes nucleic acid structural rearrangements. However, the role of DENV2C during the interaction of RNA elements involved in stabilizing the 5′-3′ panhandle structure of DENV RNA is still unclear. Therefore, we determined how DENV2C affects structural functionality of the capsid-coding region hairpin element (cHP) during annealing and strand displacement of the 9-nt cyclization sequence (5CS) and its complementary 3CS. cHP has two distinct functions: a role in translation start codon selection and a role in RNA synthesis. Our results showed that cHP impedes annealing between 5CS and 3CS. Although DENV2C does not modulate structural functionality of cHP, it accelerates annealing and specifically promotes strand displacement of 3CS during 5′-3′ panhandle formation. Furthermore, DENV2C exerts its chaperone activity by favouring one of the active conformations of cHP. Based on our results, we propose mechanisms for annealing and strand displacement involving cHP. Thus, our results provide mechanistic insights into how DENV2C regulates RNA synthesis by modulating essential RNA elements in the capsid-coding region, that in turn allow for DENV replication.
Collapse
Affiliation(s)
- Xin Ee Yong
- NUS Graduate School Integrative Sciences and Engineering Programme, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - V Raghuvamsi Palur
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Thorsten Wohland
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Kamal K Sharma
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
25
|
Zammit A, Helwerda L, Olsthoorn RCL, Verbeek FJ, Gultyaev AP. A database of flavivirus RNA structures with a search algorithm for pseudoknots and triple base interactions. Bioinformatics 2021; 37:956-962. [PMID: 32866223 PMCID: PMC8128465 DOI: 10.1093/bioinformatics/btaa759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Motivation The Flavivirus genus includes several important pathogens, such as Zika, dengue and yellow fever virus. Flavivirus RNA genomes contain a number of functionally important structures in their 3′ untranslated regions (3′UTRs). Due to the diversity of sequences and topologies of these structures, their identification is often difficult. In contrast, predictions of such structures are important for understanding of flavivirus replication cycles and development of antiviral strategies. Results We have developed an algorithm for structured pattern search in RNA sequences, including secondary structures, pseudoknots and triple base interactions. Using the data on known conserved flavivirus 3′UTR structures, we constructed structural descriptors which covered the diversity of patterns in these motifs. The descriptors and the search algorithm were used for the construction of a database of flavivirus 3′UTR structures. Validating this approach, we identified a number of domains matching a general pattern of exoribonuclease Xrn1-resistant RNAs in the growing group of insect-specific flaviviruses. Availability and implementation The Leiden Flavivirus RNA Structure Database is available at https://rna.liacs.nl. The search algorithm is available at https://github.com/LeidenRNA/SRHS. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alan Zammit
- Group Imaging & Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Leon Helwerda
- Group Imaging & Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - René C L Olsthoorn
- Group Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Fons J Verbeek
- Group Imaging & Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Alexander P Gultyaev
- Group Imaging & Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands.,Department of Viroscience, Erasmus Medical Center, Rotterdam, 3000 CA, The Netherlands
| |
Collapse
|
26
|
Ambrós S, Gómez-Muñoz N, Giménez-Santamarina S, Sánchez-Vicente J, Navarro-López J, Martínez F, Daròs JA, Rodrigo G. Molecular signatures of silencing suppression degeneracy from a complex RNA virus. PLoS Comput Biol 2021; 17:e1009166. [PMID: 34181647 PMCID: PMC8270454 DOI: 10.1371/journal.pcbi.1009166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/09/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
As genomic architectures become more complex, they begin to accumulate degenerate and redundant elements. However, analyses of the molecular mechanisms underlying these genetic architecture features remain scarce, especially in compact but sufficiently complex genomes. In the present study, we followed a proteomic approach together with a computational network analysis to reveal molecular signatures of protein function degeneracy from a plant virus (as virus-host protein-protein interactions). We employed affinity purification coupled to mass spectrometry to detect several host factors interacting with two proteins of Citrus tristeza virus (p20 and p25) that are known to function as RNA silencing suppressors, using an experimental system of transient expression in a model plant. The study was expanded by considering two different isolates of the virus, and some key interactions were confirmed by bimolecular fluorescence complementation assays. We found that p20 and p25 target a common set of plant proteins including chloroplastic proteins and translation factors. Moreover, we noted that even specific targets of each viral protein overlap in function. Notably, we identified argonaute proteins (key players in RNA silencing) as reliable targets of p20. Furthermore, we found that these viral proteins preferentially do not target hubs in the host protein interactome, but elements that can transfer information by bridging different parts of the interactome. Overall, our results demonstrate that two distinct proteins encoded in the same viral genome that overlap in function also overlap in their interactions with the cell proteome, thereby highlighting an overlooked connection from a degenerate viral system.
