1
|
Sah D, Shoffel-Havakuk H, Tsur N, Uhelski ML, Gottumukkala V, Cata JP. Opioids and Cancer: Current Understanding and Clinical Considerations. Curr Oncol 2024; 31:3086-3098. [PMID: 38920719 PMCID: PMC11203256 DOI: 10.3390/curroncol31060235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Pain is one of the most common symptoms in patients with cancer. Pain not only negatively affects the quality of life of patients with cancer, but it has also been associated with reduced survival. Pain management is therefore a critical component of cancer care. Prescription opioids remain the first-line approach for the management of moderate-to-severe pain associated with cancer. However, there has been increasing interest in understanding whether these analgesics could impact cancer progression. Furthermore, epidemiological data link a possible association between prescription opioid usage and cancer development. Until more robust evidence is available, patients with cancer with moderate-to-severe pain may receive opioids to decrease suffering. However, future studies should be conducted to evaluate the role of opioids and opioid receptors in specific cancers.
Collapse
Affiliation(s)
- Dhananjay Sah
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (V.G.)
- Anesthesiology and Surgical Oncology Research Group (ASORG), Houston, TX 77030, USA
| | - Hagit Shoffel-Havakuk
- Department of Otolaryngology-Head and Neck Surgery, Rabin Medical Center, Petach Tiqva 4941492, Israel; (H.S.-H.); (N.T.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nir Tsur
- Department of Otolaryngology-Head and Neck Surgery, Rabin Medical Center, Petach Tiqva 4941492, Israel; (H.S.-H.); (N.T.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Megan L. Uhelski
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Vijaya Gottumukkala
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (V.G.)
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (V.G.)
- Anesthesiology and Surgical Oncology Research Group (ASORG), Houston, TX 77030, USA
| |
Collapse
|
2
|
Yuan W, Xiao J, Liao H, Xie Z, Zhao Y, Li C, Zhou K, Song XJ. Lactobacillus rhamnosus GG and butyrate supplementation in rats with bone cancer reduces mechanical allodynia and increases expression of μ-opioid receptor in the spinal cord. Front Mol Neurosci 2023; 16:1207911. [PMID: 37389091 PMCID: PMC10306308 DOI: 10.3389/fnmol.2023.1207911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Chronic cancer pain is one of the most unbearable symptoms for the patients with advanced cancer. The treatment of cancer pain continues to possess a major challenge. Here, we report that adjusting gut microbiota via probiotics can reduce bone cancer pain (BCP) in rats. Methods The model of BCP was produced by tumor cell implantation (TCI) to the tibia in rats. Continuous feeding of Lactobacillus rhamnosus GG (LGG) was used to modulate the gut microbiota. Mechanical allodynia, bone destruction, fecal microbiota, and neurochemical changes in the primary dorsal root ganglion (DRG) and the spinal dorsal horn (DH) were assessed. Results LGG supplementation (109 CFU/rat/day) delayed the production of BCP for 3-4 days and significantly alleviated mechanical allodynia within the first 2 weeks after TCI. TCI-induced proinflammatory cytokines TNF-α and IL-β in the DH, and TCI-induced bone destruction in the tibia were both significantly reduced following LGG supplementation examined on day 8 after TCI. Meanwhile, we found that LGG supplementation, in addition to inhibiting TCI-induced pain, resulted in a significantly increased expression of the μ-opioid receptor (MOR) in the DH, but not in the DRG. LGG supplementation significantly potentiated the analgesic effect of morphine. Furthermore, LGG supplementation led to an increase in butyrate levels in the feces and serum and a decrease in histone deacetylase 2 (HDAC2) expression in the DH. Feeding TCI-rats with sodium butyrate solution alone, at a dose of 100 mg/kg, resulted in decreased pain, as well as decreased HDAC2 expression and increased MOR expression in the DH. The increased expression of MOR and decreased HDAC2 were also observed in neuro-2a cells when we treated the cells with serum from TCI rats with supplementation of LGG or sodium butyrate. Discussion This study provides evidence that reshaping the gut microbiota with probiotics LGG can delay the onset of cancer pain. The butyrate-HDAC2-MOR pathway may be the underlying mechanism for the analgesic effect of LGG. These findings shed light on an effective, safe, and non-invasive approach for cancer pain control and support the clinical implication of probiotics supplementation for patients with BCP.
Collapse
Affiliation(s)
- Wenxi Yuan
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Xiao
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Huabao Liao
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyuan Xie
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yiran Zhao
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Cheng Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Keying Zhou
- Department of Pediatrics, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xue-Jun Song
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Dourson AJ, Willits A, Raut NG, Kader L, Young E, Jankowski MP, Chidambaran V. Genetic and epigenetic mechanisms influencing acute to chronic postsurgical pain transitions in pediatrics: Preclinical to clinical evidence. Can J Pain 2022; 6:85-107. [PMID: 35572362 PMCID: PMC9103644 DOI: 10.1080/24740527.2021.2021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Background Chronic postsurgical pain (CPSP) in children remains an important problem with no effective preventive or therapeutic strategies. Recently, genomic underpinnings explaining additional interindividual risk beyond psychological factors have been proposed. Aims We present a comprehensive review of current preclinical and clinical evidence for genetic and epigenetic mechanisms relevant to pediatric CPSP. Methods Narrative review. Results Animal models are relevant to translational research for unraveling genomic mechanisms. For example, Cacng2, p2rx7, and bdnf mutant mice show altered mechanical hypersensitivity to injury, and variants of the same genes have been associated with CPSP susceptibility in humans; similarly, differential DNA methylation (H1SP) and miRNAs (miR-96/7a) have shown translational implications. Animal studies also suggest that crosstalk between neurons and immune cells may be involved in nociceptive priming observed in neonates. In children, differential DNA methylation in regulatory genomic regions enriching GABAergic, dopaminergic, and immune pathways, as well as polygenic risk scores for enhanced prediction of CPSP, have been described. Genome-wide studies in pediatric CPSP are scarce, but pathways identified by adult gene association studies point to potential common mechanisms. Conclusions Bench-to-bedside genomics research in pediatric CPSP is currently limited. Reverse translational approaches, use of other -omics, and inclusion of pediatric/CPSP endophenotypes in large-scale biobanks may be potential solutions. Time of developmental vulnerability and longitudinal genomic changes after surgery warrant further investigation. Emergence of promising precision pain management strategies based on gene editing and epigenetic programing emphasize need for further research in pediatric CPSP-related genomics.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| |
Collapse
|
4
|
Baker Rogers J, Higa GM. Spoken and Unspoken Matters Regarding the Use of Opioids in Cancer. J Pain Res 2022; 15:909-924. [PMID: 35411188 PMCID: PMC8994621 DOI: 10.2147/jpr.s349107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Janna Baker Rogers
- Sections of Geriatrics, Palliative Medicine and Hospice, Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Gerald M Higa
- Departments of Clinical Pharmacy and Medicine, Schools of Pharmacy and Medicine, West Virginia University, Morgantown, WV, USA
- Correspondence: Gerald M Higa, Departments of Clinical Pharmacy and Medicine, Schools of Pharmacy and Medicine, West Virginia University, Morgantown, WV, USA, 26506, Email
| |
Collapse
|
5
|
Luo JF, Yao YD, Cheng CS, Lio CK, Liu JX, Huang YF, He F, Xie Y, Liu L, Liu ZQ, Zhou H. Sinomenine increases the methylation level at specific GCG site in mPGES-1 promoter to facilitate its specific inhibitory effect on mPGES-1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194813. [PMID: 35417776 DOI: 10.1016/j.bbagrm.2022.194813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Prostaglandin E2 (PGE2) in cancer and inflammatory diseases is a key mediator of disease progression. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to inhibit the expression of PGE2 by depressing cyclooxygenase (COX) in inflammatory treatments. However, the inhibition to COXs may cause serious side effects. Thus, it is urgent to develop new anti-inflammatory drugs aiming new targets to inhibit PGE2 production. Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the final step of PGE2 biosynthesis. Therefore, the selective inhibition of mPGES-1 has become a promising strategy in the treatments of cancer and inflammatory diseases. Our previous studies confirmed that sinomenine (SIN) is a specific mPGES-1 inhibitor. However, the exact mechanism by which SIN inhibits mPGES-1 remains unknown. This study aimed to explain the regulation effect of SIN to mPGES-1 gene expression by its DNA methylation induction effect. We found that the demethylating agent 5-azacytidine (5-AzaC) reversed the inhibitory effect of SIN to mPGES-1. Besides, SIN selectively increased the methylation level of the promoter region in the mPGES-1 gene while the pretreatment of 5-AzaC suppressed this effect. The results also shows that pretreatment with SIN increased the methylation level of specific GCG sites in the promoter region of mPGES-1. This specific methylation site may become a new biomarker for predicting and diagnosing RA and cancer with high expression of mPGES-1. Also, our research provides new ideas and solutions for clinical diagnosis and treatment of diseases related to mPGES-1 and for targeted methylation strategy in drug development.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, Guizhou, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Key Laboratory of Plant Ex-situ Conservation and Research Center of Resource Plant, Lushan Botanical Garden, Chinese Academy of Science, Jiujiang City, Jiangxi Province, PR China
| | - Chon-Kit Lio
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, PR China
| | - Yu-Feng Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China
| | - Fan He
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China
| | - Ying Xie
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China.
