1
|
Morschhäuser J. Adaptation of Candida albicans to specific host environments by gain-of-function mutations in transcription factors. PLoS Pathog 2024; 20:e1012643. [PMID: 39495716 PMCID: PMC11534201 DOI: 10.1371/journal.ppat.1012643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
The yeast Candida albicans is usually a harmless member of the normal microbiota in healthy persons but is also a major fungal pathogen that can colonize and infect almost every human tissue. A successful adaptation to environmental changes encountered in different host niches requires an appropriate regulation of gene expression. The zinc cluster transcription factors are the largest family of transcriptional regulators in C. albicans and are involved in the control of virtually all aspects of its biology. Under certain circumstances, mutations in these transcription factors that alter their activity and the expression of their target genes confer a selective advantage, which results in the emergence of phenotypically altered variants that are better adapted to new environmental challenges. This review describes how gain-of-function mutations in different zinc cluster transcription factors enable C. albicans to overcome antifungal therapy and to successfully establish itself in specific host niches.
Collapse
Affiliation(s)
- Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Murante D, Hogan DA. Drivers of diversification in fungal pathogen populations. PLoS Pathog 2024; 20:e1012430. [PMID: 39264909 PMCID: PMC11392411 DOI: 10.1371/journal.ppat.1012430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
To manage and treat chronic fungal diseases effectively, we require an improved understanding of their complexity. There is an increasing appreciation that chronic infection populations are often heterogeneous due to diversification and drift, even within a single microbial species. Genetically diverse populations can contribute to persistence and resistance to treatment by maintaining cells with different phenotypes capable of thriving in these dynamic environments. In chronic infections, fungal pathogens undergo prolonged challenges that can drive trait selection to convergent adapted states through restricted access to critical nutrients, assault by immune effectors, competition with other species, and antifungal drugs. This review first highlights the various genetic and epigenetic mechanisms that promote diversity in pathogenic fungal populations and provide an additional barrier to assessing the actual heterogeneity of fungal infections. We then review existing studies of evolution and genetic heterogeneity in fungal populations from lung infections associated with the genetic disease cystic fibrosis. We conclude with a discussion of open research questions that, once answered, may aid in diagnosing and treating chronic fungal infections.
Collapse
Affiliation(s)
- Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah Ann Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
3
|
Rojas OC, Montoya AM, Treviño-Rangel RDJ. Clavispora lusitaniae: From a saprophytic yeast to an emergent pathogen. Fungal Biol 2024; 128:1933-1938. [PMID: 39059848 DOI: 10.1016/j.funbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 07/28/2024]
Abstract
Clavispora lusitaniae has been isolated from different substrates, such as soil, water, fruit, vegetables, plants, and the gastrointestinal tract of animals and humans. However, its importance lies in being isolated from in invasive infections, particularly in pediatric patients with hematologic malignancies. It is an emerging nosocomial pathogen commonly associated with fatal prognosis in immunocompromised hosts. C. lusitaniae has attracted attention in the last decade because of resistance to amphotericin B, 5- flucytosine, and fluconazole. The adaptations of this yeast to the human host may contribute to its pathogenicity. Further study will be needed to understand C. lusitaniae's ability as a potential pathogen. This mini-review highlights the importance of the growing number of invasive disease cases caused by this yeast.
Collapse
Affiliation(s)
- Olga C Rojas
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Colonia Mitras Centro, Monterrey, NL, 64460, Mexico; Vicerrectoría de Ciencias de la Salud. Departamento de Ciencias Básicas, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte, San Pedro Garza García, NL, 66238, Mexico.
| | - Alexandra M Montoya
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Colonia Mitras Centro, Monterrey, NL, 64460, Mexico.
| | - Rogelio de J Treviño-Rangel
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Colonia Mitras Centro, Monterrey, NL, 64460, Mexico.