Collapse
Affiliation(s)
- Silvia Ambrós
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC–Universitat Politècnica de València, València, Spain
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC–Universitat de València, Paterna, Spain
| | - Neus Gómez-Muñoz
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
| | - Silvia Giménez-Santamarina
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC–Universitat Politècnica de València, València, Spain
| | - Javier Sánchez-Vicente
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC–Universitat Politècnica de València, València, Spain
| | - Josep Navarro-López
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
| | - Fernando Martínez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC–Universitat Politècnica de València, València, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC–Universitat Politècnica de València, València, Spain
| | - Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC–Universitat Politècnica de València, València, Spain
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC–Universitat de València, Paterna, Spain
| |
Collapse
|
27
|
Delli Ponti R, Mutwil M. Structural landscape of the complete genomes of dengue virus serotypes and other viral hemorrhagic fevers. BMC Genomics 2021; 22:352. [PMID: 34000991 PMCID: PMC8127238 DOI: 10.1186/s12864-021-07638-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND With more than 300 million potentially infected people every year, and with the expanded habitat of mosquitoes due to climate change, Dengue virus (DENV) cannot be considered anymore only a tropical disease. The RNA secondary structure is a functional characteristic of RNA viruses, and together with the accumulated high-throughput sequencing data could provide general insights towards understanding virus biology. Here, we profiled the RNA secondary structure of > 7000 complete viral genomes from 11 different species focusing on viral hemorrhagic fevers, including DENV serotypes, EBOV, and YFV. RESULTS In our work we demonstrated that the secondary structure and presence of protein-binding domains in the genomes can be used as intrinsic signature to further classify the viruses. With our predictive approach, we achieved high prediction scores of the secondary structure (AUC up to 0.85 with experimental data), and computed consensus secondary structure profiles using hundreds of in silico models. We observed that viruses show different structural patterns, where e.g., DENV-2 and Ebola virus tend to be less structured than the other viruses. Furthermore, we observed virus-specific correlations between secondary structure and the number of interaction sites with human proteins, reaching a correlation of 0.89 in the case of Zika virus. We also identified that helicases-encoding regions are more structured in several flaviviruses, while the regions encoding for the contact proteins exhibit virus-specific clusters in terms of RNA structure and potential protein-RNA interactions. We also used structural data to study the geographical distribution of DENV, finding a significant difference between DENV-3 from Asia and South-America, where the structure is also driving the clustering more than sequence identity, which could imply different evolutionary routes of this subtype. CONCLUSIONS Our massive computational analysis provided novel results regarding the secondary structure and the interaction with human proteins, not only for DENV serotypes, but also for other flaviviruses and viral hemorrhagic fevers-associated viruses. We showed how the RNA secondary structure can be used to categorise viruses, and even to further classify them based on the interaction with proteins. We envision that these approaches can be used to further classify and characterise these complex viruses.
Collapse
Affiliation(s)
- Riccardo Delli Ponti
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
28
|
Melidis L, Styles IB, Hannon MJ. Targeting structural features of viral genomes with a nano-sized supramolecular drug. Chem Sci 2021; 12:7174-7184. [PMID: 34123344 PMCID: PMC8153246 DOI: 10.1039/d1sc00933h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
RNA targeting is an exciting frontier for drug design. Intriguing targets include functional RNA structures in structurally-conserved untranslated regions (UTRs) of many lethal viruses. However, computational docking screens, valuable in protein structure targeting, fail for inherently flexible RNA. Herein we harness MD simulations with Markov state modeling to enable nanosize metallo-supramolecular cylinders to explore the dynamic RNA conformational landscape of HIV-1 TAR untranslated region RNA (representative for many viruses) replicating experimental observations. These cylinders are exciting as they have unprecedented nucleic acid binding and are the first supramolecular helicates shown to have anti-viral activity in cellulo: the approach developed in this study provides additional new insight about how such viral UTR structures might be targeted with the cylinder binding into the heart of an RNA-bulge cavity, how that reduces the conformational flexibility of the RNA and molecular details of the insertion mechanism. The approach and understanding developed represents a new roadmap for design of supramolecular drugs to target RNA structural motifs across biology and nucleic acid nanoscience.
Collapse
Affiliation(s)
- Lazaros Melidis
- Physical Sciences for Health Centre, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Iain B Styles
- Physical Sciences for Health Centre, University of Birmingham Edgbaston Birmingham B15 2TT UK
- School of Computer Science, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham The Midlands UK
- Alan Turing Institute London UK
| | - Michael J Hannon
- Physical Sciences for Health Centre, University of Birmingham Edgbaston Birmingham B15 2TT UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
29
|
Ramos-Lorente S, Romero-López C, Berzal-Herranz A. Information Encoded by the Flavivirus Genomes beyond the Nucleotide Sequence. Int J Mol Sci 2021; 22:3738. [PMID: 33916729 PMCID: PMC8038387 DOI: 10.3390/ijms22073738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023] Open
Abstract
The genus Flavivirus comprises numerous, small, single positive-stranded RNA viruses, many of which are important human pathogens. To store all the information required for their successful propagation, flaviviruses use discrete structural genomic RNA elements to code for functional information by the establishment of dynamic networks of long-range RNA-RNA interactions that promote specific folding. These structural elements behave as true cis-acting, non-coding RNAs (ncRNAs) and have essential regulatory roles in the viral cycle. These include the control of the formation of subgenomic RNAs, known as sfRNAs, via the prevention of the complete degradation of the RNA genome. These sfRNAs are important in ensuring viral fitness. This work summarizes our current knowledge of the functions performed by the genome conformations and the role of RNA-RNA interactions in these functions. It also reviews the role of RNA structure in the production of sfRNAs across the genus Flavivirus, and their existence in related viruses.
Collapse
Affiliation(s)
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain;
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain;
| |
Collapse
|
30
|
The Pseudo-Circular Genomes of Flaviviruses: Structures, Mechanisms, and Functions of Circularization. Cells 2021; 10:cells10030642. [PMID: 33805761 PMCID: PMC7999817 DOI: 10.3390/cells10030642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
The circularization of viral genomes fulfills various functions, from evading host defense mechanisms to promoting specific replication and translation patterns supporting viral proliferation. Here, we describe the genomic structures and associated host factors important for flaviviruses genome circularization and summarize their functional roles. Flaviviruses are relatively small, single-stranded, positive-sense RNA viruses with genomes of approximately 11 kb in length. These genomes contain motifs at their 5′ and 3′ ends, as well as in other regions, that are involved in circularization. These motifs are highly conserved throughout the Flavivirus genus and occur both in mature virions and within infected cells. We provide an overview of these sequence motifs and RNA structures involved in circularization, describe their linear and circularized structures, and discuss the proteins that interact with these circular structures and that promote and regulate their formation, aiming to clarify the key features of genome circularization and understand how these affect the flaviviruses life cycle.
