1
|
Oh SJ, Lee HJ, Hwang JH, Kim HJ, Shin N, Lee SH, Seo SO, Bhatia SK, Yang YH. Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using Escherichia coli. J Microbiol Biotechnol 2024; 34:700-709. [PMID: 37919866 PMCID: PMC11016755 DOI: 10.4014/jmb.2306.06006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023]
Abstract
Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is economically beneficial. Because lignocellulosic biomass is a mixture rich in glucose and xylose, Escherichia coli, which prefers glucose, needs to overcome glucose repression for efficient biosugar use. To avoid glucose repression, here, we overexpressed a xylose regulator (xylR) in an E. coli strain expressing bktB, phaB, and phaC from Cupriavidus necator and evaluated the effect of xylR on PHB production. XylR overexpression increased xylose consumption from 0% to 46.53% and produced 4.45-fold more PHB than the control strain without xylR in a 1% sugar mixture of glucose and xylose (1:1). When the xylR-overexpressed strain was applied to sugars from lignocellulosic biomass, cell growth and PHB production of the strain showed a 4.7-fold increase from the control strain, yielding 2.58 ± 0.02 g/l PHB and 4.43 ± 0.28 g/l dry cell weight in a 1% hydrolysate mixture. XylR overexpression increased the expression of xylose operon genes by up to 1.7-fold. Moreover, the effect of xylR was substantially different in various E. coli strains. Overall, the results showed the effect of xylR overexpression on PHB production in a non-native PHB producer and the possible application of xylR for xylose utilization in E. coli.
Collapse
Affiliation(s)
- Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang-Ho Lee
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Global Cellular Metabolic Rewiring Adapts Corynebacterium glutamicum to Efficient Nonnatural Xylose Utilization. Appl Environ Microbiol 2022; 88:e0151822. [PMID: 36383019 PMCID: PMC9746319 DOI: 10.1128/aem.01518-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Xylose, the major component of lignocellulosic biomass, cannot be naturally or efficiently utilized by most microorganisms. Xylose (co)utilization is considered a cornerstone of efficient lignocellulose-based biomanufacturing. We evolved a rapidly xylose-utilizing strain, Cev2-18-5, which showed the highest reported specific growth rate (0.357 h-1) on xylose among plasmid-free Corynebacterium glutamicum strains. A genetically clear chassis strain, CGS15, was correspondingly reconstructed with an efficient glucose-xylose coutilization performance based on comparative genomic analysis and mutation reconstruction. With the introduction of a succinate-producing plasmid, the resulting strain, CGS15-SA1, can efficiently produce 97.1 g/L of succinate with an average productivity of 8.09 g/L/h by simultaneously utilizing glucose and xylose from corn stalk hydrolysate. We further revealed a novel xylose regulatory mechanism mediated by the endogenous transcription factor IpsA with global regulatory effects on C. glutamicum. A synergistic effect on carbon metabolism and energy supply, motivated by three genomic mutations (Psod(C131T)-xylAB, Ptuf(Δ21)-araE, and ipsAC331T), was found to endow C. glutamicum with the efficient xylose utilization and rapid growth phenotype. Overall, this work not only provides promising C. glutamicum chassis strains for a lignocellulosic biorefinery but also enriches the understanding of the xylose regulatory mechanism. IMPORTANCE A novel xylose regulatory mechanism mediated by the transcription factor IpsA was revealed. A synergistic effect on carbon metabolism and energy supply was found to endow C. glutamicum with the efficient xylose utilization and rapid growth phenotype. The new xylose regulatory mechanism enriches the understanding of nonnatural substrate metabolism and encourages exploration new engineering targets for rapid xylose utilization. This work also provides a paradigm to understand and engineer the metabolism of nonnatural renewable substrates for sustainable biomanufacturing.
Collapse
|
3
|
Exploiting Catabolite Repression and Stringent Response to Control Delay and Multimodality of Bioluminescence Signal by Metal Whole-Cell Biosensors: Interplay between Metal Bioavailability and Nutritional Medium Conditions. BIOSENSORS 2022; 12:bios12050327. [PMID: 35624628 PMCID: PMC9139025 DOI: 10.3390/bios12050327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022]
Abstract
The time-dependent response of metal-detecting whole-cell luminescent bacterial sensors is impacted by metal speciation/bioavailability in solution. The comprehensive understanding of such connections requires the consideration of the bacterial energy metabolism at stake and the effects of supplied food on cells’ capability to convert bioaccumulated metals into light. Accordingly, we investigated the time response (48 h assay) of PzntA-luxCDABE Escherichia coli Cd biosensors in media differing with respect to sources of amino acids (tryptone or Lysogeny Broth) and carbon (glucose, xylose and mixtures thereof). We show that the resulting coupling between the stringent cell response and glucose/xylose-mediated catabolite repressions lead to well-defined multimodalities and shapes of the bioluminescence signal over time. Based on a recent theory for the time–response of metal-sensing luminescent bacteria, successful theoretical reconstructions of the bioluminescence signals are reported under all Cd concentrations (0–20 nM) and nutritive conditions examined. This analysis leads to the evaluation of time-dependent cell photoactivity and qualitative information on metal speciation/bioavailability in solution. Biosensor performance and the position, shape, number, and magnitude of detected peaks are discussed in relation to the metabolic pathways operative during the successive light emission modes identified here over time. Altogether, the results clarify the contributions of metal/nutrient bio-availabilities and food quality to cell response typology.