| |
Collapse
|
4
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
5
|
Arastehfar A, Daneshnia F, Hovhannisyan H, Cabrera N, Ilkit M, Desai JV, Gabaldón T, Shor E, Perlin DS. A multidimensional assessment of in-host fitness costs of drug resistance in the opportunistic fungal pathogen Candida glabrata. FEMS Yeast Res 2024; 24:foae035. [PMID: 39545363 PMCID: PMC11631428 DOI: 10.1093/femsyr/foae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Drug-resistant microbes typically carry mutations in genes involved in critical cellular functions and may therefore be less fit under drug-free conditions than susceptible strains. Candida glabrata is a prevalent opportunistic yeast pathogen with a high rate of fluconazole resistance (FLZR), echinocandin resistance (ECR), and multidrug resistance (MDR) relative to other Candida. However, the fitness of C. glabrata MDR isolates, particularly in the host, is poorly characterized, and studies of FLZR isolate fitness have produced contradictory findings. Two important host niches for C. glabrata are macrophages, in which it survives and proliferates, and the gut. Herein, we used a collection of clinical and lab-derived C. glabrata isolates to show that FLZR C. glabrata isolates are less fit inside macrophages than susceptible isolates and that this fitness cost is reversed by acquiring ECR mutations. Interestingly, dual-RNAseq revealed that macrophages infected with drug-resistant isolates mount an inflammatory response whereas intracellular drug-resistant cells downregulate processes required for in-host adaptation. Furthermore, drug-resistant isolates were outcompeted by their susceptible counterparts during gut colonization and in infected kidneys, while showing comparable fitness in the spleen. Collectively, our study shows that macrophage-rich organs, such as the spleen, favor the retention of MDR isolates of C. glabrata.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, United States
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam1012 WX, The Netherlands
| | - Hrant Hovhannisyan
- Life Sciences Programme, Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Nathaly Cabrera
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, 01330 Adana, Turkey
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC 20057, United States
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC 20057, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| |
Collapse
|
6
|
Puerner C, Vellanki S, Strauch JL, Cramer RA. Recent Advances in Understanding the Human Fungal Pathogen Hypoxia Response in Disease Progression. Annu Rev Microbiol 2023; 77:403-425. [PMID: 37713457 PMCID: PMC11034785 DOI: 10.1146/annurev-micro-032521-021745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.
Collapse
Affiliation(s)
- Charles Puerner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Sandeep Vellanki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Julianne L Strauch
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
- Department of Biology, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| |
Collapse
|
7
|
Daneshnia F, Hilmioğlu Polat S, Ilkit M, Shor E, de Almeida Júnior JN, Favarello LM, Colombo AL, Arastehfar A, Perlin DS. Determinants of fluconazole resistance and the efficacy of fluconazole and milbemycin oxim combination against Candida parapsilosis clinical isolates from Brazil and Turkey. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:906681. [PMID: 37746198 PMCID: PMC10512262 DOI: 10.3389/ffunb.2022.906681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/11/2022] [Indexed: 09/26/2023]
Abstract
Fluconazole-resistant Candida parapsilosis (FLZR-CP) outbreaks are a growing public health concern and have been reported in numerous countries. Patients infected with FLZR-CP isolates show fluconazole therapeutic failure and have a significantly increased mortality rate. Because fluconazole is the most widely used antifungal agent in most regions with outbreaks, it is paramount to restore its antifungal activity. Milbemycin oxim (MOX), a well-known canine endectocide, is a potent efflux pump inhibitor that significantly potentiates the activity of fluconazole against FLZR C. glabrata and C. albicans. However, the FLZ-MOX combination has not been tested against FLZR-CP isolates, nor is it known whether MOX may also potentiate the activity of echinocandins, a different class of antifungal drugs. Furthermore, the extent of involvement of efflux pumps CDR1 and MDR1 and ergosterol biosynthesis enzyme ERG11 and their link with gain-of-function (GOF) mutations in their transcription regulators (TAC1, MRR1, and UPC2) are poorly characterized among FLZR-CP isolates. We analyzed 25 C. parapsilosis isolates collected from outbreaks in Turkey and Brazil by determining the expression levels of CDR1, MDR1, and ERG11, examining the presence of potential GOF mutations in their transcriptional regulators, and assessing the antifungal activity of FLZ-MOX and micafungin-MOX against FLZR and multidrug-resistant (MDR) C. parapsilosis isolates. ERG11 was found to be universally induced by fluconazole in all isolates, while expression of MDR1 was unchanged. Whereas mutations in MRR1 and UPC2 were not detected, CDR1 was overexpressed in three Brazilian FLZR-CP isolates, which also carried a novel TAC1L518F mutation. Of these three isolates, one showed increased basal expression of CDR1, while the other two overexpressed CDR1 only in the presence of fluconazole. Interestingly, MOX showed promising antifungal activity against FLZR isolates, reducing the FLZ MIC 8- to 32-fold. However, the MOX and micafungin combination did not exert activity against an MDR C. parapsilosis isolate. Collectively, our study documents that the mechanisms underpinning FLZR are region specific, where ERG11 mutations were the sole mechanism of FLZR in Turkish FLZR-CP isolates, while simultaneous overexpression of CDR1 was observed in some Brazilian counterparts. Moreover, MOX and fluconazole showed potent synergistic activity, while the MOX-micafungin combination showed no synergy.