Collapse
|
31
|
Genetic Variation in the Domain II, 3' Untranslated Region of Human and Mosquito Derived Dengue Virus Strains in Sri Lanka. Viruses 2021; 13:v13030421. [PMID: 33807922 PMCID: PMC8001906 DOI: 10.3390/v13030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic variations in dengue virus (DENV) play a distinct role in epidemic emergence. The DENV 3′ UTR has become a recent interest in research. The objective of the study was to examine the genetic variation in the domain II, 3′ UTR region of human and mosquito-derived DENV. DENV-infected human sera were orally infected to laboratory reared Aedes aegypti mosquitoes. The domain II, 3′ UTR of each human- and mosquito-derived sample was amplified. The nucleotide sequence variation, phylogenetic and secondary structure analysis was carried out incorporating respective regions of so far recorded Sri Lankan and the reference genotype strains of the DENV3 and DENV1 serotypes. The human- and mosquito-derived domain II, 3′ UTR were identical in nucleotide sequences within the serotypes isolated, indicating the conserved nature of the region during host switch. The sequence analysis revealed distinct variations in study isolates compared to so far recorded Sri Lankan isolates. However, despite single nucleotide variations, the maintenance of structural integrity was evident in related strains within the serotypes in the secondary structure analysis. The phylogenetic analysis revealed distinct clade segregation of the study sequences from so far reported Sri Lankan isolates and illustrated the phylogenetic relations of the study sequences to the available global isolates of respective serotypes.
Collapse
|
32
|
Role of PDZ-binding motif from West Nile virus NS5 protein on viral replication. Sci Rep 2021; 11:3266. [PMID: 33547379 PMCID: PMC7865074 DOI: 10.1038/s41598-021-82751-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
West Nile virus (WNV) is a Flavivirus, which can cause febrile illness in humans that may progress to encephalitis. Like any other obligate intracellular pathogens, Flaviviruses hijack cellular protein functions as a strategy for sustaining their life cycle. Many cellular proteins display globular domain known as PDZ domain that interacts with PDZ-Binding Motifs (PBM) identified in many viral proteins. Thus, cellular PDZ-containing proteins are common targets during viral infection. The non-structural protein 5 (NS5) from WNV provides both RNA cap methyltransferase and RNA polymerase activities and is involved in viral replication but its interactions with host proteins remain poorly known. In this study, we demonstrate that the C-terminal PBM of WNV NS5 recognizes several human PDZ-containing proteins using both in vitro and in cellulo high-throughput methods. Furthermore, we constructed and assayed in cell culture WNV replicons where the PBM within NS5 was mutated. Our results demonstrate that the PBM of WNV NS5 is important in WNV replication. Moreover, we show that knockdown of the PDZ-containing proteins TJP1, PARD3, ARHGAP21 or SHANK2 results in the decrease of WNV replication in cells. Altogether, our data reveal that interactions between the PBM of NS5 and PDZ-containing proteins affect West Nile virus replication.
Collapse
|
33
|
Jones RA, Steckelberg AL, Vicens Q, Szucs MJ, Akiyama BM, Kieft JS. Different tertiary interactions create the same important 3D features in a distinct flavivirus xrRNA. RNA (NEW YORK, N.Y.) 2021; 27:54-65. [PMID: 33004436 PMCID: PMC7749634 DOI: 10.1261/rna.077065.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/27/2020] [Indexed: 05/12/2023]
Abstract
During infection by a flavivirus (FV), cells accumulate noncoding subgenomic flavivirus RNAs (sfRNAs) that interfere with several antiviral pathways. These sfRNAs are formed by structured RNA elements in the 3' untranslated region (UTR) of the viral genomic RNA, which block the progression of host cell exoribonucleases that have targeted the viral RNA. Previous work on these exoribonuclease-resistant RNAs (xrRNAs) from mosquito-borne FVs revealed a specific three-dimensional fold with a unique topology in which a ring-like structure protectively encircles the 5' end of the xrRNA. Conserved nucleotides make specific tertiary interactions that support this fold. Examination of more divergent FVs reveals differences in their 3' UTR sequences, raising the question of whether they contain xrRNAs and if so, how they fold. To answer this, we demonstrated the presence of an authentic xrRNA in the 3' UTR of the Tamana bat virus (TABV) and solved its structure by X-ray crystallography. The structure reveals conserved features from previously characterized xrRNAs, but in the TABV version these features are created through a novel set of tertiary interactions not previously seen in xrRNAs. This includes two important A-C interactions, four distinct backbone kinks, several ordered Mg2+ ions, and a C+-G-C base triple. The discovery that the same overall architecture can be achieved by very different sequences and interactions in distantly related flaviviruses provides insight into the diversity of this type of RNA and will inform searches for undiscovered xrRNAs in viruses and beyond.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Base Pairing
- Base Sequence
- Cations, Divalent
- Crystallography, X-Ray
- Encephalitis Virus, Murray Valley/genetics
- Encephalitis Virus, Murray Valley/metabolism
- Encephalitis Virus, Murray Valley/ultrastructure
- Exoribonucleases/chemistry
- Exoribonucleases/metabolism
- Flaviviridae/genetics
- Flaviviridae/metabolism
- Flaviviridae/ultrastructure
- Host-Pathogen Interactions/genetics
- Magnesium/chemistry
- Magnesium/metabolism
- RNA Folding
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Viruses, Unclassified/genetics
- Viruses, Unclassified/metabolism
- Viruses, Unclassified/ultrastructure
- Zika Virus/genetics
- Zika Virus/metabolism
- Zika Virus/ultrastructure
Collapse
Affiliation(s)
- Rachel A Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Matthew J Szucs
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Benjamin M Akiyama
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
34
|
Mishra B, Balaji A, Beesetti H, Swaminathan S, Aduri R. The RNA secondary structural variation in the cyclization elements of the dengue genome and the possible implications in pathogenicity. Virusdisease 2020; 31:299-307. [PMID: 32904896 PMCID: PMC7458965 DOI: 10.1007/s13337-020-00615-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022] Open
Abstract
Dengue virus (DENV), the causative agent of dengue fever and severe dengue, exists as four antigenically different serotypes. These serotypes are further classified into genotypes and have varying degrees of pathogenicity. The 5' and 3' ends of the genomic RNA play a critical role in the viral life cycle. A global scale study of the RNA structural variation among the sero- and genotypes was carried out to correlate RNA structure with pathogenicity. We found that the GC rich stem and rigid loop structure of the 5' end of the genomic RNA of DENV 2 differs significantly from the others. The observed variation in base composition and base pairing may confer structural and functional advantage in highly virulent strains. This variation in the structure may influence the ease of cyclization and recruitment of viral RNA polymerase, NS5 RdRp, thereby affecting the pathogenicity of these strains.
