1
|
Lu X, Li X, Qi H, Chen C, Jin W. Enhanced pollution control using sediment microbial fuel cells for ecological remediation. BIORESOURCE TECHNOLOGY 2025; 418:131970. [PMID: 39674350 DOI: 10.1016/j.biortech.2024.131970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Sediment Microbial Fuel Cell (SMFC) technology is an innovative approach to facilitate the degradation of sedimentary organic matter by electroactive microorganisms, transforming chemical energy into electrical energy and modulating the redox potential at the sediment-water interface, consequently controlling the release of endogenous pollutants. The synergistic effects of various environmental factors and intrinsic conditions can significantly impact SMFC performance. This review provides a comprehensive overview of SMFC development in research and application for water environment treatment and ecological remediation, a perspective rarely explored in previous reviews. It discusses optimization strategies for SMFC implementation, emphasizing advancements in novel or cost-effective electrode materials, the dynamics of microbial communities, and the control of typical pollutants. The review suggests a virtuous cycle path for SMFC development, highlighting future research needs, including integrating cross-disciplinary approaches like artificial intelligence, genomics, and mathematical modeling, to enhance the deployment of SMFC in real-world environmental remediation.
Collapse
Affiliation(s)
- Xinyu Lu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China
| | - Xiaojing Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China
| | - Hang Qi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Mezgec K, Snoj J, Ulčakar L, Ljubetič A, Tušek Žnidarič M, Škarabot M, Jerala R. Coupling of Spectrin Repeat Modules for the Assembly of Nanorods and Presentation of Protein Domains. ACS NANO 2024; 18:28748-28763. [PMID: 39392430 PMCID: PMC11503911 DOI: 10.1021/acsnano.4c07701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Modular protein engineering is a powerful approach for fabricating high-molecular-weight assemblies and biomaterials with nanoscale precision. Herein, we address the challenge of designing an extended nanoscale filamentous architecture inspired by the central rod domain of human dystrophin, which protects sarcolemma during muscle contraction and consists of spectrin repeats composed of three-helical bundles. A module of three tandem spectrin repeats was used as a rigid building block self-assembling via coiled-coil (CC) dimer-forming peptides. CC peptides were precisely integrated to maintain the spectrin α-helix continuity in an appropriate frame to form extended nanorods. An orthogonal set of customizable CC heterodimers was harnessed for modular rigid domain association, which could be additionally regulated by metal ions and chelators. We achieved a robust assembly of rigid rods several micrometers in length, determined by atomic force microscopy and negative stain transmission electron microscopy. Furthermore, these rigid rods can serve as a scaffold for the decoration of diverse proteins or biologically active peptides along their length with adjustable spacing up to tens of nanometers, as confirmed by the DNA-PAINT super-resolution microscopy. This demonstrates the potential of modular bottom-up protein engineering and tunable CCs for the fabrication of functionalized protein biomaterials.
Collapse
Affiliation(s)
- Klemen Mezgec
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jaka Snoj
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Liza Ulčakar
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- EN-FIST
Centre of Excellence, SI-1000 Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department
of Biotechnology and Systems Biology, National
Institute of Biology, SI-1000 Ljubljana, Slovenia
| | - Miha Škarabot
- Condensed
Matter Department, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- CTGCT, Centre
of Technology of Gene and Cell Therapy, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Fan X, Li K, Liu S, Wang T, Ma Y, Li Z, He C. Protein Nanotubes Assembled from Imidazole-Grafted Horseradish Peroxidase Nanogels. ACS Macro Lett 2023; 12:1031-1036. [PMID: 37433040 DOI: 10.1021/acsmacrolett.3c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Protein assembly, a common phenomenon in nature, plays an important role in the evolution of life. Inspired by nature, assembling protein monomers into delicate nanostructures has emerged as an attractive research area. However, sophisticated protein assemblies usually need complicated designs or templates. In this work, we successfully fabricated protein nanotubes in a facile way by coordination interactions between imidazole-grafted horseradish peroxidase (HRP) nanogels (iHNs) and Cu2+. The iHNs were synthesized by polymerization on the surface of HRP by employing vinyl imidazole as a comonomer. By direct addition of Cu2+ into iHN solution, protein tubes were therefore formed. The size of the protein tubes could be adjusted by changing the added Cu2+ amount, and the mechanism behind the formation of protein nanotubes was elucidated. Furthermore, a highly sensitive H2O2 detection system was established based on the protein tubes. This work provides a facile method to construct diverse sophisticated functional protein nanomaterials.
