1
|
Chen Y, Gao F, Chen X, Tao S, Chen P, Lin W. The basic leucine zipper transcription factor MeaB is critical for biofilm formation, cell wall integrity, and virulence in Aspergillus fumigatus. mSphere 2024; 9:e0061923. [PMID: 38284755 PMCID: PMC10900910 DOI: 10.1128/msphere.00619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
The regulation of fungal cell wall biosynthesis is crucial for cell wall integrity maintenance and directly impacts fungal pathogen virulence. Although numerous genes are involved in fungal cell wall polysaccharide biosynthesis through multiple pathways, the underlying regulatory mechanism is still not fully understood. In this study, we identified and functionally characterized a direct downstream target of SomA, the basic-region leucine zipper transcription factor MeaB, playing a certain role in Aspergillus fumigatus cell wall integrity. Loss of meaB reduces hyphal growth, causes severe defects in galactosaminogalactan-mediated biofilm formation, and attenuates virulence in a Galleria mellonella infection model. Furthermore, the meaB null mutant strain exhibited hypersensitivity to cell wall-perturbing agents and significantly alters the cell wall structure. Transcriptional profile analysis revealed that MeaB positively regulates the expression of the galactosaminogalactan biosynthesis and β-1,3-glucanosyltransferase genes uge3, agd3, and sph3 and gel1, gel5, and gel7, respectively, as well as genes involved in amino sugar and nucleotide sugar metabolism. Further study demonstrated that MeaB could respond to cell wall stress and contribute to the proper expression of mitogen-activated protein kinase genes mpkA and mpkC in the presence of different concentrations of congo red. In conclusion, A. fumigatus MeaB plays a critical role in cell wall integrity by governing the expression of genes encoding cell wall-related proteins, thus impacting the virulence of this fungus.IMPORTANCEAspergillus fumigatus is a common opportunistic mold that causes life-threatening infections in immunosuppressed patients. The fungal cell wall is a complex and dynamic organelle essential for the development of pathogenic fungi. Genes involved in cell wall polysaccharide biosynthesis and remodeling are crucial for fungal pathogen virulence. However, the potential regulatory mechanism for cell wall integrity remains to be fully defined in A. fumigatus. In the present study, we identify basic-region leucine zipper transcription factor MeaB as an important regulator of cell wall galactosaminogalactan biosynthesis and β-1,3-glucan remodeling that consequently impacts stress response and virulence of fungal pathogens. Thus, we illuminate a mechanism of transcriptional control fungal cell wall polysaccharide biosynthesis and stress response. As these cell wall components are promising therapeutic targets for fungal infections, understanding the regulatory mechanism of such polysaccharides will provide new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuan Chen
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Fei Gao
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Xiaojin Chen
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Siyuan Tao
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Peiying Chen
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Wei Lin
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Shwab EK, Juvvadi PR, Shaheen SK, Allen J, Waitt G, Soderblom EJ, Asfaw YG, Moseley MA, Steinbach WJ. Protein Kinase A Regulates Autophagy-Associated Proteins Impacting Growth and Virulence of Aspergillus fumigatus. J Fungi (Basel) 2022; 8:jof8040354. [PMID: 35448585 PMCID: PMC9029100 DOI: 10.3390/jof8040354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Cellular recycling via autophagy-associated proteins is a key catabolic pathway critical to invasive fungal pathogen growth and virulence in the nutrient-limited host environment. Protein kinase A (PKA) is vital for the growth and virulence of numerous fungal pathogens. However, the underlying basis for its regulation of pathogenesis remains poorly understood in any species. Our Aspergillus fumigatus PKA-dependent whole proteome and phosphoproteome studies employing advanced mass spectroscopic approaches identified numerous previously undefined PKA-regulated proteins in catabolic pathways. Here, we demonstrate reciprocal inhibition of autophagy and PKA activity, and identify 16 autophagy-associated proteins as likely novel PKA-regulated effectors. We characterize the novel PKA-phosphoregulated sorting nexin Atg20, and demonstrate its importance for growth, cell wall stress response, and virulence of A. fumigatus in a murine infection model. Additionally, we identify physical and functional interaction of Atg20 with previously characterized sorting nexin Atg24. Furthermore, we demonstrate the importance of additional uncharacterized PKA-regulated putative autophagy-associated proteins to hyphal growth. Our data presented here indicate that PKA regulates the autophagy pathway much more extensively than previously known, including targeting of novel effector proteins with fungal-specific functions important for invasive disease.
Collapse
Affiliation(s)
- E. Keats Shwab
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA; (E.K.S.); (P.R.J.); (S.K.S.); (J.A.IV)
| | - Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA; (E.K.S.); (P.R.J.); (S.K.S.); (J.A.IV)
| | - Shareef K. Shaheen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA; (E.K.S.); (P.R.J.); (S.K.S.); (J.A.IV)
| | - John Allen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA; (E.K.S.); (P.R.J.); (S.K.S.); (J.A.IV)
| | - Greg Waitt
- Duke Proteomics Core Facility, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27701, USA; (G.W.); (E.J.S.); (M.A.M.)
| | - Erik J. Soderblom
- Duke Proteomics Core Facility, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27701, USA; (G.W.); (E.J.S.); (M.A.M.)
| | - Yohannes G. Asfaw
- Department of Laboratory Animal Resources, Duke University Medical Center, Durham, NC 27710, USA;
| | - M. Arthur Moseley
- Duke Proteomics Core Facility, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27701, USA; (G.W.); (E.J.S.); (M.A.M.)
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA; (E.K.S.); (P.R.J.); (S.K.S.); (J.A.IV)
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|