1
|
Schumann A, Gaballa A, Wiedmann M. The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance. Microbiol Mol Biol Rev 2024:e0019323. [PMID: 39382292 DOI: 10.1128/mmbr.00193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Liu JH, Liu YY, Shen YB, Yang J, Walsh TR, Wang Y, Shen J. Plasmid-mediated colistin-resistance genes: mcr. Trends Microbiol 2024; 32:365-378. [PMID: 38008597 DOI: 10.1016/j.tim.2023.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Colistin is regarded as a last-line drug against serious infections caused by multidrug-resistant Gram-negative bacterial pathogens. Therefore, the emergence of mobile colistin resistance (mcr) genes has attracted global concern and led to policy changes for the use of colistin in food animals across many countries. Currently, the distribution, function, mechanism of action, transmission vehicles, origin of mcr, and new treatment strategies against MCR-producing pathogens have been extensively studied. Here we review the prevalence, structure and function of mcr, the fitness cost and persistence of mcr-carrying plasmids, the impact of MCR on host immune response, as well as the control strategies to combat mcr-mediated colistin resistance.
Collapse
Affiliation(s)
- Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Ying-Bo Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | | | - Yang Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Maes S, Deploey N, Peelman F, Eyckerman S. Deep mutational scanning of proteins in mammalian cells. CELL REPORTS METHODS 2023; 3:100641. [PMID: 37963462 PMCID: PMC10694495 DOI: 10.1016/j.crmeth.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.
Collapse
Affiliation(s)
- Stefanie Maes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nick Deploey
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Frank Peelman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
4
|
Materon IC, Palzkill T. Structural biology of MCR-1-mediated resistance to polymyxin antibiotics. Curr Opin Struct Biol 2023; 82:102647. [PMID: 37399693 PMCID: PMC10527939 DOI: 10.1016/j.sbi.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Polymyxins, a last resort antibiotic, target the outer membrane of pathogens and are used to address the increasing prevalence of multidrug-resistant Gram-negative bacteria. The plasmid-encoded enzyme MCR-1 confers polymyxin resistance to bacteria by modifying the outer membrane. Transferable resistance to polymyxins is a major concern; therefore, MCR-1 is an important drug target. In this review, we discuss recent structural and mechanistic aspects of MCR-1 function, its variants and homologs, and how they are relevant to polymyxin resistance. Specifically, we discuss work on polymyxin-mediated disruption of the outer and inner membranes, computational studies on the catalytic mechanism of MCR-1, mutagenesis and structural analysis concerning residues important for substrate binding in MCR-1, and finally, advancements in inhibitors targeting MCR-1.
Collapse
Affiliation(s)
- Isabel Cristina Materon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Hanpaibool C, Ounjai P, Yotphan S, Mulholland AJ, Spencer J, Ngamwongsatit N, Rungrotmongkol T. Enhancement by pyrazolones of colistin efficacy against mcr-1-expressing E. coli: an in silico and in vitro investigation. J Comput Aided Mol Des 2023; 37:479-489. [PMID: 37488458 DOI: 10.1007/s10822-023-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Owing to the emergence of antibiotic resistance, the polymyxin colistin has been recently revived to treat acute, multidrug-resistant Gram-negative bacterial infections. Positively charged colistin binds to negatively charged lipids and damages the outer membrane of Gram-negative bacteria. However, the MCR-1 protein, encoded by the mobile colistin resistance (mcr) gene, is involved in bacterial colistin resistance by catalysing phosphoethanolamine (PEA) transfer onto lipid A, neutralising its negative charge, and thereby reducing its interaction with colistin. Our preliminary results showed that treatment with a reference pyrazolone compound significantly reduced colistin minimal inhibitory concentrations in Escherichia coli expressing mcr-1 mediated colistin resistance (Hanpaibool et al. in ACS Omega, 2023). A docking-MD combination was used in an ensemble-based docking approach to identify further pyrazolone compounds as candidate MCR-1 inhibitors. Docking simulations revealed that 13/28 of the pyrazolone compounds tested are predicted to have lower binding free energies than the reference compound. Four of these were chosen for in vitro testing, with the results demonstrating that all the compounds tested could lower colistin MICs in an E. coli strain carrying the mcr-1 gene. Docking of pyrazolones into the MCR-1 active site reveals residues that are implicated in ligand-protein interactions, particularly E246, T285, H395, H466, and H478, which are located in the MCR-1 active site and which participate in interactions with MCR-1 in ≥ 8/10 of the lowest energy complexes. This study establishes pyrazolone-induced colistin susceptibility in E. coli carrying the mcr-1 gene, providing a method for the development of novel treatments against colistin-resistant bacteria.