Collapse
Affiliation(s)
- Xiaotong Fan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Siqi Liu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Tingting Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Yedong Ma
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Zibiao Li
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
4
|
Myers B, Catrambone F, Allen S, Hill PJ, Kovacs K, Rawson FJ. Engineering nanowires in bacteria to elucidate electron transport structural-functional relationships. Sci Rep 2023; 13:8843. [PMID: 37258594 DOI: 10.1038/s41598-023-35553-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Bacterial pilin nanowires are protein complexes, suggested to possess electroactive capabilities forming part of the cells' bioenergetic programming. Their role is thought to be linked to facilitating electron transfer between cells and the external environment to permit metabolism and cell-to-cell communication. There is a significant debate, with varying hypotheses as to the nature of the proteins currently lying between type-IV pilin-based nanowires and polymerised cytochrome-based filaments. Importantly, to date, there is a very limited structure-function analysis of these structures within whole bacteria. In this work, we engineered Cupriavidus necator H16, a model autotrophic organism to express differing aromatic modifications of type-IV pilus proteins to establish structure-function relationships on conductivity and the effects this has on pili structure. This was achieved via a combination of high-resolution PeakForce tunnelling atomic force microscopy (PeakForce TUNA™) technology, alongside conventional electrochemical approaches enabling the elucidation of conductive nanowires emanating from whole bacterial cells. This work is the first example of functional type-IV pili protein nanowires produced under aerobic conditions using a Cupriavidus necator chassis. This work has far-reaching consequences in understanding the basis of bio-electrical communication between cells and with their external environment.
Collapse
Affiliation(s)
- Ben Myers
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Francesco Catrambone
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephanie Allen
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Katalin Kovacs
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Frankie J Rawson
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
5
|
Li Y, He C, Dong F, Yuan S, Hu Z, Wang W. Performance of anaerobic digestion of phenol using exogenous hydrogen and granular activated carbon and analysis of microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45077-45087. [PMID: 36701053 DOI: 10.1007/s11356-023-25275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Anaerobic conversion rate of phenol to methane was low due to its biological toxicity. In this study, the coupling of granular activated carbon (GAC) and exogenous hydrogen (EH) could enhance greatly methane production of phenol anaerobic digestion, and the metagenomic was firstly used to analyze its potential mechanism. The results indicated that a mass of syntrophic acetate-oxidizing bacteria and hydrogen-utilizing methanogens were enriched on the GAC surface, and SAO-HM pathway has become the dominant pathway. The energy transfer analysis implied that the abundance of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) oxidase increased. Furthermore, direct interspecies electron transfer (DIET) was formed by promoting type IV e-pili between Methanobacterium and Syntrophus, thereby improving the interspecies electron transfer efficiency. The dominant SAO-HM pathway was induced and DIET was formed, which was the internal mechanism of the coupling of GAC and EH to enhance anaerobic biotransformation of phenol.
Collapse
Affiliation(s)
- Yongcun Li
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Chunhua He
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei, 230009, China
| | - Fang Dong
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Shoujun Yuan
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China.