| | - Liang Liu
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China.
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
6
|
Blackwood CA, Cadet JL. Epigenetic and Genetic Factors Associated With Opioid Use Disorder: Are These Relevant to African American Populations. Front Pharmacol 2021; 12:798362. [PMID: 35002733 PMCID: PMC8727544 DOI: 10.3389/fphar.2021.798362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
In the United States, the number of people suffering from opioid use disorder has skyrocketed in all populations. Nevertheless, observations of racial disparities amongst opioid overdose deaths have recently been described. Opioid use disorder is characterized by compulsive drug consumption followed by periods of withdrawal and recurrent relapses while patients are participating in treatment programs. Similar to other rewarding substances, exposure to opioid drugs is accompanied by epigenetic changes in the brain. In addition, genetic factors that are understudied in some racial groups may also impact the clinical manifestations of opioid use disorder. These studies are important because genetic factors and epigenetic alterations may also influence responses to pharmacological therapeutic approaches. Thus, this mini-review seeks to briefly summarize what is known about the genetic bases of opioid use disorder in African Americans.
Collapse
Affiliation(s)
- Christopher A. Blackwood
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
7
|
Liu L, Yang X, Zhao F, Gao C, Zhang N, Bao J, Li K, Zhang X, Lu X, Ruan Y, Zhong S. Hypermethylation of the OPRM1 and ALDH2 promoter regions in Chinese Han males with alcohol use disorder in Yunnan Province. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:694-703. [PMID: 34582308 DOI: 10.1080/00952990.2021.1973486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is one of the most serious public health problems worldwide. The OPRM1 and ALDH2 genes are important factors in the reward and alcohol metabolism pathways, and their DNA methylation patterns are closely related to AUD and are population-specific. Chinese Han people are the most populous ethnic group in the world, and this group experiences severe AUD. No epigenetic study on OPRM1 and ALDH2 has been performed in Chinese Han patients with AUD. OBJECTIVES To investigate whether methylation patterns of OPRM1 and ALDH2 are associated with susceptibility to AUD in Chinese Han males. METHODS DNA methylation of the OPRM1 and ALDH2 promoters was studied in Chinese Han males with AUD in Yunnan Province (N = 50 controls, N = 90 individuals with AUD) using the bisulfite pyrosequencing method. RESULTS In the AUD group, compared with the control group, OPRM1 was hypermethylated(p < .01) but there was no significant difference in the methylation level of ALDH2 (p > .05). 9 CpG sites of OPRM1 (p < .05) and 2 CpG sites of ALDH2 (p > .01) were hypermethylated. Smoking promoted AUD-mediated hypermethylation of OPRM1, in which 3 CpG sites showed significant hypermethylation (p < .01). Age had no significant effect on the DNA methylation levels of these two genes. CONCLUSIONS Our study demonstrates that DNA hypermethylation of the OPRM1 and ALDH2 promoter regions is associated with an increased risk of AUD, which may help to explain the pathogenesis and progression of AUD.
Collapse
Affiliation(s)
- Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, China.,Forensic biology identification laboratory, Judicial Identification Center of Kunming Medical University, Kunming, China
| | - Xiaopei Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, China.,Department of basic medicine, Chuxiong Medical and Pharmaceutical College, Chuxiong, China
| | - Fei Zhao
- School of Forensic Medicine, Kunming Medical University, Kunming, China.,Forensic Lab 1, Jiangxi Shenzhou Judicial Identification Center, Nanchang, China
| | - Changqing Gao
- Children's mental department, The Mental Hospital of Yunnan Province, Kunming, China.,Children's mental department, Alcohol and Drug Dependence Treatment Department, Mental Health Center Affiliated With Kunming Medical University, Kunming, China
| | - Ning Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jianjun Bao
- Alcohol and Drug Dependence Treatment Department, The Mental Hospital of Yunnan Province, Kunming, China.,Alcohol and Drug Dependence Treatment Department, Mental Health Center Affiliated With Kunming Medical University, Kunming, China
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xulan Zhang
- Alcohol and Drug Dependence Treatment Department, The Mental Hospital of Yunnan Province, Kunming, China.,Alcohol and Drug Dependence Treatment Department, Mental Health Center Affiliated With Kunming Medical University, Kunming, China
| | - Xiaoxiao Lu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Ye Ruan
- Alcohol and Drug Dependence Treatment Department, The Mental Hospital of Yunnan Province, Kunming, China.,Alcohol and Drug Dependence Treatment Department, Mental Health Center Affiliated With Kunming Medical University, Kunming, China
| | - Shurong Zhong
- School of Forensic Medicine, Kunming Medical University, Kunming, China.,Forensic biology identification laboratory, Judicial Identification Center of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
De Sa Nogueira D, Bourdy R, Filliol D, Romieu P, Befort K. Hippocampal mu opioid receptors are modulated following cocaine self-administration in rat. Eur J Neurosci 2021; 53:3341-3349. [PMID: 33811699 DOI: 10.1111/ejn.15217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Cocaine addiction is a complex pathology induced by long-term brain changes. Understanding the neurochemical changes underlying the reinforcing effects of this drug of abuse is critical for reducing the societal burden of drug addiction. The mu opioid receptor plays a major role in drug reward. This receptor is modulated by chronic cocaine treatment in specific brain structures, but few studies investigated neurochemical adaptations induced by voluntary cocaine intake. In this study, we investigated whether intravenous cocaine-self administration (0.33 mg/kg/injection, fixed-ratio 1 [FR1], 10 days) in rats induces transcriptional and functional changes of the mu opioid receptor in reward-related brain regions. Epigenetic processes with histone modifications were examined for two activating marks, H3K4Me3, and H3K27Ac. We found an increase of mu opioid receptor gene expression along with a potentiation of its functionality in hippocampus of cocaine self-administering animals compared to saline controls. Chromatin immunoprecipitation followed by qPCR revealed no modifications of the histone mark H3K4Me3 and H3K27Ac levels at mu opioid receptor promoter. Our study highlights the hippocampus as an important target to further investigate neuroadaptive processes leading to cocaine addiction.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Romain Bourdy
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Dominique Filliol
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Renilla Luciferase Reporter Assay to Study 3'-UTR-Driven Posttranscriptional Regulation of OPRM1. Methods Mol Biol 2020. [PMID: 32975785 DOI: 10.1007/978-1-0716-0884-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
MOR expression levels at a specific cell type or tissue significantly contribute to its role in pain transmission and in other responses involving opioid receptors. Therefore, molecular processes regulating MOR levels have gained more and more interest. Recently, posttranscriptional regulation mechanisms have been shown to play a relevant role in influencing MOR expression levels, with polymorphisms and mutations within OPRM1 3'-UTR region impacting the differential opioid-mediated response observed within individuals. Here we report a Renilla luciferase reporter assay format suitable for dissecting the contribution of different and distinct OPRM1 3'-UTR elements to MOR expression levels in a model of glial cells, both under basal conditions and following specific treatments.