Collapse
Affiliation(s)
- Bibhudutta Mishra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, South Goa, Goa 403 726 India
| | - Advait Balaji
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, South Goa, Goa 403 726 India
| | - Hemalatha Beesetti
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana 500 078 India
- Present Address: Molecular Medicine Division, Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Sathyamangalam Swaminathan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana 500 078 India
- Present Address: Molecular Medicine Division, Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Raviprasad Aduri
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, South Goa, Goa 403 726 India
| |
Collapse
|
35
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
36
|
Zika Virus Subgenomic Flavivirus RNA Generation Requires Cooperativity between Duplicated RNA Structures That Are Essential for Productive Infection in Human Cells. J Virol 2020; 94:JVI.00343-20. [PMID: 32581095 DOI: 10.1128/jvi.00343-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus, mainly transmitted by mosquitoes, which represents a global health threat. A common feature of flavivirus-infected cells is the accumulation of viral noncoding subgenomic RNAs by partial degradation of the viral genome, known as sfRNAs, involved in immune evasion and pathogenesis. Although great effort is being made to understand the mechanism by which these sfRNAs function during infection, the picture of how they work is still incomplete. In this study, we developed new genetic tools to dissect the functions of ZIKV RNA structures for viral replication and sfRNA production in mosquito and human hosts. ZIKV infections mostly accumulate two kinds of sfRNAs, sfRNA1 and sfRNA2, by stalling genome degradation upstream of duplicated stem loops (SLI and SLII) of the viral 3' untranslated region (UTR). Although the two SLs share conserved sequences and structures, different functions have been found for ZIKV replication in human and mosquito cells. While both SLs are enhancers for viral infection in human cells, they play opposite roles in the mosquito host. The dissection of determinants for sfRNA formation indicated a strong cooperativity between SLI and SLII, supporting a high-order organization of this region of the 3' UTR. Using recombinant ZIKV with different SLI and SLII arrangements, which produce different types of sfRNAs or lack the ability to generate these molecules, revealed that at least one sfRNA was necessary for efficient infection and transmission in Aedes aegypti mosquitoes. Importantly, we demonstrate an absolute requirement of sfRNAs for ZIKV propagation in human cells. In this regard, viruses lacking sfRNAs, constructed by deletion of the region containing SLI and SLII, were able to infect human cells but the infection was rapidly cleared by antiviral responses. Our findings are unique for ZIKV, since in previous studies, other flaviviruses with deletions of analogous regions of the genome, including dengue and West Nile viruses, accumulated distinct species of sfRNAs and were infectious in human cells. We conclude that flaviviruses share common strategies for sfRNA generation, but they have evolved mechanisms to produce different kinds of these RNAs to accomplish virus-specific functions.IMPORTANCE Flaviviruses are important emerging and reemerging human pathogens. Understanding the molecular mechanisms for viral replication and evasion of host antiviral responses is relevant to development of control strategies. Flavivirus infections produce viral noncoding RNAs, known as sfRNAs, involved in viral replication and pathogenesis. In this study, we dissected molecular determinants for Zika virus sfRNA generation in the two natural hosts, human cells and mosquitoes. We found that two RNA structures of the viral 3' UTR operate in a cooperative manner to produce two species of sfRNAs and that the deletion of these elements has a profoundly different impact on viral replication in the two hosts. Generation of at least one sfRNA was necessary for efficient Zika virus infection of Aedes aegypti mosquitoes. Moreover, recombinant viruses with different 3' UTR arrangements revealed an essential role of sfRNAs for productive infection in human cells. In summary, we define molecular requirements for Zika virus sfRNA accumulation and provide new ideas of how flavivirus RNA structures have evolved to succeed in different hosts.
Collapse
|
37
|
Filomatori CV, Merwaiss F, Bardossy ES, Alvarez DE. Impact of alphavirus 3'UTR plasticity on mosquito transmission. Semin Cell Dev Biol 2020; 111:148-155. [PMID: 32665176 DOI: 10.1016/j.semcdb.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
Alphaviruses such as chikungunya and western equine encephalitis viruses are important human pathogens transmitted by mosquitoes that have recently caused large epidemic and epizootic outbreaks. The epidemic potential of alphaviruses is often related to enhanced mosquito transmission. Tissue barriers and antiviral responses impose bottlenecks to viral populations in mosquitoes. Substitutions in the envelope proteins and the presence of repeated sequence elements (RSEs) in the 3'UTR of epidemic viruses were proposed to be specifically associated to efficient replication in mosquito vectors. Here, we discuss the molecular mechanisms that originated RSEs, the evolutionary forces that shape the 3'UTR of alphaviruses, and the significance of RSEs for mosquito transmission. Finally, the presence of RSEs in the 3'UTR of viral genomes appears as evolutionary trait associated to mosquito adaptation and emerges as a common feature among viruses from the alphavirus and flavivirus genera.
