1
|
Zelasko S, Swaney MH, Sandstrom S, Lee KE, Dixon J, Riley C, Watson L, Godfrey JJ, Ledrowski N, Rey F, Safdar N, Seroogy CM, Gern JE, Kalan L, Currie C. Early-life upper airway microbiota are associated with decreased lower respiratory tract infections. J Allergy Clin Immunol 2025; 155:436-450. [PMID: 39547283 DOI: 10.1016/j.jaci.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Microbial interactions mediating colonization resistance play key roles within the human microbiome, shaping susceptibility to infection from birth. The role of the nasal and oral microbiome in the context of early life respiratory infections and subsequent allergic disease risk remains understudied. OBJECTIVES Our aim was to gain insight into microbiome-mediated defenses and respiratory pathogen colonization dynamics within the upper respiratory tract during infancy. METHODS We performed shotgun metagenomic sequencing of nasal (n = 229) and oral (n = 210) microbiomes from our Wisconsin Infant Study Cohort at age 24 months and examined the influence of participant demographics and exposure history on microbiome composition. Detection of viral and bacterial respiratory pathogens by RT-PCR and culture-based studies with antibiotic susceptibility testing, respectively, to assess pathogen carriage was performed. Functional bioassays were used to evaluate pathogen inhibition by respiratory tract commensals. RESULTS Participants with early-life lower respiratory tract infection were more likely to be formula fed, attend day care, and experience wheezing. Composition of the nasal, but not oral, microbiome associated with prior lower respiratory tract infection, namely lower alpha diversity, depletion of Prevotella, and enrichment of Moraxella catarrhalis including drug-resistant strains. Prevotella originating from healthy microbiomes had higher biosynthetic gene cluster abundance and exhibited contact-independent inhibition of M catarrhalis. CONCLUSIONS These results suggest interbacterial competition affects nasal pathogen colonization. This work advances understanding of protective host-microbe interactions occurring in airway microbiomes that alter infection susceptibility in early life.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wis; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wis.
| | - Mary Hannah Swaney
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wis; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis
| | - Kristine E Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis
| | - Jonah Dixon
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Colleen Riley
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Lauren Watson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Jared J Godfrey
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Naomi Ledrowski
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Federico Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wis
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis; William S. Middleton Memorial Veterans Affairs Hospital, Madison, Wis
| | - Christine M Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis; M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wis; M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Ito Y, Nagasawa M, Koyama K, Ito K, Kikusui T. Comparative analysis based on shared amplicon sequence variants reveals that cohabitation influences gut microbiota sharing between humans and dogs. Front Vet Sci 2024; 11:1417461. [PMID: 39434718 PMCID: PMC11491291 DOI: 10.3389/fvets.2024.1417461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction The One Health concept is a comprehensive understanding of the interaction between humans, animals, and the environment. The cohabitation of humans and pets positively affects their physical, mental, and social well-being. It is recognized as an essential factor from the One Health perspective. Furthermore, a healthy balance in the gut microbiome is essential for good health, and the changes in the gut microbiome associated with cohabitation between humans and pets could potentially affect various aspects of the health of both hosts. Therefore, elucidating the sharing of gut bacteria between humans and pets associated with cohabitation is important for understanding One Health. However, most studies have examined sharing at the taxonomic level, and it remains unclear whether the same bacteria are transferred between humans and pets, and whether they mutually influence each other. Methods Here, microbiome analysis and shared 16S rRNA gene amplicon sequence variant (ASV) analysis were conducted before the start of cohabitation between humans and dogs, as well as at 2 weeks, 1 month, and 3 months after cohabitation. Results 16S rRNA gene ASVs analysis indicated that gut microbes have been transferred between humans and dogs. The overall structure of the gut microbiota within human-dog pairs remained unchanged after 3 months of adaptation. However, 11ASVs were shared within human-dog pairs. Many shared ASVs were highly abundant within each host, and this high abundance may be considered a factor that influences bacterial transfer between hosts. Discussion Our results provide important insights into the potential for the transfer of gut bacteria between humans and dogs. These findings are considered crucial for understanding the impact of human-dog cohabitation on various aspects of health.