Collapse
|
10
|
López Soto EJ, Lipscombe D. Cell-specific exon methylation and CTCF binding in neurons regulate calcium ion channel splicing and function. eLife 2020; 9:54879. [PMID: 32213287 PMCID: PMC7124252 DOI: 10.7554/elife.54879] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cell-specific alternative splicing modulates myriad cell functions and is disrupted in disease. The mechanisms governing alternative splicing are known for relatively few genes and typically focus on RNA splicing factors. In sensory neurons, cell-specific alternative splicing of the presynaptic CaV channel Cacna1b gene modulates opioid sensitivity. How this splicing is regulated is unknown. We find that cell and exon-specific DNA hypomethylation permits CTCF binding, the master regulator of mammalian chromatin structure, which, in turn, controls splicing in a DRG-derived cell line. In vivo, hypomethylation of an alternative exon specifically in nociceptors, likely permits CTCF binding and expression of CaV2.2 channel isoforms with increased opioid sensitivity in mice. Following nerve injury, exon methylation is increased, and splicing is disrupted. Our studies define the molecular mechanisms of cell-specific alternative splicing of a functionally validated exon in normal and disease states – and reveal a potential target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Eduardo Javier López Soto
- The Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, United States
| | - Diane Lipscombe
- The Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
11
|
Uniyal A, Gadepalli A, Akhilesh, Tiwari V. Underpinning the Neurobiological Intricacies Associated with Opioid Tolerance. ACS Chem Neurosci 2020; 11:830-839. [PMID: 32083459 DOI: 10.1021/acschemneuro.0c00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The opioid crisis is a major threat of the 21st century, with a remarkable juxtaposition of use and abuse. Opioids are the most potent and efficacious class of analgesics, but despite their proven therapeutic efficacy, they have recently been degraded to third-line therapy for the management of chronic pain in clinics. The reason behind this is the development of potential side effects and tolerance after repeated dosing. Opioid tolerance is the major limiting factor leading to the withdrawal of treatment, severe side effects due to dose escalation, and sometimes even death of the patients. Every day more than 90 people die due to opioids overdose in America, and a similar trend has been seen across the globe. Over the past two decades, researchers have been trying to dissect the neurobiological mechanism of opioid tolerance. Research on opioid tolerance shifted toward central nervous system-based adaptations because tolerance is much more than just a cellular phenomenon. Thus, neurobiological adaptations associated with opioid tolerance are important to understand in order to find newer pain therapeutics. These adaptations are associated with alterations in ascending and descending pain pathways, reward circuitry modulations, receptor desensitization and down-regulation, receptor internalization, heterodimerization, and altered epigenetic regulation. The present Review is focused on novel circuitries associated with opioid tolerance in different areas of the brain, such as periaqueductal gray, rostral ventromedial medulla, dorsal raphe nucleus, ventral tegmental area, and nucleus accumbens. Understanding the neurobiological modulations associated with chronic opioid exposure and tolerance will pave the way for the development of novel pharmacological tools for safer and better management of chronic pain in patients.
Collapse
Affiliation(s)
- Ankit Uniyal
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
12
|
Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The Mechanisms Involved in Morphine Addiction: An Overview. Int J Mol Sci 2019; 20:ijms20174302. [PMID: 31484312 PMCID: PMC6747116 DOI: 10.3390/ijms20174302] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Opioid use disorder is classified as a chronic recurrent disease of the central nervous system (CNS) which leads to personality disorders, co-morbidities and premature death. It develops as a result of long-term administration of various abused substances, along with morphine. The pharmacological action of morphine is associated with its stimulation of opioid receptors. Opioid receptors are a group of G protein-coupled receptors and activation of these receptors by ligands induces significant molecular changes inside the cell, such as an inhibition of adenylate cyclase activity, activation of potassium channels and reductions of calcium conductance. Recent data indicate that other signalling pathways also may be involved in morphine activity. Among these are phospholipase C, mitogen-activated kinases (MAP kinases) or β-arrestin. The present review focuses on major mechanisms which currently are considered as essential in morphine activity and dependence and may be important for further studies.
Collapse
Affiliation(s)
- Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Małgorzata Łupina
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Antonina Mazur
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Jolanta Orzelska-Górka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Jolanta Kotlińska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| |
Collapse
|
13
|
Overexpression of µ-Opioid Receptors in Peripheral Afferents, but Not in Combination with Enkephalin, Decreases Neuropathic Pain Behavior and Enhances Opioid Analgesia in Mouse. Anesthesiology 2019; 128:967-983. [PMID: 29334500 DOI: 10.1097/aln.0000000000002063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The current study used recombinant herpes simplex virus type I to increase expression of µ-opiate receptors and the opioid ligand preproenkephalin in peripheral nerve fibers in a mouse model of neuropathic pain. It was predicted that viral vector delivery of a combination of genes encoding the µ-opioid receptor and preproenkephalin would attenuate neuropathic pain and enhance opioid analgesia. The behavioral effects would be paralleled by changes in response properties of primary afferent neurons. METHODS Recombinant herpes simplex virus type 1 containing cDNA sequences of the µ-opioid receptor, human preproenkephalin, a combination, or Escherichia coli lacZ gene marker (as a control) was used to investigate the role of peripheral opioids in neuropathic pain behaviors. RESULTS Inoculation with the µ-opioid receptor viral vector (n = 13) reversed mechanical allodynia and thermal hyperalgesia and produced leftward shifts in loperamide (ED50 = 0.6 ± 0.2 mg/kg vs. ED50 = 0.9 ± 0.2 mg/kg for control group, n = 8, means ± SD) and morphine dose-response curves (ED50 = 0.3 ± 0.5 mg/kg vs. ED50 = 1.1 ± 0.1 mg/kg for control group). In µ-opioid receptor viral vector inoculated C-fibers, heat-evoked responses (n = 12) and ongoing spontaneous activity (n = 18) were decreased after morphine application. Inoculation with both µ-opioid receptor and preproenkephalin viral vectors did not alter mechanical and thermal responses. CONCLUSIONS Increasing primary afferent expression of opioid receptors can decrease neuropathic pain-associated behaviors and increase systemic opioid analgesia through inhibition of peripheral afferent fiber activity.