Collapse
Affiliation(s)
- Claudia V Filomatori
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Fernando Merwaiss
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Eugenia S Bardossy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina.
| |
Collapse
|
38
|
Cerikan B, Goellner S, Neufeldt CJ, Haselmann U, Mulder K, Chatel-Chaix L, Cortese M, Bartenschlager R. A Non-Replicative Role of the 3' Terminal Sequence of the Dengue Virus Genome in Membranous Replication Organelle Formation. Cell Rep 2020; 32:107859. [PMID: 32640225 PMCID: PMC7351112 DOI: 10.1016/j.celrep.2020.107859] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV), members of the Flavivirus genus, rearrange endoplasmic reticulum membranes to induce invaginations known as vesicle packets (VPs), which are the assumed sites for viral RNA replication. Mechanistic information on VP biogenesis has so far been difficult to attain due to the necessity of studying their formation under conditions of viral replication, where perturbations reducing replication will inevitably impact VP formation. Here, we report a replication-independent expression system, designated pIRO (plasmid-induced replication organelle formation) that induces bona fide DENV and ZIKV VPs that are morphologically indistinguishable from those in infected cells. Using this system, we demonstrate that sequences in the 3' terminal RNA region of the DENV, but not the ZIKV genome, contribute to VP formation in a non-replicative manner. These results validate the pIRO system that opens avenues for mechanistically dissecting virus replication from membrane reorganization.
Collapse
Affiliation(s)
- Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Sarah Goellner
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Christopher John Neufeldt
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Klaas Mulder
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Laurent Chatel-Chaix
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg Partner Site, University, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Noor R. Reemergence of dengue virus in Bangladesh: Current fatality and the required knowledge. Tzu Chi Med J 2020; 32:227-233. [PMID: 32955510 PMCID: PMC7485671 DOI: 10.4103/tcmj.tcmj_193_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 11/08/2022] Open
Abstract
The current fatality of dengue among the Bangladeshi population has drawn the interest of the public health professionals primarily to focus on the environmental, social, and clinical reasoning as well the possible remedies. This year, in 2019, the dengue situation in Bangladesh has appeared with all its dreadful effects leading to the highest death cases due to dengue virus (DENV) infection. According to the Directorate General of Health Services report, this year (2019) the number of DENV-infected people has appeared to be around five times higher (approximately 50,000 cases so far) compared with the last year, 2018 (around 10,000 cases). The present review discussed the current epidemics of dengue infection in Bangladesh as well the possible means of disease curing in terms of general preventive concepts. However, besides the precise treatment of the dengue-affected patients, the knowledge on DENV genome and on the protective immunity against such reemerging disease is essential.
Collapse
Affiliation(s)
- Rashed Noor
- Department of Microbiology, School of Life Sciences, Independent University, Dhaka, Bangladesh
| |
Collapse
|
40
|
Zeng M, Duan Y, Zhang W, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Chen S, Cheng A. Universal RNA Secondary Structure Insight Into Mosquito-Borne Flavivirus (MBFV) cis-Acting RNA Biology. Front Microbiol 2020; 11:473. [PMID: 32292394 PMCID: PMC7118588 DOI: 10.3389/fmicb.2020.00473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Mosquito-borne flaviviruses (MBFVs) spread between vertebrate (mammals and birds) and invertebrate (mosquitoes) hosts. The cis-acting RNAs of MBFV share common evolutionary origins and contain frequent alterations, which control the balance of linear and circular genome conformations and allow effective replication. Importantly, multiple cis-acting RNAs interact with trans-acting regulatory RNA-binding proteins (RBPs) and affect the MBFV lifecycle process, including viral replicase binding, viral RNA translation-cyclisation-synthesis and nucleocapsid assembly. Considering that extensive structural probing analyses have been performed on MBFV cis-acting RNAs, herein the homologous RNA structures are online folded and consensus structures are constructed by sort. The specific traits and underlying biology of MBFV cis-acting RNA are illuminated accordingly in a review of RNA structure. These findings deepen our understanding of MBFV cis-acting RNA biology and serve as a resource for designing therapeutics in targeting protein-viral RNA interaction or viral RNA secondary structures.
Collapse
Affiliation(s)
- Miao Zeng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanping Duan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yangling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
41
|
Short Direct Repeats in the 3' Untranslated Region Are Involved in Subgenomic Flaviviral RNA Production. J Virol 2020; 94:JVI.01175-19. [PMID: 31896596 DOI: 10.1128/jvi.01175-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Mosquito-borne flaviviruses consist of a positive-sense genome RNA flanked by the untranslated regions (UTRs). There is a panel of highly complex RNA structures in the UTRs with critical functions. For instance, Xrn1-resistant RNAs (xrRNAs) halt Xrn1 digestion, leading to the production of subgenomic flaviviral RNA (sfRNA). Conserved short direct repeats (DRs), also known as conserved sequences (CS) and repeated conserved sequences (RCS), have been identified as being among the RNA elements locating downstream of xrRNAs, but their biological function remains unknown. In this study, we revealed that the specific DRs are involved in the production of specific sfRNAs in both mammalian and mosquito cells. Biochemical assays and structural remodeling demonstrate that the base pairings in the stem of these DRs control sfRNA formation by maintaining the binding affinity of the corresponding xrRNAs to Xrn1. On the basis of these findings, we propose that DRs functions like a bracket holding the Xrn1-xrRNA complex for sfRNA formation.IMPORTANCE Flaviviruses include many important human pathogens. The production of subgenomic flaviviral RNAs (sfRNAs) is important for viral pathogenicity as a common feature of flaviviruses. sfRNAs are formed through the incomplete degradation of viral genomic RNA by the cytoplasmic 5'-3' exoribonuclease Xrn1 halted at the Xrn1-resistant RNA (xrRNA) structures within the 3'-UTR. The 3'-UTRs of the flavivirus genome also contain distinct short direct repeats (DRs), such as RCS3, CS3, RCS2, and CS2. However, the biological functions of these ancient primary DR sequences remain largely unknown. Here, we found that DR sequences are involved in sfRNA formation and viral virulence and provide novel targets for the rational design of live attenuated flavivirus vaccine.