Collapse
Affiliation(s)
| | - Miho Nagasawa
- Laboratory of Human-Animal Interaction and Reciprocity, Department of Animal Science and Biotechnology, Azabu University, Kanagawa, Japan
| | - Kahori Koyama
- Laboratory of Human-Animal Interaction and Reciprocity, Department of Animal Science and Biotechnology, Azabu University, Kanagawa, Japan
| | | | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Department of Animal Science and Biotechnology, Azabu University, Kanagawa, Japan
| |
Collapse
|
3
|
Christensen C, Kok CR, Harris CL, Moore N, Wampler JL, Zhuang W, Wu SS, Hutkins R, Izard J, Auchtung JM. Microbiota, metabolic profiles and immune biomarkers in infants receiving formula with added bovine milk fat globule membrane: a randomized, controlled trial. Front Nutr 2024; 11:1465174. [PMID: 39444571 PMCID: PMC11497130 DOI: 10.3389/fnut.2024.1465174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Few studies have evaluated the effects of milk fat globule membrane (MFGM) on microbiota and immune markers in early infant nutrition. Methods In this double-blind randomized study, infants (7-18 days of age) received either bovine milk-based infant formula (Control) or similar formula with an added source (5 g/L) of bovine MFGM (INV-MFGM) for 60 days. A reference group received mother's own human milk over the same period (HM). Oral and stool samples were collected (Baseline and Day 60) to evaluate microbiota, immune markers, and metabolites. Results At Day 60, stool bacterial diversity and richness were higher in formula groups vs HM, as were Bifidobacterium bifidum and B. catenulatum abundance. Compared to HM, stool pH was higher in Control, while acetate, propionate, isovalerate, and total short- and branched-chain fatty acids were higher in INV-MFGM. Butyrate and lactate increased for INV-MFGM from baseline to Day 60. No group differences in oral microbiota or immune markers (α- and β-defensin, calprotectin, or sIgA) were detected, although sIgA increased over time in all study groups. Added bovine MFGM in infant formula modulated stool microbiota and short- and branched-chain fatty acids compared to human milk; changes were modest relative to control formula. Discussion Overall, distinct patterns of stool metabolites and microbiota development were observed based on early nutrition. Clinical trial registration ClinicalTrials.gov, identifier NCT04059666.
Collapse
Affiliation(s)
- Chloe Christensen
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
| | - Car Reen Kok
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
- Complex Biosystems, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Cheryl L. Harris
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Nancy Moore
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Jennifer L. Wampler
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Weihong Zhuang
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Steven S. Wu
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
| | - Jacques Izard
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Frederick F. Paustian Inflammatory Bowel Disease Center, University of Nebraska Medical Center, Omaha, NE, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennifer M. Auchtung
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
4
|
Asakawa M, Kageyama S, Said HS, Ma J, Suma S, Furuta M, Takeshita T. Association of oral fungal profiles with health status and bacterial composition in elderly adults receiving community support and home care service. Appl Environ Microbiol 2024; 90:e0085724. [PMID: 39082859 PMCID: PMC11337817 DOI: 10.1128/aem.00857-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Fungi compose a minority but a common component of normal oral microbiota and contribute to oral and systemic health by interacting with bacterial inhabitants. This study investigated the relationship of oral fungal profiles to health status and bacterial profiles of 159 elderly adults receiving community support and home care services. Fungal and bacterial densities and compositions were determined based on the fungal ribosomal internal transcribed spacer region and bacterial 16S rRNA gene amplicon analyses, respectively. The total fungal density of 87 individuals exceeded 5,000 copies, and their microbiota was characterized by significantly less dense bacterial populations and lower relative abundances of oral health-associated taxa, such as Neisseria perflava and Porphyromonas pasteri, compared with those with less than 5,000 copies of fungi. These individuals were significantly older, had fewer teeth, had lower physical function, and comprised more denture users and individuals with cognitive decline. Fungal compositions were classified into three profiles (Candida albicans-dominant, non-albicans Candida-dominant, and non-Candida-dominant), and individuals with a non-albicans Candida-dominant profile exhibited significantly lower physical and cognitive function than those with the Candida albicans-dominant profile. These results demonstrate that a high-density fungal population co-occurs with poor oral and systemic health status of the host and dysbiosis of the bacterial community, and particularly, the overgrowth of non-albicans Candida species may be implicated in worsening systemic conditions. IMPORTANCE The interaction between fungal and bacterial components involved in the virulence of oral microbiota has received attention. This study demonstrates that an increase in fungal components is associated with a dysbiotic bacterial community and poor health status in elderly adults. Among individuals with a high-density fungal population, particularly, those with a non-albicans Candida-dominant profile had lower physical and cognitive functions than those with a C. albicans-dominant profile. These findings indicate that the evaluation of fungal components, in addition to the bacterial components, is important to understand the involvement of oral microbiota in oral and systemic diseases in elderly adults.