Collapse
Affiliation(s)
- Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | | | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - João Nobrega de Almeida Júnior
- Laboratorio de Micologia Medica (LIM 53), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
- Laboratório Central (LIM 03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Larissa M. Favarello
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Hackensack Meridian School of Medicine, Nutley, NJ, United States
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, United States
| |
Collapse
|
8
|
Biermann AR, Hogan DA. Transcriptional Response of Candida auris to the Mrr1 Inducers Methylglyoxal and Benomyl. mSphere 2022; 7:e0012422. [PMID: 35473297 PMCID: PMC9241502 DOI: 10.1128/msphere.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris is an urgent threat to human health due to its rapid spread in health care settings and its repeated development of multidrug resistance. Diseases that increase risk for C. auris infection, such as diabetes, kidney failure, or immunocompromising conditions, are associated with elevated levels of methylglyoxal (MG), a reactive dicarbonyl compound derived from several metabolic processes. In other Candida species, expression of MG reductase enzymes that catabolize and detoxify MG are controlled by Mrr1, a multidrug resistance-associated transcription factor, and MG induces Mrr1 activity. Here, we used transcriptomics and genetic assays to determine that C. auris MRR1a contributes to MG resistance, and that the main Mrr1a targets are an MG reductase and MDR1, which encodes a drug efflux protein. The C. auris Mrr1a regulon is smaller than Mrr1 regulons described in other species. In addition to MG, benomyl (BEN), a known Mrr1 stimulus, induces C. auris Mrr1 activity, and characterization of the MRR1a-dependent and -independent transcriptional responses revealed substantial overlap in genes that were differentially expressed in response to each compound. Additionally, we found that an MRR1 allele specific to one C. auris phylogenetic clade, clade III, encodes a hyperactive Mrr1 variant, and this activity correlated with higher MG resistance. C. auris MRR1a alleles were functional in Candida lusitaniae and were inducible by BEN, but not by MG, suggesting that the two Mrr1 inducers act via different mechanisms. Together, the data presented in this work contribute to the understanding of Mrr1 activity and MG resistance in C. auris. IMPORTANCE Candida auris is a fungal pathogen that has spread since its identification in 2009 and is of concern due to its high incidence of resistance against multiple classes of antifungal drugs. In other Candida species, the transcription factor Mrr1 plays a major role in resistance against azole antifungals and other toxins. More recently, Mrr1 has been recognized to contribute to resistance to methylglyoxal (MG), a toxic metabolic product that is often elevated in different disease states. MG can activate Mrr1 and its induction of Mdr1 which can protect against diverse challenges. The significance of this work lies in showing that MG is also an inducer of Mrr1 in C. auris, and that one of the major pathogenic C. auris lineages has an activating Mrr1 mutation that confers protection against MG.