Collapse
Affiliation(s)
- Chonnikan Hanpaibool
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence On Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok, 10400, Thailand
| | - Sirilata Yotphan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Tang M, Zhao D, Liu S, Zhang X, Yao Z, Chen H, Zhou C, Zhou T, Xu C. The Properties of Linezolid, Rifampicin, and Vancomycin, as Well as the Mechanism of Action of Pentamidine, Determine Their Synergy against Gram-Negative Bacteria. Int J Mol Sci 2023; 24:13812. [PMID: 37762115 PMCID: PMC10530309 DOI: 10.3390/ijms241813812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Combining pentamidine with Gram-positive-targeting antibiotics has been proven to be a promising strategy for treating infections from Gram-negative bacteria (GNB). However, which antibiotics pentamidine can and cannot synergize with and the reasons for the differences are unclear. This study aimed to identify the possible mechanisms for the differences in the synergy of pentamidine with rifampicin, linezolid, tetracycline, erythromycin, and vancomycin against GNB. Checkerboard assays were used to detect the synergy of pentamidine and the different antibiotics. To determine the mechanism of pentamidine, fluorescent labeling assays were used to measure membrane permeability, membrane potential, efflux pump activity, and reactive oxygen species (ROS); the LPS neutralization assay was used to evaluate the target site; and quantitative PCR was used to measure changes in efflux pump gene expression. Our results revealed that pentamidine strongly synergized with rifampicin, linezolid, and tetracycline and moderately synergized with erythromycin, but did not synergize with vancomycin against E. coli, K. pneumoniae, E. cloacae, and A. baumannii. Pentamidine increased the outer membrane permeability but did not demolish the outer and inner membranes, which exclusively permits the passage of hydrophobic, small-molecule antibiotics while hindering the entry of hydrophilic, large-molecule vancomycin. It dissipated the membrane proton motive force and inactivated the efflux pump, allowing the intracellular accumulation of antimicrobials that function as substrates of the efflux pump, such as linezolid. These processes resulted in metabolic perturbation and ROS production which ultimately was able to destroy the bacteria. These mechanisms of action of pentamidine on GNB indicate that it is prone to potentiating hydrophobic, small-molecule antibiotics, such as rifampicin, linezolid, and tetracycline, but not hydrophilic, large-molecule antibiotics like vancomycin against GNB. Collectively, our results highlight the importance of the physicochemical properties of antibiotics and the specific mechanisms of action of pentamidine for the synergy of pentamidine-antibiotic combinations. Pentamidine engages in various pathways in its interactions with GNB, but these mechanisms determine its specific synergistic effects with certain antibiotics against GNB. Pentamidine is a promising adjuvant, and we can optimize drug compatibility by considering its functional mechanisms.
Collapse
Affiliation(s)
- Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Deyi Zhao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325015, China;
| | - Sichen Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Zhuocheng Yao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Hule Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Cui Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Chunquan Xu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| |
Collapse
|
7
|
Dewachter L, Brooks AN, Noon K, Cialek C, Clark-ElSayed A, Schalck T, Krishnamurthy N, Versées W, Vranken W, Michiels J. Deep mutational scanning of essential bacterial proteins can guide antibiotic development. Nat Commun 2023; 14:241. [PMID: 36646716 PMCID: PMC9842644 DOI: 10.1038/s41467-023-35940-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Deep mutational scanning is a powerful approach to investigate a wide variety of research questions including protein function and stability. Here, we perform deep mutational scanning on three essential E. coli proteins (FabZ, LpxC and MurA) involved in cell envelope synthesis using high-throughput CRISPR genome editing, and study the effect of the mutations in their original genomic context. We use more than 17,000 variants of the proteins to interrogate protein function and the importance of individual amino acids in supporting viability. Additionally, we exploit these libraries to study resistance development against antimicrobial compounds that target the selected proteins. Among the three proteins studied, MurA seems to be the superior antimicrobial target due to its low mutational flexibility, which decreases the chance of acquiring resistance-conferring mutations that simultaneously preserve MurA function. Additionally, we rank anti-LpxC lead compounds for further development, guided by the number of resistance-conferring mutations against each compound. Our results show that deep mutational scanning studies can be used to guide drug development, which we hope will contribute towards the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| | | | | | | | | | - Thomas Schalck
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | | | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Wim Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| |
Collapse
|