Collapse
|
14
|
Nieto SJ, Kosten TA. Who's your daddy? Behavioral and epigenetic consequences of paternal drug exposure. Int J Dev Neurosci 2019; 78:109-121. [PMID: 31301337 DOI: 10.1016/j.ijdevneu.2019.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Substance use disorders (SUDs) reflect genetic and environmental factors. While identifying reliable genetic variants that predispose individuals to developing SUDs has been challenging, epigenetic factors may also contribute to the heritability of SUDs. Familial drug use associates with a wide range of problems in children, including an increased risk for developing a SUD. The implications of maternal drug use on offspring development are a well-studied area; however, paternal drug use prior to conception has received relatively little attention. Paternal exposure to several environmental stimuli (i.e. stress or diet manipulations) results in behavioral and epigenetic changes in offspring. The purpose of this review is to determine the state of the preclinical literature on the behavioral and epigenetic consequences of paternal drug exposure. Drug-sired offspring show several developmental and physiological abnormalities. These offspring also show deficits in cognitive and emotional domains. Examining sensitivity to drugs in offspring is a growing area of research. Drug-sired offspring are resistant to the rewarding and reinforcing properties of drugs. However, greater paternal motivation for the drug, combined with high drug intake, can result in addiction-like behaviors in offspring. Drug-sired offspring also show altered histone modifications and DNA methylation levels of imprinted genes and microRNAs; epigenetic-mediated changes were also noted in genes related to glutamatergic and neurotrophic factor signaling. In some instances, drug use resulted in aberrant epigenetic modifications in sire sperm, and these changes were maintained in the brains of offspring. Thus, paternal drug exposure has long-lasting consequences that include altered drug sensitivity in subsequent generations. We discuss factors (i.e. maternal behaviors) that may moderate these paternal drug-induced effects as well as ideas for future directions.
Collapse
Affiliation(s)
- Steven J Nieto
- University of Houston, Department of Psychology & Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX, 77204-6022, United States
| | - Therese A Kosten
- University of Houston, Department of Psychology & Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX, 77204-6022, United States
| |
Collapse
|
15
|
Early life stress and the propensity to develop addictive behaviors. Int J Dev Neurosci 2019; 78:156-169. [PMID: 31255718 DOI: 10.1016/j.ijdevneu.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
There is a vast literature on effects of early life manipulations in rodents much of which is aimed at investigating the long-term consequences related to emotion and cognition in adulthood. Less is known about how these manipulations affect responses reflective of alcohol (AUD) and substance (SUD) use disorders. The purpose of this paper is to review the literature of studies that employed early life manipulations and assessed behavioral responses to psychoactive substances, specifically alcohol, opiates, and stimulants, in rodents. While the findings with alcohol are more limited and mixed, studies with opiates and stimulants show strong support for the ability of these manipulations to enhance behavioral responsivity to these substances in line with epidemiological data. Some outcomes show sex differences. The mechanisms that influence these enduring changes may reflect epigenetic alterations. Several studies support a role for altered DNA methylation (and other epigenetic mechanisms) as biological responses to early environmental insults. The chemical changes induced by DNA methylation affect transcriptional activity of DNA and thus can have a long-term impact on the individual's phenotype. Such effects are particularly robust when they occur during sensitive periods of brain development (e.g., first postnatal weeks in rodents). We review this emerging literature as it relates to the known neurobiology of AUDs and SUDs and suggest new avenues of research. Such findings will have implications for the treatment and prevention of AUDs and SUDs and could provide insight into factors that support resiliency.
Collapse
|
16
|
Abstract
During the past decades, the use/misuse of opioids has increased dramatically among adolescent population. It is now well acknowledged that various morphological and physiological changes occur in the brain during adolescence. During this critical period, brain development and maturation could be affected by several factors including stress, drug abuse, nutritional status, etc. Although studies on transgenerational effects of substances such as alcohol, nicotine, and cocaine have focused on both paternal and maternal drug exposure, most reports on transgenerational effects of morphine are restricted to maternal exposure. Thus, in this study, we aimed to investigate the transgenerational effect of paternal morphine exposure during adolescence on pain perception and antinociceptive effect of morphine in rat offspring. Male rats received escalating doses of morphine for 10 days during postnatal days 31-40. Twenty days after the last morphine injection, male rats were mated with intact female rats, and then behavioral tests were conducted on the male offspring on postnatal day 60. Pain perception and morphine antinociception were evaluated using the formalin test. Our results demonstrated that morphine-sired and saline-sired animals differed in the interphase and phase 2 of the formalin test. These findings indicate a significant transgenerational effect of paternal morphine exposure on pain-related behaviors in rat offspring.
Collapse
|
17
|
Comparison of Different Histone Deacetylase Inhibitors in Attenuating Inflammatory Pain in Rats. Pain Res Manag 2019; 2019:1648919. [PMID: 30809320 PMCID: PMC6369477 DOI: 10.1155/2019/1648919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/25/2018] [Indexed: 12/17/2022]
Abstract
Histone deacetylase inhibitors (HDACIs), which interfere with the epigenetic process of histone acetylation, have shown analgesic effects in animal models of persistent pain. The HDAC family comprises 18 genes; however, the different effects of distinct classes of HDACIs on pain relief remain unclear. The aim of this study was to determine the efficacy of these HDACIs on attenuating thermal hyperalgesia in persistent inflammatory pain. Persistent inflammatory pain was induced by injecting Complete Freund's Adjuvant (CFA) into the left hind paw of rats. Then, HDACIs targeting class I (entinostat (MS-275)) and class IIa (sodium butyrate, valproic acid (VPA), and 4-phenylbutyric acid (4-PBA)), or class II (suberoylanilide hydoxamic acid (SAHA), trichostatin A (TSA), and dacinostat (LAQ824)) were administered intraperitoneally once daily for 3 or 4 days. We found that the injection of SAHA once a day for 3 days significantly attenuated CFA-induced thermal hyperalgesia from day 4 and lasted 7 days. In comparison with SAHA, suppression of hyperalgesia by 4-PBA peaked on day 2, whereas that by MS-275 occurred on days 5 and 6. Fatigue was a serious side effect seen with MS-275. These findings will be beneficial for optimizing the selection of specific HDACIs in medical fields such as pain medicine and neuropsychiatry.
Collapse
|
18
|
He XT, Zhou KX, Zhao WJ, Zhang C, Deng JP, Chen FM, Gu ZX, Li YQ, Dong YL. Inhibition of Histone Deacetylases Attenuates Morphine Tolerance and Restores MOR Expression in the DRG of BCP Rats. Front Pharmacol 2018; 9:509. [PMID: 29867508 PMCID: PMC5962808 DOI: 10.3389/fphar.2018.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/27/2018] [Indexed: 01/21/2023] Open
Abstract
The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
19
|
Hou X, Weng Y, Wang T, Ouyang B, Li Y, Song Z, Pan Y, Zhang Z, Zou W, Huang C, Guo Q. Suppression of HDAC2 in Spinal Cord Alleviates Mechanical Hyperalgesia and Restores KCC2 Expression in a Rat Model of Bone Cancer Pain. Neuroscience 2018; 377:138-149. [PMID: 29482000 DOI: 10.1016/j.neuroscience.2018.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/14/2022]
Abstract
Epigenetic modulation participates in the mechanism of multiple types of pathological pain, so targeting the involved regulators may be a promising strategy for pain treatment. Our previous research identified the analgesic effect of the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) on mechanical hyperalgesia in a rat model of bone cancer pain (BCP) via restoration of μ-opioid receptor (MOR) expression. However, the specific types of HDACs contributing to BCP have not been explored. The present study investigated the expression pattern of some common HDACs and found that HDAC2 was up-regulated in a time-dependent manner in the lumbar spinal cord of BCP rats. TSA application suppressed HDAC2 expression in cultured PC12 cells and reversed the augmented HDAC2 in BCP rats. An RNA-interfering strategy confirmed the essential role of HDAC2 in the modulation of mechanical hyperalgesia following tumor cell inoculation, and we further examined its possible downstream targets. Notably, HDAC2 knock-down did not restore MOR expression, but it robustly reversed the down-regulation of potassium-chloride cotransporter 2 (KCC2). The impaired KCC2 expression is a vital mechanism of many types of pathological pain. Therefore, our results demonstrated that HDAC2 in spinal cord contributed to the mechanical hyperalgesia in BCP rats, and this effect may be associated with KCC2 modulation.