Collapse
Affiliation(s)
- Amy R. Biermann
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
9
|
Paying attention to minutiae: Strain level differences drive disease etiology. MED 2022; 3:270-272. [DOI: 10.1016/j.medj.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Allert S, Schulz D, Kämmer P, Großmann P, Wolf T, Schäuble S, Panagiotou G, Brunke S, Hube B. From environmental adaptation to host survival: Attributes that mediate pathogenicity of Candida auris. Virulence 2022; 13:191-214. [PMID: 35142597 PMCID: PMC8837256 DOI: 10.1080/21505594.2022.2026037] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida species are a major cause of invasive fungal infections. While Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis are the most dominant species causing life-threatening candidiasis, C. auris recently emerged as a new species causing invasive infections with high rates of clinical treatment failures. To mimic initial phases of systemic Candida infections with dissemination via the bloodstream and to elucidate the pathogenic potential of C. auris, we used an ex vivo whole blood infection model. Similar to other clinically relevant Candida spp., C. auris is efficiently killed in human blood, but showed characteristic patterns of immune cell association, survival rates, and cytokine induction. Dual-species transcriptional profiling of C. auris-infected blood revealed a unique C. auris gene expression program during infection, while the host response proofed similar and conserved compared to other Candida species. C. auris-specific responses included adaptation and survival strategies, such as counteracting oxidative burst of immune cells, but also expression of potential virulence factors, (drug) transporters, and cell surface-associated genes. Despite comparable pathogenicity to other Candida species in our model, C. auris-specific transcriptional adaptations as well as its increased stress resistance and long-term environmental survival, likely contribute to the high risk of contamination and distribution in a nosocomial setting. Moreover, infections of neutrophils with pre-starved C. auris cells suggest that environmental preconditioning can have modulatory effects on the early host interaction. In summary, we present novel insights into C. auris pathogenicity, revealing adaptations to human blood and environmental niches distinctive from other Candida species.
Collapse
Affiliation(s)
- Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Philipp Kämmer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Peter Großmann
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Thomas Wolf
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Sascha Schäuble
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
11
|
Participation of the ABC Transporter CDR1 in Azole Resistance of Candida lusitaniae. J Fungi (Basel) 2021; 7:jof7090760. [PMID: 34575798 PMCID: PMC8467326 DOI: 10.3390/jof7090760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Candida lusitaniae is an opportunistic pathogen in humans that causes infrequent but difficult-to-treat diseases. Antifungal drugs are used in the clinic to treat C. lusitaniae infections, however, this fungus can rapidly acquire antifungal resistance to all known antifungal drugs (multidrug resistance). C. lusitaniae acquires azole resistance by gain-of-function (GOF) mutations in the transcriptional regulator MRR1. MRR1 controls the expression of a major facilitator transporter (MFS7) that is important for fluconazole resistance. Here, we addressed the role of the ATP Binding Cassette (ABC) transporter CDR1 as additional mediator of azole resistance in C. lusitaniae. CDR1 expression in isolates with GOF MRR1 mutations was higher compared to wild types, which suggests that CDR1 is an additional (direct or indirect) target of MRR1. CDR1 deletion in the azole-resistant isolate P3 (V688G GOF) revealed that MICs of long-tailed azoles, itraconazole and posaconazole, were decreased compared to P3, which is consistent with the role of this ABC transporter in the efflux of these azoles. Fluconazole MIC was only decreased when CDR1 was deleted in the background of an mfs7Δ mutant from P3, which underpins the dominant role of MFS7 in the resistance of the short-tailed azole fluconazole. With R6G efflux readout as Cdr1 efflux capacity, our data showed that R6G efflux was increased in P3 compared to an azole-susceptible wild type parent, and diminished to background levels in mutant strains lacking CDR1. Milbemycin oxim A3, a known inhibitor of fungal ABC transporters, mimicked efflux phenotypes of cdr1Δ mutants. We therefore provided evidence that CDR1 is an additional mediator of azole resistance in C. lusitaniae, and that CDR1 regulation is dependent on MRR1 and associated GOF mutations.
Collapse
|