Collapse
Affiliation(s)
- Mikari Asakawa
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinya Kageyama
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Heba Shehta Said
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Jiale Ma
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shino Suma
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Michiko Furuta
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Kageyama S, Takeshita T. Development and establishment of oral microbiota in early life. J Oral Biosci 2024; 66:300-303. [PMID: 38703995 DOI: 10.1016/j.job.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The oral microbiota has recently attracted attention owing to its association with oral and systemic diseases. Accordingly, gaining an understanding of oral microbiota development and the factors influencing it can contribute to preventing the establishment of dysbiotic oral microbiota and, eventually, oral microbiota-related diseases. HIGHLIGHT In this review, we highlight the results of a longitudinal project focusing on oral microbiota development during early life. At 4 months of age, the oral microbiota of infants was found to differ considerably from the maternal oral microbiota, even though infants acquire oral bacteria from their mothers. At 18 months, although the infant microbiota is still not completely comparable with that of adults, from 4 to 18 months, there is a rapid phase of development, during which the microbial composition undergoes considerable change to a profile more similar to that in adults. During this development, the infant oral microbiota converges into two different profiles with adult-like traits, namely, Streptococcus salivarius- and Neisseria-dominant profiles. This divergence is strongly influenced by dietary habits, with a frequent intake of sweetened beverages being associated with an S. salivarius-dominant profile, which is suspected to be implicated in oral and systemic diseases. CONCLUSION The foundation of the adult oral microbiota may be established by 18 months of age, and the developmental period from 4 to 18 months may be an appropriate period during which to modify the microbial balance to obtain a desirable healthy state. In particular, dietary habits during this period warrant close attention.
Collapse
Affiliation(s)
- Shinya Kageyama
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Lin G, Kageyama S, Maeda A, Sakamoto E, Ma J, Asakawa M, Furuta M, Yamashita Y, Takeshita T. Oral-to-rectum microbial transmission in orthopedic patients without a history of intestinal disorders. Front Cell Infect Microbiol 2024; 14:1358684. [PMID: 38660493 PMCID: PMC11039792 DOI: 10.3389/fcimb.2024.1358684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
The enrichment of oral taxa in the gut has recently been reported as a notable alteration in the microbial balance in patients with intestinal disorders. However, translocation in populations without such diseases remains controversial. In this study, we examined 49 pairs of tongue and rectal samples collected from orthopedic patients without a history of intestinal disorders to verify the presence of oral taxa in the rectal microbiota. The bacterial composition of each sample was determined using 16S rRNA gene sequencing and amplicon sequence variant (ASV) analysis. Although the bacterial compositions of the tongue and rectal microbiota were distinctly different, tongue ASVs were detected in 67.3% of the participants and accounted for 0.0%-9.37% of the rectal microbiota. Particularly, Streptococcus salivarius, Fusobacterium nucleatum, and Streptococcus parasanguinis were abundant in the rectal microbiota. According to the network analysis, tongue taxa, such as S. salivarius and S. parasanguinis, formed a cohabiting group with Klebsiella pneumoniae and Alistipes finegoldii in the rectal microbiota. The total abundance of tongue ASVs in the rectal microbiota was significantly higher in participants with older age, hypertension, and proton pump inhibitor (PPI) use. Our study presents an extensive translocation of oral taxa to the rectum of a population without intestinal disorders and suggests that aging, hypertension, and PPI use are associated with an increased abundance of oral taxa and potential pathogenic bacteria in the rectal microbiota.
Collapse
Affiliation(s)
- Ge Lin
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinya Kageyama
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Aiko Maeda
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Eiji Sakamoto
- Department of Oral and Maxillofacial Surgery, Kyushu University Hospital, Fukuoka, Japan
| | - Jiale Ma
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mikari Asakawa
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Michiko Furuta
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Podar NA, Carrell AA, Cassidy KA, Klingeman DM, Yang Z, Stahler EA, Smith DW, Stahler DR, Podar M. From wolves to humans: oral microbiome resistance to transfer across mammalian hosts. mBio 2024; 15:e0334223. [PMID: 38299854 PMCID: PMC10936156 DOI: 10.1128/mbio.03342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.