| |
Collapse
|
6
|
Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing. Nat Microbiol 2022; 7:1291-1300. [PMID: 35798889 PMCID: PMC9357133 DOI: 10.1038/s41564-022-01159-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
Abstract
Electrically conductive appendages from the anaerobic bacterium Geobacter sulfurreducens were first observed two decades ago, with genetic and biochemical data suggesting that conductive fibres were type IV pili. Recently, an extracellular conductive filament of G. sulfurreducens was found to contain polymerized c-type cytochrome OmcS subunits, not pilin subunits. Here we report that G. sulfurreducens also produces a second, thinner appendage comprised of cytochrome OmcE subunits and solve its structure using cryo-electron microscopy at ~4.3 Å resolution. Although OmcE and OmcS subunits have no overall sequence or structural similarities, upon polymerization both form filaments that share a conserved haem packing arrangement in which haems are coordinated by histidines in adjacent subunits. Unlike OmcS filaments, OmcE filaments are highly glycosylated. In extracellular fractions from G. sulfurreducens, we detected type IV pili comprising PilA-N and -C chains, along with abundant B-DNA. OmcE is the second cytochrome filament to be characterized using structural and biophysical methods. We propose that there is a broad class of conductive bacterial appendages with conserved haem packing (rather than sequence homology) that enable long-distance electron transport to chemicals or other microbial cells.
Collapse
|
7
|
Bonné R, Wouters K, Lustermans JJM, Manca JV. Biomaterials and Electroactive Bacteria for Biodegradable Electronics. Front Microbiol 2022; 13:906363. [PMID: 35794922 PMCID: PMC9252516 DOI: 10.3389/fmicb.2022.906363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
The global production of unrecycled electronic waste is extensively growing each year, urging the search for alternatives in biodegradable electronic materials. Electroactive bacteria and their nanowires have emerged as a new route toward electronic biological materials (e-biologics). Recent studies on electron transport in cable bacteria—filamentous, multicellular electroactive bacteria—showed centimeter long electron transport in an organized conductive fiber structure with high conductivities and remarkable intrinsic electrical properties. In this work we give a brief overview of the recent advances in biodegradable electronics with a focus on the use of biomaterials and electroactive bacteria, and with special attention for cable bacteria. We investigate the potential of cable bacteria in this field, as we compare the intrinsic electrical properties of cable bacteria to organic and inorganic electronic materials. Based on their intrinsic electrical properties, we show cable bacteria filaments to have great potential as for instance interconnects and transistor channels in a new generation of bioelectronics. Together with other biomaterials and electroactive bacteria they open electrifying routes toward a new generation of biodegradable electronics.
Collapse
Affiliation(s)
- Robin Bonné
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
- *Correspondence: Robin Bonné,
| | | | - Jamie J. M. Lustermans
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
8
|
Lovley DR. On the Existence of Pilin-Based Microbial Nanowires. Front Microbiol 2022; 13:872610. [PMID: 35733974 PMCID: PMC9207759 DOI: 10.3389/fmicb.2022.872610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
|
9
|
Algov I, Alfonta L. Use of Protein Engineering to Elucidate Electron Transfer Pathways between Proteins and Electrodes. ACS MEASUREMENT SCIENCE AU 2022; 2:78-90. [PMID: 36785727 PMCID: PMC9836065 DOI: 10.1021/acsmeasuresciau.1c00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, we review protein engineering tools for electron transfer enhancement and investigation in bioelectrochemical systems. We present recent studies in the field while focusing on how electron transfer investigation and measurements were performed and discuss the use of protein engineering to interpret electron transfer mechanisms.