Collapse
|
4
|
Sun L, Wu B, Zhang Z, Yan J, Liu P, Song C, Shabbir S, Zhu Q, Yang S, Peng N, He M, Tan F. Cellulosic ethanol production by consortia of Scheffersomyces stipitis and engineered Zymomonas mobilis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:221. [PMID: 34823583 PMCID: PMC8613960 DOI: 10.1186/s13068-021-02069-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/10/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND As one of the clean and sustainable energies, lignocellulosic ethanol has achieved much attention around the world. The production of lignocellulosic ethanol does not compete with people for food, while the consumption of ethanol could contribute to the carbon dioxide emission reduction. However, the simultaneous transformation of glucose and xylose to ethanol is one of the key technologies for attaining cost-efficient lignocellulosic ethanol production at an industrial scale. Genetic modification of strains and constructing consortia were two approaches to resolve this issue. Compared with strain improvement, the synergistic interaction of consortia in metabolic pathways should be more useful than using each one separately. RESULTS In this study, the consortia consisting of suspended Scheffersomyces stipitis CICC1960 and Zymomonas mobilis 8b were cultivated to successfully depress carbon catabolite repression (CCR) in artificially simulated 80G40XRM. With this strategy, a 5.52% more xylose consumption and a 6.52% higher ethanol titer were achieved by the consortium, in which the inoculation ratio between S. stipitis and Z. mobilis was 1:3, compared with the Z. mobilis 8b mono-fermentation. Subsequently, one copy of the xylose metabolic genes was inserted into the Z. mobilis 8b genome to construct Z. mobilis FR2, leading to the xylose final-consumption amount and ethanol titer improvement by 15.36% and 6.81%, respectively. Finally, various corn stover hydrolysates with different sugar concentrations (glucose and xylose 60, 90, 120 g/L), were used to evaluate the fermentation performance of the consortium consisting of S. stipitis CICC1960 and Z. mobilis FR2. Fermentation results showed that a 1.56-4.59% higher ethanol titer was achieved by the consortium compared with the Z. mobilis FR2 mono-fermentation, and a 46.12-102.14% higher ethanol titer was observed in the consortium fermentation when compared with the S. stipitis CICC1960 mono-fermentation. Furthermore, qRT-PCR analysis of xylose/glucose transporter and other genes responsible for CCR explained the reason why the initial ratio inoculation of 1:3 in artificially simulated 80G40XRM had the best fermentation performance in the consortium. CONCLUSIONS The fermentation strategy used in this study, i.e., using a genetically modified consortium, had a superior performance in ethanol production, as compared with the S. stipitis CICC1960 mono-fermentation and the Z. mobilis FR2 mono-fermentation alone. This result showed that this strategy has potential for future lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Lingling Sun
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| | - Zengqin Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jing Yan
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| | - Panting Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chao Song
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Samina Shabbir
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qili Zhu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| | - Shihui Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610221 China
| | - Furong Tan
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| |
Collapse
|
5
|
Complementary resource preferences spontaneously emerge in diauxic microbial communities. Nat Commun 2021; 12:6661. [PMID: 34795267 PMCID: PMC8602314 DOI: 10.1038/s41467-021-27023-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
Many microbes grow diauxically, utilizing the available resources one at a time rather than simultaneously. The properties of communities of microbes growing diauxically remain poorly understood, largely due to a lack of theory and models of such communities. Here, we develop and study a minimal model of diauxic microbial communities assembling in a serially diluted culture. We find that unlike co-utilizing communities, diauxic community assembly repeatably and spontaneously leads to communities with complementary resource preferences, namely communities where species prefer different resources as their top choice. Simulations and theory explain that the emergence of complementarity is driven by the disproportionate contribution of the top choice resource to the growth of a diauxic species. Additionally, we develop a geometric approach for analyzing serially diluted communities, with or without diauxie, which intuitively explains several additional emergent community properties, such as the apparent lack of species which grow fastest on a resource other than their most preferred resource. Overall, our work provides testable predictions for the assembly of natural as well as synthetic communities of diauxically shifting microbes.
Collapse
|