Collapse
Affiliation(s)
- Xinran Hou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China.
| | - Tongxuan Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Bihan Ouyang
- Health Management Center, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Yalin Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Yundan Pan
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Zhong Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
20
|
Shao C, Gao Y, Jin D, Xu X, Tan S, Yu H, Zhao Q, Zhao L, Wang W, Wang D. DNMT3a methylation in neuropathic pain. J Pain Res 2017; 10:2253-2262. [PMID: 29075135 PMCID: PMC5609796 DOI: 10.2147/jpr.s130654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Mu opioid receptor (MOR) plays a crucial role in mediating analgesic effects of opioids and is closely associated with the pathologies of neuropathic pain. Previous studies have reported that peripheral nerve injury downregulates MOR expression, but the epigenetic mechanisms remain unknown. Objective Therefore, we investigated DNA methyltransferase3a (DNMT3a) expression or methylation changes within MOR promoter in the spinal cord in a neuropathic pain induced by a chronic constriction injury (CCI) mouse model and further determined whether these injury-associated changes are reversible by pharmacological interventions. Methods A CCI mouse model was established and tissue specimens of lumbar spinal cords were collected. The nociception threshold was evaluated by a Model Heated 400 Base. DNMT3a and MOR mRNA and protein level were detected by real-time-polymerase chain reaction and Western blot, respectively. Methylation of DNMT3a gene was measured by methylation-specific PCR. Results Our data showed that chronic nerve injury led to a significant upregulation of DNMT3a expression that was associated with increased methylation of MOR gene promoter and decreased MOR protein expression in the spinal cord. Inhibition of DNMT3a catalytic activity with DNMT inhibitor RG108 significantly blocked the increase in methylation of the MOR promoter, and then upregulated MOR expression and attenuated thermal hyperalgesia in neuropathic pain mice. Conclusion This study demonstrates that an increase of DNMT3a expression and MOR methylation epigenetically play an important role in neuropathic pain. Targeting DNMT3a to the promoter of MOR gene by DNMT inhibitor may be a promising approach to the development of new neuropathic pain therapy.
Collapse
Affiliation(s)
- Cuijie Shao
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Yong Gao
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Jin
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Xin Xu
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Shuying Tan
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Hui Yu
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Qingxiang Zhao
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Li Zhao
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Wansheng Wang
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Deqiang Wang
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
21
|
Zhou H, Liu JX, Luo JF, Cheng CS, Leung ELH, Li Y, Su XH, Liu ZQ, Chen TB, Duan FG, Dong Y, Zuo YH, Li C, Lio CK, Li T, Luo P, Xie Y, Yao XJ, Wang PX, Liu L. Suppressing mPGES-1 expression by sinomenine ameliorates inflammation and arthritis. Biochem Pharmacol 2017; 142:133-144. [PMID: 28711625 DOI: 10.1016/j.bcp.2017.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/10/2017] [Indexed: 01/26/2023]
Abstract
Recently, microsomal prostaglandin E synthase 1 (mPGES-1) has attracted much attention from pharmacologists as a promising strategy and an attractive target for treating various types of diseases including rheumatoid arthritis (RA), which could preserve the anti-inflammatory effect while reducing the adverse effects often occur during administration of non-steroidal anti-inflammatory drugs (NSAIDs). Here, we report that sinomenine (SIN) decreased prostaglandin (PG)E2 levels without affecting prostacyclin (PG)I2 and thromboxane (TX)A2 synthesis via selective inhibiting mPGES-1 expression, a possible reason of low risk of cardiovascular event compared with NSAIDs. In addition, mPGES-1 protein expression was down-regulated by SIN treatment in the inflamed paw tissues both in carrageenan-induced edema model in rats and the collagen-II induced arthritis (CIA) model in DBA mice. More interestingly, SIN suppressed the last step of mPGES-1 gene expression by decreasing the DNA binding ability of NF-κB, paving a new way for drug discovery.
Collapse
Affiliation(s)
- Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; International Institute of Translation Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Jian-Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; College of Pharmacy, Hunan University of Medicine, Huaihua City, Hunan Province, PR China
| | - Jin-Fang Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Chun-Song Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Xiao-Hui Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Zhong-Qiu Liu
- International Institute of Translation Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Ting-Bo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Fu-Gang Duan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Yan Dong
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Yi-Han Zuo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Chong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Chon Kit Lio
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Pei Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Pei-Xun Wang
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau.
| |
Collapse
|
22
|
mPer1 promotes morphine-induced locomotor sensitization and conditioned place preference via histone deacetylase activity. Psychopharmacology (Berl) 2017; 234:1713-1724. [PMID: 28243713 DOI: 10.1007/s00213-017-4574-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Abstract
RATIONALE Previous studies have shown that repeated exposure to drugs of abuse is associated with changes in clock genes expression and that mice strains with various mutations in clock genes show alterations in drug-induced behaviors. OBJECTIVE The objective of this study is to characterize the role of the clock gene mPer1 in the development of morphine-induced behaviors and a possible link to histone deacetylase (HDAC) activity. METHODS In Per1 Brdm1 null mutant mice and wild-type (WT) littermates, we examined whether there were any differences in the development of morphine antinociception, tolerance to antinociception, withdrawal, sensitization to locomotion, and conditioned place preference (CPP). RESULTS Per1 Brdm1 mutant mice did not show any difference in morphine antinociception, tolerance development, nor in physical withdrawal signs precipitated by naloxone administration compared to WT. However, morphine-induced locomotor sensitization and CPP were significantly impaired in Per1 Brdm1 mutant mice. Because a very similar dissociation between tolerance and dependence vs. sensitization and CPP was recently observed after the co-administration of morphine and the HDAC inhibitor sodium butyrate (NaBut), we studied a possible link between mPer1 and HDAC activity. As opposed to WT controls, Per1 Brdm1 mutant mice showed significantly enhanced striatal global HDAC activity within the striatum when exposed to a locomotor-sensitizing morphine administration regimen. Furthermore, the administration of the HDAC inhibitor NaBut restored the ability of morphine to promote locomotor sensitization and reward in Per1 Brdm1 mutant mice. CONCLUSIONS Our results reveal that although the mPer1 gene does not alter morphine-induced antinociception nor withdrawal, it plays a prominent role in the development of morphine-induced behavioral sensitization and reward via inhibitory modulation of striatal HDAC activity. These data suggest that PER1 inhibits deacetylation to promote drug-induced neuroplastic changes.