Collapse
|
10
|
Bird LJ, Kundu BB, Tschirhart T, Corts AD, Su L, Gralnick JA, Ajo-Franklin CM, Glaven SM. Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synth Biol 2021; 10:2808-2823. [PMID: 34637280 DOI: 10.1021/acssynbio.1c00335] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Biki B. Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Anna D. Corts
- Joyn Bio, Boston, Massachusetts 02210, United States
| | - Lin Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, People’s Republic of China
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | | | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
11
|
Ren H, Wu L, Tan L, Bao Y, Ma Y, Jin Y, Zou Q. Self-assembly of amino acids toward functional biomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1140-1150. [PMID: 34760429 PMCID: PMC8551877 DOI: 10.3762/bjnano.12.85] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Biomolecules, such as proteins and peptides, can be self-assembled. They are widely distributed, easy to obtain, and biocompatible. However, the self-assembly of proteins and peptides has disadvantages, such as difficulty in obtaining high quantities of materials, high cost, polydispersity, and purification limitations. The difficulties in using proteins and peptides as functional materials make it more complicate to arrange assembled nanostructures at both microscopic and macroscopic scales. Amino acids, as the smallest constituent of proteins and the smallest constituent in the bottom-up approach, are the smallest building blocks that can be self-assembled. The self-assembly of single amino acids has the advantages of low synthesis cost, simple modeling, excellent biocompatibility and biodegradability in vivo. In addition, amino acids can be assembled with other components to meet multiple scientific needs. However, using these simple building blocks to design attractive materials remains a challenge due to the simplicity of the amino acids. Most of the review articles about self-assembly focus on large molecules, such as peptides and proteins. The preparation of complicated materials by self-assembly of amino acids has not yet been evaluated. Therefore, it is of great significance to systematically summarize the literature of amino acid self-assembly. This article reviews the recent advances in amino acid self-assembly regarding amino acid self-assembly, functional amino acid self-assembly, amino acid coordination self-assembly, and amino acid regulatory functional molecule self-assembly.
Collapse
Affiliation(s)
- Huan Ren
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lifang Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lina Tan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yanni Bao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuchen Ma
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong Jin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
12
|
Yuan Q, Wang S, Wang X, Li N. Biosynthesis of vivianite from microbial extracellular electron transfer and environmental application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143076. [PMID: 33129535 DOI: 10.1016/j.scitotenv.2020.143076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/01/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Vivianite (Fe3(PO4)2·8H2O) is a common hydrous ferrous phosphate mineral which often occurs in reductive conditions, especially anoxic non-sulfide environment containing high concentrations of ferrous iron (Fe2+) and orthophosphate (PO43-). Vivianite is an important product of dissimilatory iron reduction and a promising route for phosphorus recovery from wastewater. Its formation is closely related to the extracellular electron transfer (EET), a key mechanism for microbial respiration and a crucial explanation for the reduction of metal oxides in soil and sediments. Despite of the natural ubiquity, easy accessibility and attractive economic value, the application value of vivianite has not received much attention. This review introduces the characteristics, occurrence and biosynthesis of vivianite from microbial EET, and systematically analyzes the application value of vivianite in the environmental field, including immobilization of heavy metals (HMs), dechlorination of carbon tetrachloride (CT), sedimentary phosphorus sequestration and eutrophication alleviation. Additionally, its potential functions as a slow-release fertilizer are discussed as well. In general, vivianite is expected to make more contributions to the future scientific research, especially the solution of environmental problems. Overcoming the lack of understanding and some technical limitations will be beneficial to the further application of vivianite in environmental field.
Collapse
Affiliation(s)
- Qing Yuan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shu Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
13
|
Lovley DR, Yao J. Intrinsically Conductive Microbial Nanowires for 'Green' Electronics with Novel Functions. Trends Biotechnol 2021; 39:940-952. [PMID: 33419586 DOI: 10.1016/j.tibtech.2020.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Intrinsically conductive protein nanowires, microbially produced from inexpensive, renewable feedstocks, are a sustainable alternative to traditional nanowire electronic materials, which require high energy inputs and hazardous conditions/chemicals for fabrication and can be highly toxic. Pilin-based nanowires can be tailored for specific functions via the design of synthetic pilin genes to tune wire conductivity or introduce novel functionalities. Other microbially produced nanowire options for electronics may include cytochrome wires, curli fibers, and the conductive fibers of cable bacteria. Proof-of-concept protein nanowire electronics that have been successfully demonstrated include biomedical sensors, neuromorphic devices, and a device that generates electricity from ambient humidity. Further development of applications will require interdisciplinary teams of engineers, biophysicists, and synthetic biologists.