Collapse
Affiliation(s)
- Nicholas A. Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kira A. Cassidy
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Dawn M. Klingeman
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zamin Yang
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Erin A. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Douglas W. Smith
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Daniel R. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Mircea Podar
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
8
|
Kageyama S, Ma J, Furuta M, Takeshita T, Asakawa M, Okabe Y, Yamashita Y. Establishment of tongue microbiota by 18 months of age and determinants of its microbial profile. mBio 2023; 14:e0133723. [PMID: 37819142 PMCID: PMC10653898 DOI: 10.1128/mbio.01337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Understanding the development of oral microbiota early in life and the factors that influence it is important for preventing the establishment of dysbiotic oral microbiota later in life. This study demonstrates that the tongue microbiota undergoes early development from 4 to 18 months of age and converges into two types of microbiota showing indications of adult characteristics, with either S. salivarius or Neisseria-dominance. Interestingly, their divergence was strongly determined by their weaning status and the dietary frequencies of sweetened beverages, snacks, and fruits, suggesting that dietary habits during this period might influence the establishment of the oral microbiota. These findings may contribute to the development of novel preventive strategies against oral microbiota-related diseases.
Collapse
Affiliation(s)
- Shinya Kageyama
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jiale Ma
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Michiko Furuta
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mikari Asakawa
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuka Okabe
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Abstract
Microbial species colonizing host ecosystems in health or disease rarely do so alone. Organisms conglomerate into dynamic heterotypic communities or biofilms in which interspecies and interkingdom interactions drive functional specialization of constituent species and shape community properties, including nososymbiocity or pathogenic potential. Cell-to-cell binding, exchange of signaling molecules, and nutritional codependencies can all contribute to the emergent properties of these communities. Spatial constraints defined by community architecture also determine overall community function. Multilayered interactions thus occur between individual pairs of organisms, and the relative impact can be determined by contextual cues. Host responses to heterotypic communities and impact on host surfaces are also driven by the collective action of the community. Additionally, the range of interspecies interactions can be extended by bacteria utilizing host cells or host diet to indirectly or directly influence the properties of other organisms and the community microenvironment. In contexts where communities transition to a dysbiotic state, their quasi-organismal nature imparts adaptability to nutritional availability and facilitates resistance to immune effectors and, moreover, exploits inflammatory and acidic microenvironments for their persistence.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Singh P, Elhaj DAI, Ibrahim I, Abdullahi H, Al Khodor S. Maternal microbiota and gestational diabetes: impact on infant health. J Transl Med 2023; 21:364. [PMID: 37280680 PMCID: PMC10246335 DOI: 10.1186/s12967-023-04230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication of pregnancy that has been associated with an increased risk of obesity and diabetes in the offspring. Pregnancy is accompanied by tightly regulated changes in the endocrine, metabolic, immune, and microbial systems, and deviations from these changes can alter the mother's metabolism resulting in adverse pregnancy outcomes and a negative impact on the health of her infant. Maternal microbiomes are significant drivers of mother and child health outcomes, and many microbial metabolites are likely to influence the host health. This review discusses the current understanding of how the microbiota and microbial metabolites may contribute to the development of GDM and how GDM-associated changes in the maternal microbiome can affect infant's health. We also describe microbiota-based interventions that aim to improve metabolic health and outline future directions for precision medicine research in this emerging field.