Collapse
|
23
|
Chidambaran V, Zhang X, Martin LJ, Ding L, Weirauch MT, Geisler K, Stubbeman BL, Sadhasivam S, Ji H. DNA methylation at the mu-1 opioid receptor gene ( OPRM1) promoter predicts preoperative, acute, and chronic postsurgical pain after spine fusion. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:157-168. [PMID: 28533693 PMCID: PMC5432115 DOI: 10.2147/pgpm.s132691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction The perioperative pain experience shows great interindividual variability and is difficult to predict. The mu-1 opioid receptor gene (OPRM1) is known to play an important role in opioid-pain pathways. Since deoxyribonucleic acid (DNA) methylation is a potent repressor of gene expression, DNA methylation was evaluated at the OPRM1 promoter, as a predictor of preoperative, acute, and chronic postsurgical pain (CPSP). Methods A prospective observational cohort study was conducted in 133 adolescents with idiopathic scoliosis undergoing spine fusion under standard protocols. Data regarding pain, opioid consumption, anxiety, and catastrophizing (using validated questionnaires) were collected before and 2–3 months postsurgery. Outcomes evaluated were preoperative pain, acute postoperative pain (area under curve [AUC] for pain scores over 48 hours), and CPSP (numerical rating scale >3/10 at 2–3 months postsurgery). Blood samples collected preoperatively were analyzed for DNA methylation by pyrosequencing of 22 CpG sites at the OPRM1 gene promoter. The association of each pain outcome with the methylation percentage of each CpG site was assessed using multivariable regression, adjusting for significant (P<0.05) nongenetic variables. Results Majority (83%) of the patients reported no pain preoperatively, while CPSP occurred in 36% of the subjects (44/121). Regression on dichotomized preoperative pain outcome showed association with methylation at six CpG sites (1, 3, 4, 9, 11, and 17) (P<0.05). Methylation at CpG sites 4, 17, and 18 was associated with higher AUC after adjusting for opioid consumption and preoperative pain score (P<0.05). After adjusting for postoperative opioid consumption and preoperative pain score, methylation at CpG sites 13 and 22 was associated with CPSP (P<0.05). Discussion Novel CPSP biomarkers were identified in an active regulatory region of the OPRM1 gene that binds multiple transcription factors. Inhibition of binding by DNA methylation potentially decreases the OPRM1 gene expression, leading to a decreased response to endogenous and exogenous opioids, and an increased pain experience.
Collapse
Affiliation(s)
| | - Xue Zhang
- Division of Human Genetics.,Pyrosequencing Core for Genomic and Epigenomic Research
| | - Lisa J Martin
- Department of Pediatrics.,Division of Human Genetics
| | - Lili Ding
- Division of Biostatistics and Epidemiology
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology.,Division of Biomedical Informatics.,Division of Developmental Biology
| | | | | | | | - Hong Ji
- Pyrosequencing Core for Genomic and Epigenomic Research.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
24
|
Wagley Y, Law PY, Wei LN, Loh HH. Epigenetic Activation of μ-Opioid Receptor Gene via Increased Expression and Function of Mitogen- and Stress-Activated Protein Kinase 1. Mol Pharmacol 2017; 91:357-372. [PMID: 28153853 DOI: 10.1124/mol.116.106567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/31/2017] [Indexed: 11/22/2022] Open
Abstract
Since the discovery of μ-opioid receptor (MOR) gene two decades ago, various regulatory factors have been shown to interact with the MOR promoter and modulate transcript levels. However, the majority of early transcriptional studies on MOR gene have not addressed how intracellular signaling pathways mediate extracellular modulators. In this study, we demonstrate that MOR epigenetic regulation requires multiple coordinated signals converging at the MOR promoter, involving mitogen-activated protein kinase (MAPK) activation and mitogen- and stress-activated protein kinase 1 (MSK1)-ranges of intracellular signaling pathways similar to those activated by opioid agonists. Inhibiting p38 MAPK or extracellular signal-regulated kinase (ERK) 1/2 MAPK (upstream activators of MSK1) reduced MOR expression levels; accordingly, the functional role of MSK1, but not MSK2, was demonstrated using genetic approaches. However, for maximal MSK1 effect, an open chromatin configuration was required, because in vitro CpG methylation of the MOR promoter abolished MSK1 activity. Finally, endogenous MSK1 levels concomitantly increased to regulate MOR gene expression during neuronal differentiation of P19 cells, suggesting a conserved role of this kinase in the epigenic activation of MOR in neurons. Taken together, our findings indicate that the expression of MOR gene requires the activity of intracellular signaling pathways that have been implicated in the behavioral outcomes of opioid drugs, which suggests that an autoregulatory mechanism may function in opioid systems.
Collapse
Affiliation(s)
- Yadav Wagley
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
25
|
Ebrahimi G, Asadikaram G, Akbari H, Nematollahi MH, Abolhassani M, Shahabinejad G, Khodadadnejad L, Hashemi M. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:193-199. [DOI: 10.1080/00952990.2016.1275659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ghasem Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Moslem Abolhassani
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamabbas Shahabinejad
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Leyla Khodadadnejad
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences. Zahedan, Iran
| |
Collapse
|
26
|
Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP). Gene 2016; 598:113-130. [PMID: 27836661 DOI: 10.1016/j.gene.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022]
Abstract
Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3'-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3'-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yadav Wagley
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Knothe C, Oertel BG, Ultsch A, Kettner M, Schmidt PH, Wunder C, Toennes SW, Geisslinger G, Lötsch J. Pharmacoepigenetics of the role of DNA methylation in μ-opioid receptor expression in different human brain regions. Epigenomics 2016; 8:1583-1599. [PMID: 27685027 DOI: 10.2217/epi-2016-0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM Exposure to opioids has been associated with epigenetic effects. Studies in rodents suggested a role of varying degrees of DNA methylation in the differential regulation of μ-opioid receptor expression across the brain. METHODS In a translational investigation, using tissue acquired postmortem from 21 brain regions of former opiate addicts, representing a human cohort with chronic opioid exposure, μ-opioid receptor expression was analyzed at the level of DNA methylation, mRNA and protein. RESULTS & CONCLUSION While high or low μ-opioid receptor expression significantly correlated with local OPRM1 mRNA levels, there was no corresponding association with OPRM1 methylation status. Additional experiments in human cell lines showed that changes in DNA methylation associated with changes in μ-opioid expression were an order of magnitude greater than differences in brain. Hence, different degrees of DNA methylation associated with chronic opioid exposure are unlikely to exert a major role in the region-specificity of μ-opioid receptor expression in the human brain.