Collapse
|
42
|
Oyarzún-Arrau A, Alonso-Palomares L, Valiente-Echeverría F, Osorio F, Soto-Rifo R. Crosstalk between RNA Metabolism and Cellular Stress Responses during Zika Virus Replication. Pathogens 2020; 9:E158. [PMID: 32106582 PMCID: PMC7157488 DOI: 10.3390/pathogens9030158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus associated with neurological disorders such as Guillain-Barré syndrome and microcephaly. In humans, ZIKV is able to replicate in cell types from different tissues including placental cells, neurons, and microglia. This intricate virus-cell interaction is accompanied by virally induced changes in the infected cell aimed to promote viral replication as well as cellular responses aimed to counteract or tolerate the virus. Early in the infection, the 11-kb positive-sense RNA genome recruit ribosomes in the cytoplasm and the complex is translocated to the endoplasmic reticulum (ER) for viral protein synthesis. In this process, ZIKV replication is known to induce cellular stress, which triggers both the expression of innate immune genes and the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α), shutting-off host protein synthesis. Remodeling of the ER during ZIKV replication also triggers the unfolded protein response (UPR), which induces changes in the cellular transcriptional landscapes aimed to tolerate infection or trigger apoptosis. Alternatively, ZIKV replication induces changes in the adenosine methylation patterns of specific host mRNAs, which have different consequences in viral replication and cellular fate. In addition, the ZIKV RNA genome undergoes adenosine methylation by the host machinery, which results in the inhibition of viral replication. However, despite these relevant findings, the full scope of these processes to the outcome of infection remains poorly elucidated. This review summarizes relevant aspects of the complex crosstalk between RNA metabolism and cellular stress responses against ZIKV and discusses their possible impact on viral pathogenesis.
Collapse
Affiliation(s)
- Aarón Oyarzún-Arrau
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
| | - Luis Alonso-Palomares
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Fabiola Osorio
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
43
|
Different Degrees of 5'-to-3' DAR Interactions Modulate Zika Virus Genome Cyclization and Host-Specific Replication. J Virol 2020; 94:JVI.01602-19. [PMID: 31826997 PMCID: PMC7022364 DOI: 10.1128/jvi.01602-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023] Open
Abstract
Mosquito-borne flaviviruses, which include many important human pathogens, such as West Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV), have caused numerous emerging epidemics in recent years. Details of the viral genome functions necessary for effective viral replication in mosquito and vertebrate hosts remain obscure. Here, using ZIKV as a model, we found that the conserved "downstream of AUG region" (DAR), which is known to be an essential element for genome cyclization, is involved in viral replication in a host-specific manner. Mutational analysis of the DAR element showed that a single-nucleotide mismatch between the 5' DAR and the 3' DAR had little effect on ZIKV replication in mammalian cells but dramatically impaired viral propagation in mosquito cells. The revertant viruses passaged in mosquito cells generated compensatory mutations restoring the base pairing of the DAR, further confirming the importance of the complementarity of the DAR in mosquito cells. We demonstrate that a single-nucleotide mutation in the DAR is sufficient to destroy long-range RNA interaction of the ZIKV genome and affects de novo RNA synthesis at 28°C instead of 37°C, resulting in the different replication efficiencies of the mutant viruses in mosquito and mammalian cells. Our results reveal a novel function of the circular form of the flavivirus genome in host-specific viral replication, providing new ideas to further explore the functions of the viral genome during host adaptation.IMPORTANCE Flaviviruses naturally cycle between the mosquito vector and vertebrate hosts. The disparate hosts provide selective pressures that drive virus genome evolution to maintain efficient replication during host alteration. Host adaptation may occur at different stages of the viral life cycle, since host-specific viral protein processing and virion conformations have been reported in the individual hosts. However, the viral determinants and the underlying mechanisms associated with host-specific functions remain obscure. In this study, using Zika virus, we found that the DAR-mediated genome cyclization regulates viral replication differently and is under different selection pressures in mammalian and mosquito cells. A more constrained complementarity of the DAR is required in mosquito cells than in mammalian cells. Since the DAR element is stably maintained among mosquito-borne flaviviruses, our findings could provide new information for understanding the role of flavivirus genome cyclization in viral adaptation and RNA evolution in the two hosts.
Collapse
|
44
|
An RNA Thermometer Activity of the West Nile Virus Genomic 3'-Terminal Stem-Loop Element Modulates Viral Replication Efficiency during Host Switching. Viruses 2020; 12:v12010104. [PMID: 31952291 PMCID: PMC7019923 DOI: 10.3390/v12010104] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
The 3′-terminal stem-loop (3′SL) of the RNA genome of the flavivirus West Nile (WNV) harbors, in its stem, one of the sequence elements that are required for genome cyclization. As cyclization is a prerequisite for the initiation of viral replication, the 3′SL was proposed to act as a replication silencer. The lower part of the 3′SL is metastable and confers a structural flexibility that may regulate the switch from the linear to the circular conformation of the viral RNA. In the human system, we previously demonstrated that a cellular RNA-binding protein, AUF1 p45, destabilizes the 3′SL, exposes the cyclization sequence, and thus promotes flaviviral genome cyclization and RNA replication. By investigating mutant RNAs with increased 3′SL stabilities, we showed the specific conformation of the metastable element to be a critical determinant of the helix-destabilizing RNA chaperone activity of AUF1 p45 and of the precision and efficiency of the AUF1 p45-supported initiation of RNA replication. Studies of stability-increasing mutant WNV replicons in human and mosquito cells revealed that the cultivation temperature considerably affected the replication efficiencies of the viral RNA variants and demonstrated the silencing effect of the 3′SL to be temperature dependent. Furthermore, we identified and characterized mosquito proteins displaying similar activities as AUF1 p45. However, as the RNA remodeling activities of the mosquito proteins were found to be considerably lower than those of the human protein, a potential cell protein-mediated destabilization of the 3′SL was suggested to be less efficient in mosquito cells. In summary, our data support a model in which the 3′SL acts as an RNA thermometer that modulates flavivirus replication during host switching.