Collapse
Affiliation(s)
- Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China; Department of Microbiology, University of Massachusetts, Amherst, MA, USA; Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| | - Jun Yao
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA; Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
14
|
Yalcin SE, Malvankar NS. The blind men and the filament: Understanding structures and functions of microbial nanowires. Curr Opin Chem Biol 2020; 59:193-201. [PMID: 33070100 PMCID: PMC7736336 DOI: 10.1016/j.cbpa.2020.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Extracellular electron transfer via filamentous protein appendages called 'microbial nanowires' has long been studied in Geobacter and other bacteria because of their crucial role in globally-important environmental processes and their applications for bioenergy, biofuels, and bioelectronics. Thousands of papers thought these nanowires as pili without direct evidence. Here, we summarize recent discoveries that could help resolve two decades of confounding observations. Using cryo-electron microscopy with multimodal functional imaging and a suite of electrical, biochemical, and physiological studies, we find that rather than pili, nanowires are composed of cytochromes OmcS and OmcZ that transport electrons via seamless stacking of hemes over micrometers. We discuss the physiological need for two different nanowires and their potential applications for sensing, synthesis, and energy production.
Collapse
Affiliation(s)
- Sibel Ebru Yalcin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06510, USA; Microbial Sciences Institute, Yale University, New Haven, CT, 06516, USA.
| | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06510, USA; Microbial Sciences Institute, Yale University, New Haven, CT, 06516, USA.
| |
Collapse
|
15
|
Ptushenko VV. Electric Cables of Living Cells. II. Bacterial Electron Conductors. BIOCHEMISTRY (MOSCOW) 2020; 85:955-965. [PMID: 33045956 DOI: 10.1134/s0006297920080118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concept of "electric cables" involved in bioenergetic processes of a living cell was proposed half a century ago [Skulachev, V. P. (1971) Curr. Top. Bioenerg., Elsevier, pp. 127-190]. For many decades, only cell membrane structures have been considered as probable pathways for the electric current, namely, for the transfer of transmembrane electrochemical potential. However, the last ten to fifteen years have brought the discovery of bacterial "electric cables" of a new type. In 2005, "nanowires" conducting electric current over distances of tens of micrometers were discovered in metal- and sulphate-reducing bacteria [Reguera, G. et al. (2005) Nature, 435, pp. 1098-1101]. The next five years have witnessed the discovery of microbial electric currents over centimeter distances [Nielsen, L. P. et al. (2010) Nature, 463, 1071-1074]. This new group of bacteria allowing electric currents to flow over macroscopic distances was later called cable bacteria. Nanowires and conductive structures of cable bacteria serve to solve a special problem of membrane bioenergetics: they connect two redox half-reactions. In other words, unlike membrane "cables", their function is electron transfer in the course of oxidative phosphorylation for the generation of membrane energy rather than of the end-product. The most surprising is the protein nature of these cables (at least of some of them) indicated by recent data, since no protein wires for the long-distance electron transport had been previously known in living systems.
Collapse
Affiliation(s)
- V V Ptushenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
16
|
Clark MM, Reguera G. Biology and biotechnology of microbial pilus nanowires. J Ind Microbiol Biotechnol 2020; 47:897-907. [PMID: 33009965 DOI: 10.1007/s10295-020-02312-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Type IV pili (T4P) are bacterial appendages used for cell adhesion and surface motility. In metal-reducing bacteria in the genus Geobacter, they have the unique property of being conductive and essential to wire cells to extracellular electron acceptors and other cells within biofilms. These electroactive bacteria use a conserved pathway for biological assembly and disassembly of a short and aromatic dense peptide subunit (pilin). The polymerization of the pilins clusters aromatic residues optimally for charge transport and exposes ligands for metal immobilization and reduction. The simple design yet unique functionalities of conductive T4P afford opportunities for the scaled-up production of recombinant pilins and their in vitro assembly into electronic biomaterials of biotechnological interest. This review summarizes current knowledge of conductive T4P biogenesis and functions critical to actualize applications in bioelectronics, bioremediation, and nanotechnology.
Collapse
Affiliation(s)
- Morgen M Clark
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Rd, Rm 6190, Biomedical and Physical Science Building, East Lansing, MI, 48823, USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Rd, Rm 6190, Biomedical and Physical Science Building, East Lansing, MI, 48823, USA.
| |
Collapse
|