Collapse
Affiliation(s)
- Claudia Knothe
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Bruno G Oertel
- Fraunhofer Institute for Molecular Biology & Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Mattias Kettner
- Institute of Legal Medicine, Goethe - University, Kennedyallee 104, 60596 Frankfurt am Main, Germany
| | - Peter Harald Schmidt
- Institute of Legal Medicine, Saarland University, Building 80.2, 66421, Homburg, Saar, Germany
| | - Cora Wunder
- Institute of Legal Medicine, Goethe - University, Kennedyallee 104, 60596 Frankfurt am Main, Germany
| | - Stefan W Toennes
- Institute of Legal Medicine, Goethe - University, Kennedyallee 104, 60596 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology & Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology & Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
28
|
Xu L, Hong Q, Chen X, Xu X, Liu H, Zhou W, Duan S. H4K5 histone acetylation of BRG1 is associated with heroin administration rather than addiction. Exp Ther Med 2016; 12:1929-1933. [PMID: 27588112 DOI: 10.3892/etm.2016.3517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2016] [Indexed: 11/06/2022] Open
Abstract
Diacetylmorphine hydrochloride (heroin) addiction is a chronic relapsing brain disorder that is a heavy public health burden worldwide. Brm/SWI2-related gene-1 (BRG1) is a tumor suppressor gene that can influence embryogenesis and the development of the cerebellum. The current study aimed to investigate the effect of histone H4 lysine 5 (H4K5) modifications on the BRG1 gene in brain tissue of the ventral tegmental area (VTA) of heroin-addicted rats. A total of 21 male Sprague Dawley rats were raised in a standard manner and underwent heroin self-administration training. Rats were randomly divided into three equal groups: Group A, self-administered delivery of heroin; group B, yoked delivery of heroin; and group C, yoked delivery of saline. The VTA was harvested and subjected to chromatin immunoprecipitation (ChIP) analysis. Gene expression was evaluated by quantitative polymerase chain reaction. We calculated the recovery rate, which indicated the percentage of the total input BRG1 recovered by ChIP. Our results showed that BRG1 was less associated with H4K5 histone modification in the group of rats that underwent heroin self-administration than in the other two groups (A vs. B, P=0.031; A vs. C, P=0.067). The recovery fold changes of the self-administration group and the passive-administration group were significantly different from those of the group with yoked saline (A vs. C, P=0.013; B vs. C, P=0.009; A vs. B, P=0.731). The results of the current study demonstrated that H4K5 histone acetylation of BRG1 in the VTA may be associated with heroin administration, but not addiction.
Collapse
Affiliation(s)
- Limin Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China; Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Qingxiao Hong
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaoying Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Xuting Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo University, Ningbo, Zhejiang 315010, P.R. China; Ningbo Institute of Microcirculation and Henbane, Ningbo, Zhejiang 315010, P.R. China
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China; Laboratory of Behavioral Neuroscience, Ningbo University, Ningbo, Zhejiang 315010, P.R. China; Ningbo Institute of Microcirculation and Henbane, Ningbo, Zhejiang 315010, P.R. China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
29
|
Song KY, Choi HS, Law PY, Wei LN, Loh HH. Post-Transcriptional Regulation of the Human Mu-Opioid Receptor (MOR) by Morphine-Induced RNA Binding Proteins hnRNP K and PCBP1. J Cell Physiol 2016; 232:576-584. [PMID: 27292014 DOI: 10.1002/jcp.25455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/10/2016] [Indexed: 01/18/2023]
Abstract
Expression of the mu-opioid receptor (MOR) protein is controlled by extensive transcriptional and post-transcriptional processing. MOR gene expression has previously been shown to be altered by a post-transcriptional mechanism involving the MOR mRNA untranslated region (UTR). Here, we demonstrate for the first time the role of heterogeneous nuclear ribonucleic acids (hnRNA)-binding protein (hnRNP) K and poly(C)-binding protein 1 (PCBP1) as post-transcriptional inducers in MOR gene regulation. In the absence of morphine, a significant level of MOR mRNA is sustained in its resting state and partitions in the translationally inactive polysomal fraction. Morphine stimulation activates the downstream targets hnRNP K and PCPB1 and induces partitioning of the MOR mRNA to the translationally active fraction. Using reporter and ligand binding assays, as well as RNA EMSA, we reveal potential RNP binding sites located in the 5'-untranslated region of human MOR mRNA. In addition, we also found that morphine-induced RNPs could regulate MOR expression. Our results establish the role of hnRNP K and PCPB1 in the translational control of morphine-induced MOR expression in human neuroblastoma (NMB) cells as well as cells stably expressing MOR (NMB1). J. Cell. Physiol. 232: 576-584, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Hack Sun Choi
- Subtropical Horticulture Research Institute, College of Applied Life Science, Jeju National University, Jeju, Jeju, Republic of Korea
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
30
|
Don't worry; be informed about the epigenetics of anxiety. Pharmacol Biochem Behav 2016; 146-147:60-72. [PMID: 27189589 DOI: 10.1016/j.pbb.2016.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Epigenetic processes regulate gene expression independent of the DNA sequence and are increasingly being investigated as contributors to the development of behavioral disorders. Environmental insults, such as stress, diet, or toxin exposure, can affect epigenetic mechanisms, including chromatin remodeling, DNA methylation, and non-coding RNAs that, in turn, alter the organism's phenotype. In this review, we examine the literature, derived at both the preclinical (animal) and clinical (human) levels, on epigenetic alterations associated with anxiety disorders. Using animal models of anxiety, researchers have identified epigenetic changes in several limbic and cortical brain regions known to be involved in stress and emotion responses. Environmental manipulations have been imposed prior to conception, during prenatal or early postnatal periods, and at juvenile and adult ages. Time of perturbation differentially affects the epigenome and many changes are brain region-specific. Although some sex-dependent effects are reported in animal studies, more research employing both sexes is needed particularly given that females exhibit a disproportionate number of anxiety disorders. The human literature is in its infancy but does reveal some epigenetic associations with anxiety behaviors and disorders. In particular, effects in monoaminergic systems are seen in line with evidence from etiological and treatment research. Further, there is evidence that epigenetic changes may be inherited to affect subsequent generations. We speculate on how epigenetic processes may interact with genetic contributions to inform prevention and treatment strategies for those who are at risk for or have anxiety disorders.
Collapse
|
31
|
Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol 2016; 77:226-39. [PMID: 27046448 DOI: 10.1016/j.biocel.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ajeet Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|
32
|
Bell MR, Hart BG, Gore AC. Two-hit exposure to polychlorinated biphenyls at gestational and juvenile life stages: 2. Sex-specific neuromolecular effects in the brain. Mol Cell Endocrinol 2016; 420:125-37. [PMID: 26620572 PMCID: PMC4703537 DOI: 10.1016/j.mce.2015.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
Abstract
Exposures to polychlorinated biphenyls (PCBs) during early development have long-lasting, sexually dimorphic consequences on adult brain and behavior. However, few studies have investigated their effects during juvenile development, a time when increases in pubertal hormones influence brain maturation. Here, male and female Sprague Dawley rats were exposed to PCBs (Aroclor 1221, 1 mg/kg/day) or vehicle prenatally, during juvenile development, or both, and their effects on serum hormone concentrations, gene expression, and DNA methylation were assessed in adulthood. Gene expression in male but not female brains was affected by 2-hits of PCBs, a result that paralleled behavioral effects of PCBs. Furthermore, the second hit often changed the effects of a first hit in complex ways. Thus, PCB exposures during critical fetal and juvenile developmental periods result in unique neuromolecular phenotypes, with males most vulnerable to the treatments.