Collapse
|
45
|
A Polyuridine Insertion in the 3' Untranslated Region of Classical Swine Fever Virus Activates Immunity and Reduces Viral Virulence in Piglets. J Virol 2020; 94:JVI.01214-19. [PMID: 31645448 PMCID: PMC6955259 DOI: 10.1128/jvi.01214-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 01/15/2023] Open
Abstract
Classical swine fever (CSF), a highly contagious viral disease of pigs, is still endemic in some countries of Asia and Central and South America. Considering that the 3′ untranslated region (3′ UTR) plays an important role in flavivirus replication, the present study showed for the first time that a long polyuridine sequence acquired in the 3′ UTR by an endemic CSFV isolate can activate immunity, control viral replication, and modulate disease in piglets. Our findings provide new avenues for the development of novel vaccines against infections with CSF virus and other flaviviruses. Knowledge of molecular virulence determinants is also relevant for future development of rapid and efficient diagnostic tools for the prediction of the virulence of field isolates and for efficient CSF control. Low-virulence classical swine fever virus (CSFV) strains make CSF eradication particularly difficult. Few data are available on the molecular determinants of CSFV virulence. The aim of the present study was to assess a possible role for CSFV virulence of a unique, uninterrupted 36-uridine (poly-U) sequence found in the 3′ untranslated region (3′ UTR) of the low-virulence CSFV isolate Pinar de Rio (PdR). To this end, a pair of cDNA-derived viruses based on the PdR backbone were generated, one carrying the long poly-U insertion in the 3′ UTR (vPdR-36U) and the other harboring the standard 5 uridines at this position (vPdR-5U). Two groups of 20 5-day-old piglets were infected with vPdR-36U and vPdR-5U. Ten contact piglets were added to each group. Disease progression, virus replication, and immune responses were monitored for 5 weeks. The vPdR-5U virus was significantly more virulent than the vPdR-36U virus, with more severe disease, higher mortality, and significantly higher viral loads in serum and body secretions, despite similar replication characteristics in cell culture. The two viruses were transmitted to all contact piglets. Ninety percent of the piglets infected with vPdR-36U seroconverted, while only one vPdR-5U-infected piglet developed antibodies. The vPdR-5U-infected piglets showed only transient alpha interferon (IFN-α) responses in serum after 1 week of infection, while the vPdR-36U-infected piglets showed sustained IFN-α levels during the first 2 weeks. Taken together, these data show that the 3′ UTR poly-U insertion acquired by the PdR isolate reduces viral virulence and activates the innate and humoral immune responses without affecting viral transmission. IMPORTANCE Classical swine fever (CSF), a highly contagious viral disease of pigs, is still endemic in some countries of Asia and Central and South America. Considering that the 3′ untranslated region (3′ UTR) plays an important role in flavivirus replication, the present study showed for the first time that a long polyuridine sequence acquired in the 3′ UTR by an endemic CSFV isolate can activate immunity, control viral replication, and modulate disease in piglets. Our findings provide new avenues for the development of novel vaccines against infections with CSF virus and other flaviviruses. Knowledge of molecular virulence determinants is also relevant for future development of rapid and efficient diagnostic tools for the prediction of the virulence of field isolates and for efficient CSF control.
Collapse
|
46
|
Endless Forms: Within-Host Variation in the Structure of the West Nile Virus RNA Genome during Serial Passage in Bird Hosts. mSphere 2019; 4:4/3/e00291-19. [PMID: 31243074 PMCID: PMC6595145 DOI: 10.1128/msphere.00291-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The enzymes that copy RNA genomes lack proofreading, and viruses that possess RNA genomes, such as West Nile virus, rapidly diversify into swarms of mutant lineages within a host. Intrahost variation of the primary genomic sequence of RNA viruses has been studied extensively because the extent of this variation shapes key virus phenotypes. However, RNA genomes also form complex secondary structures based on within-genome nucleotide complementarity, which are critical regulators of the cyclization of the virus genome that is necessary for efficient replication and translation. We sought to characterize variation in these secondary structures within populations of West Nile virus during serial passage in three bird species. Our study indicates that the intrahost population of West Nile virus is a diverse assortment of RNA secondary structures that should be considered in future analyses of intrahost viral diversity, but some regions that are critical for genome cyclization are conserved within hosts. Besides potential impacts on viral replication, structural diversity can influence the efficacy of small RNA antiviral therapies. RNA viruses are infamous for their high rates of mutation, which produce swarms of genetic variants within individual hosts. To date, analyses of intrahost genetic diversity have focused on the primary genome sequence. However, virus phenotypes are shaped not only by primary sequence but also by the secondary structures into which this sequence folds. Such structures enable viral replication, translation, and binding of small RNAs, yet within-host variation at the structural level has not been adequately explored. We characterized the structural diversity of the 5′ untranslated region (UTR) of populations of West Nile virus (WNV) that had been subject to five serial passages in triplicate in each of three bird species. Viral genomes were sampled from host serum samples at each passage (n = 45 populations) and subjected to next-generation sequencing. For populations derived from passages 1, 3, and 5 (n = 9 populations), we predicted the impact of each mutation occurring at a frequency of ≥1% on the secondary structure of the 5′ UTR. As expected, mutations in double-stranded (DS) regions of the 5′ UTR stem structures caused structural changes of significantly greater magnitude than did mutations in single-stranded (SS) regions. Despite the greater impact of mutations in DS regions, mutations in DS and SS regions occurred at similar frequencies, with no evidence of enhanced selection against mutation in DS regions. In contrast, mutations in two regions that mediate genome cyclization and thereby regulate replication and translation, the 5′ cyclization sequence and the UAR flanking stem (UFS), were suppressed in all three hosts. IMPORTANCE The enzymes that copy RNA genomes lack proofreading, and viruses that possess RNA genomes, such as West Nile virus, rapidly diversify into swarms of mutant lineages within a host. Intrahost variation of the primary genomic sequence of RNA viruses has been studied extensively because the extent of this variation shapes key virus phenotypes. However, RNA genomes also form complex secondary structures based on within-genome nucleotide complementarity, which are critical regulators of the cyclization of the virus genome that is necessary for efficient replication and translation. We sought to characterize variation in these secondary structures within populations of West Nile virus during serial passage in three bird species. Our study indicates that the intrahost population of West Nile virus is a diverse assortment of RNA secondary structures that should be considered in future analyses of intrahost viral diversity, but some regions that are critical for genome cyclization are conserved within hosts. Besides potential impacts on viral replication, structural diversity can influence the efficacy of small RNA antiviral therapies.