Collapse
Affiliation(s)
- Parul Singh
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Ibrahim Ibrahim
- Women's Department, Sidra Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Hala Abdullahi
- Women's Department, Sidra Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Souhaila Al Khodor
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- Research Department, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
11
|
Tagg JR, Harold LK, Jain R, Hale JDF. Beneficial modulation of human health in the oral cavity and beyond using bacteriocin-like inhibitory substance-producing streptococcal probiotics. Front Microbiol 2023; 14:1161155. [PMID: 37056747 PMCID: PMC10086258 DOI: 10.3389/fmicb.2023.1161155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The human oral cavity contains a diversity of microbial habitats that have been adopted and adapted to as homeland by an amazingly heterogeneous population of microorganisms collectively referred to as the oral microbiota. These microbes generally co-habit in harmonious homeostasis. However, under conditions of imposed stress, as with changes to the host’s physiology or nutritional status, or as a response to foreign microbial or antimicrobial incursions, some components of the oral “microbiome” (viz. the in situ microbiota) may enter a dysbiotic state. This microbiome dysbiosis can manifest in a variety of guises including streptococcal sore throats, dental caries, oral thrush, halitosis and periodontal disease. Most of the strategies currently available for the management or treatment of microbial diseases of the oral cavity focus on the repetitive “broad sweep” and short-term culling of oral microbe populations, hopefully including the perceived principal pathogens. Both physical and chemical techniques are used. However, the application of more focused approaches to the harnessing or elimination of key oral cavity pathogens is now feasible through the use of probiotic strains that are naturally adapted for oral cavity colonization and also are equipped to produce anti-competitor molecules such as the bacteriocins and bacteriocin-like inhibitory substances (viz BLIS). Some of these probiotics are capable of suppressing the proliferation of a variety of recognized microbial pathogens of the human mouth, thereby assisting with the restoration of oral microbiome homeostasis. BLIS K12 and BLIS M18, the progenitors of the BLIS-producing oral probiotics, are members of the human oral cavity commensal species Streptococcus salivarius. More recently however, a number of other streptococcal and some non-streptococcal candidate oral probiotics have also been promoted. What is becoming increasingly apparent is that the future for oral probiotic applications will probably extend well beyond the attempted limitation of the direct pathological consequences of oral microbiome dysbiosis to also encompass a plethora of systemic diseases and disorders of the human host. The background to and the evolving prospects for the beneficial modulation of the oral microbiome via the application of BLIS-producing S. salivarius probiotics comprises the principal focus of the present review.
Collapse
|
12
|
Abstract
Transmission of oral microbiota from mother to infant is a highly relevant and, so far, understudied topic due to lack of mainstream high-throughput methods for the assessment of bacterial diversity at a strain level. In their recent article in mBio, S. Kageyama, M. Furuta, T. Takeshita, J. Ma, et al. (mBio 13:e03452-21, 2021, https://doi.org/10.1128/mbio.03452-21) evaluated oral microbial transmission from mothers to their infants by using full-length analysis of the 16S rRNA gene and demonstrated the applicability of this method for assessment of transmission of oral bacteria at the single-nucleotide-difference level. By analyzing different metadata of the mother-infant pairs, they discovered that the presence of maternal oral bacteria was higher in formula-fed infants compared to infants who were breastfed or received mixed feeding. This interesting finding suggests that breastfeeding may prevent early maturation of infant's oral microbiome. The physiological role of this phenomenon still needs to be elucidated.
Collapse
|
13
|
Xu T, Yan L, Sun B, Xu Q, Zhang J, Zhu W, Zhang Q, Chen N, Liu G, Chen F. Impacts of Delivery Mode and Maternal Factors on Neonatal Oral Microbiota. Front Microbiol 2022; 13:915423. [PMID: 35832807 PMCID: PMC9271910 DOI: 10.3389/fmicb.2022.915423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Initial oral microbial colonization has complicatedly interacted with growth and development. The aim of our study was to discover links between oral microbiota community structure and mode of delivery, maternal factors, such as systemic diseases, abortion history, and pregnancy complications. Methods A total of 177 pregnant women and their neonates were enrolled at Peking university people's hospital. We collected oral samples, medical history, and development phenotype and used a 16S rRNA gene sequence to analyze microbial diversity at all taxonomic levels, network structure, and metabolic characteristics. Results Firmicutes, Proteobacteria, and Actinobacteriota were the most predominant bacteria of neonatal oral samples among these phyla. Alpha-diversity of pregnant women with gestational diabetes mellitus (GDM), abortion history, and without immune diseases was higher than in control groups, and no significant dissimilarity in beta-diversity was observed between different maternal factors. Obvious separation or trend failed to be seen in different development phenotype groups. Besides, Oscillospirales were significantly more abundant in a natural delivery group than in the cesarean section group. Conclusion Our study indicated that maternal factors and mode of delivery influenced the oral microbial structure, but longitudinal studies were indispensable for capturing the long-term effects on neonatal development phenotype and oral microbiota.
Collapse
Affiliation(s)
- Tiansong Xu
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Lihuang Yan
- Department of Obstetrics, Peking University People’s Hospital, Beijing, China
| | - Bohui Sun
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Qi Xu
- Department of Obstetrics, Peking University People’s Hospital, Beijing, China
| | - Jieni Zhang
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Wenhui Zhu
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Qian Zhang
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| | - Guoli Liu
- Department of Obstetrics, Peking University People’s Hospital, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| |
Collapse
|