Collapse
|
47
|
Hodge K, Kamkaew M, Pisitkun T, Chimnaronk S. Flavors of Flaviviral RNA Structure: towards an Integrated View of RNA Function from Translation through Encapsidation. Bioessays 2019; 41:e1900003. [PMID: 31210384 PMCID: PMC7161798 DOI: 10.1002/bies.201900003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/02/2019] [Indexed: 01/03/2023]
Abstract
For many viruses, RNA is the holder of genetic information and serves as the template for both replication and translation. While host and viral proteins play important roles in viral decision‐making, the extent to which viral RNA (vRNA) actively participates in translation and replication might be surprising. Here, the focus is on flaviviruses, which include common human scourges such as dengue, West Nile, and Zika viruses, from an RNA‐centric viewpoint. In reviewing more recent findings, an attempt is made to fill knowledge gaps and revisit some canonical views of vRNA structures involved in replication. In particular, alternative views are offered on the nature of the flaviviral promoter and genome cyclization, and the feasibility of refining in vitro‐derived models with modern RNA probing and sequencing methods is pointed out. By tracing vRNA structures from translation through encapsidation, a dynamic molecule closely involved in the self‐regulation of viral replication is revealed.
Collapse
Affiliation(s)
- Kenneth Hodge
- The Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Maliwan Kamkaew
- Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Trairak Pisitkun
- The Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sarin Chimnaronk
- Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
48
|
Finol E, Ooi EE. Evolution of Subgenomic RNA Shapes Dengue Virus Adaptation and Epidemiological Fitness. iScience 2019; 16:94-105. [PMID: 31154208 PMCID: PMC6545344 DOI: 10.1016/j.isci.2019.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 02/02/2019] [Accepted: 05/13/2019] [Indexed: 01/07/2023] Open
Abstract
Changes in dengue virus (DENV) genome affect viral fitness both clinically and epidemiologically. Even in the 3′ untranslated region (3′ UTR), mutations could affect subgenomic flaviviral RNA (sfRNA) production and its affinity for host proteins, which are necessary for successful viral replication. Indeed, we recently showed that mutations in DENV2 3′ UTR of epidemic strains increased sfRNA ability to bind host proteins and reduce interferon expression. However, whether 3′ UTR differences shape the overall DENV evolution remains incompletely understood. Herein, we combined RNA phylogeny with phylogenetics to gain insights on sfRNA evolution. We found that sfRNA structures are under purifying selection and highly conserved despite sequence divergence. Only the second flaviviral nuclease-resistant RNA (fNR2) structure of DENV2 sfRNA has undergone strong positive selection. Epidemiological reports suggest that substitutions in fNR2 may drive DENV2 epidemiological fitness, possibly through sfRNA-protein interactions. Collectively, our findings indicate that 3′ UTRs are important determinants of DENV fitness in human-mosquito cycles. Dengue viruses (DENVs) preserve RNA elements in their 3′ untranslated region (UTR). Quantification of natural selection revealed positive selection on DENV2 sfRNA Flaviviral nuclease-resistant RNAs (fNR) in the 3′ UTRs contribute to DENV speciation A highly evolving fNR structure appears to increase DENV2 epidemiological fitness
Collapse
Affiliation(s)
- Esteban Finol
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Swiss Tropical and Public Health Institute, University of Basel, Basel 4051, Switzerland; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
| |
Collapse
|
49
|
Ochsenreiter R, Hofacker IL, Wolfinger MT. Functional RNA Structures in the 3'UTR of Tick-Borne, Insect-Specific and No-Known-Vector Flaviviruses. Viruses 2019; 11:E298. [PMID: 30909641 PMCID: PMC6466055 DOI: 10.3390/v11030298] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
Untranslated regions (UTRs) of flaviviruses contain a large number of RNA structural elements involved in mediating the viral life cycle, including cyclisation, replication, and encapsidation. Here we report on a comparative genomics approach to characterize evolutionarily conserved RNAs in the 3 ' UTR of tick-borne, insect-specific and no-known-vector flaviviruses in silico. Our data support the wide distribution of previously experimentally characterized exoribonuclease resistant RNAs (xrRNAs) within tick-borne and no-known-vector flaviviruses and provide evidence for the existence of a cascade of duplicated RNA structures within insect-specific flaviviruses. On a broader scale, our findings indicate that viral 3 ' UTRs represent a flexible scaffold for evolution to come up with novel xrRNAs.
Collapse
Affiliation(s)
- Roman Ochsenreiter
- Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria.
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria.
- Research Group BCB, Faculty of Computer Science, University of Vienna, Währingerstraße 29, 1090 Vienna, Austria.
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria.
- Research Group BCB, Faculty of Computer Science, University of Vienna, Währingerstraße 29, 1090 Vienna, Austria.
| |
Collapse
|