Collapse
Affiliation(s)
- Margaret R Bell
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bethany G Hart
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
33
|
Pitman KA, Borgland SL. Changes in mu-opioid receptor expression and function in the mesolimbic system after long-term access to a palatable diet. Pharmacol Ther 2015. [DOI: 10.1016/j.pharmthera.2015.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. Analysis of epigenetic mechanisms regulating opioid receptor gene transcription. Methods Mol Biol 2015; 1230:39-51. [PMID: 25293314 DOI: 10.1007/978-1-4939-1708-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Opioid drugs are generally used for moderate and severe pain reductions which act through opioid receptors. Studies on transcriptional regulation of opioid receptors are still invaluable because not only transcription is the first step to produce protein products in cells, but the receptor transcription levels also affect the pain reduction by opioids, as observed in studies of heterozygous opioid receptor knockout mice.There are growing evidences that epigenetic regulation has played significant roles in transcriptional regulation of genes, including opioid receptors. In general, epigenetic mechanisms include three main regulatory factors: DNA methylation, chromatin modification, and noncoding RNAs (such as microRNA). From previous studies of ours and others on opioid receptors, those epigenetic factors were clearly involved in regulating opioid receptor expression in vivo and in vitro. In this chapter, among those three techniques we describe more details of DNA methylation methods because of emerging concepts of DNA methylation with the recent discovery of 5-hydroxymethylcytosine converting enzyme, TET1. Another analytical method of the epigenetic factors, chromatin modification, will be described briefly and information of analyzing noncoding RNAs is briefly mentioned in Subheading 1.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA,
| | | | | | | | | |
Collapse
|
35
|
Lirk P, Fiegl H, Weber NC, Hollmann MW. Epigenetics in the perioperative period. Br J Pharmacol 2015; 172:2748-55. [PMID: 25073649 DOI: 10.1111/bph.12865] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/13/2014] [Accepted: 07/18/2014] [Indexed: 01/29/2023] Open
Abstract
The perioperative period is characterized by profound changes in the body's homoeostatic processes. This review seeks to address whether epigenetic mechanisms may influence an individual's reaction to surgery and anaesthesia. Evidence from animal and human studies suggests that epigenetic mechanisms can explain many facets of susceptibility to acute and chronic pain, making them potential therapeutic targets. Modern pain management is still based upon opiates, and both the developmental expression of opioid receptors and opioid-induced hyperalgesia have been linked to epigenetic mechanisms. In general, opiates seem to increase global DNA methylation levels. This is in contrast to local anaesthetics, which have been ascribed a global demethylating effect. Even though no direct investigations have been carried out, the potential influence of epigenetics on the inflammatory response that follows surgery seems a promising area for research. There is a considerable body of evidence that supports the involvement of epigenetics in the complex process of wound healing. Epigenetics is an important emerging research topic in perioperative medicine, with a huge potential to positively influence patient outcome.
Collapse
Affiliation(s)
- P Lirk
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - H Fiegl
- Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - N C Weber
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M W Hollmann
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Vincelli G, Bedini A. Renilla luciferase reporter assay to study 3'UTR-driven posttranscriptional regulations of OPRM1. Methods Mol Biol 2015; 1230:53-63. [PMID: 25293315 DOI: 10.1007/978-1-4939-1708-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The regulation of MOR expression at the level of mRNA is relevant for its role in pain transmission and in other functions involving opioid receptors. Recently, the role of the 3'UTR in the posttranscriptional regulation of MOR expression has been highlighted. Here we describe a Renilla luciferase reporter assay for the study of the effect of any selective treatment on the 3'UTR-dependent regulation of OPRM1 in a model of glial cells.
Collapse
Affiliation(s)
- Gabriele Vincelli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126, Bologna, (BO), Italy
| | | |
Collapse
|
37
|
Zhou XL, Yu LN, Wang Y, Tang LH, Peng YN, Cao JL, Yan M. Increased methylation of the MOR gene proximal promoter in primary sensory neurons plays a crucial role in the decreased analgesic effect of opioids in neuropathic pain. Mol Pain 2014; 10:51. [PMID: 25118039 PMCID: PMC4137045 DOI: 10.1186/1744-8069-10-51] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The analgesic potency of opioids is reduced in neuropathic pain. However, the molecular mechanism is not well understood. RESULTS The present study demonstrated that increased methylation of the Mu opioid receptor (MOR) gene proximal promoter (PP) in dorsal root ganglion (DRG) plays a crucial role in the decreased morphine analgesia. Subcutaneous (s.c.), intrathecal (i.t.) and intraplantar (i.pl.), not intracerebroventricular (i.c.v.) injection of morphine, the potency of morphine analgesia was significantly reduced in nerve-injured mice compared with control sham-operated mice. After peripheral nerve injury, we observed a decreased expression of MOR protein and mRNA, accompanied by an increased methylation status of MOR gene PP, in DRG. However, peripheral nerve injury could not induce a decreased expression of MOR mRNA in the spinal cord. Treatment with 5-aza-2'-deoxycytidine (5-aza-dC), inhibited the increased methylation of MOR gene PP and prevented the decreased expression of MOR in DRG, thereby improved systemic, spinal and periphery morphine analgesia. CONCLUSIONS Altogether, our results demonstrate that increased methylation of the MOR gene PP in DRG is required for the decreased morphine analgesia in neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
38
|
Kim YR, Kim JH, Kim MJ, Treasure J. Differential methylation of the oxytocin receptor gene in patients with anorexia nervosa: a pilot study. PLoS One 2014; 9:e88673. [PMID: 24523928 PMCID: PMC3921190 DOI: 10.1371/journal.pone.0088673] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/14/2014] [Indexed: 11/18/2022] Open
Abstract
Background and Aim Recent studies in patients with anorexia nervosa suggest that oxytocin may be involved in the pathophysiology of anorexia nervosa. We examined whether there was evidence of variation in methylation status of the oxytocin receptor (OXTR) gene in patients with anorexia nervosa that might account for these findings. Methods We analyzed the methylation status of the CpG sites in a region from the exon 1 to the MT2 regions of the OXTR gene in buccal cells from 15 patients and 36 healthy women using bisulfite sequencing. We further examined whether methylation status was associated with markers of illness severity or form. Results We identified six CpG sites with significant differences in average methylation levels between the patient and control groups. Among the six differentially methylated CpG sites, five showed higher than average methylation levels in patients than those in the control group (64.9–88.8% vs. 6.6–45.0%). The methylation levels of these five CpG sites were negatively associated with body mass index (BMI). BMI, eating disorders psychopathology, and anxiety were identified in a regression analysis as factors affecting the methylation levels of these CpG sites with more variation accounted for by BMI. Conclusions Epigenetic misregulation of the OXTR gene may be implicated in anorexia nervosa, which may either be a mechanism linking environmental adversity to risk or may be a secondary consequence of the illness.
Collapse
Affiliation(s)
- Youl-Ri Kim
- Department of Psychiatry, Inje University, Seoul Paik Hospital, Seoul, Republic of Korea
- * E-mail:
| | - Jeong-Hyun Kim
- Indang Institute of Molecular Biology, Inje University, Seoul, Republic of Korea
- School of Biological Sciences, Inje University, Gimhae, Republic of Korea
| | - Mi Jeong Kim
- Indang Institute of Molecular Biology, Inje University, Seoul, Republic of Korea
| | - Janet Treasure
- Section of Eating Disorders, Department of Psychological Medicine, King's College London, Institute of Psychiatry, London, United Kingdom
| |
Collapse
|
39
|
Decoding the Role of Epigenetics and Genomics in Pain Management. Pain Manag Nurs 2013; 14:358-367. [DOI: 10.1016/j.pmn.2011.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 12/30/2022]
|
40
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
41
|
Doehring A, Oertel BG, Sittl R, Lötsch J. Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain. Pain 2013; 154:15-23. [PMID: 23273101 DOI: 10.1016/j.pain.2012.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 01/17/2023]
Abstract
Environmentally caused changes in chromosomes that do not alter the DNA sequence but cause phenotypic changes by altering gene transcription are summarized as epigenetics. A major epigenetic mechanism is methylation or demethylation at CpG-rich DNA islands. DNA methylation triggered by drugs has largely unexplored therapeutic consequences. Here we report increased methylation at a CpG rich island in the OPRM1 gene coding for μ-opioid receptors and at a global methylation site (LINE-1) in leukocytes of methadone-substituted former opiate addicts compared with matched healthy controls. Higher DNA methylation associated with chronic opioid exposure was reproduced in an independent cohort of opioid-treated as compared to non-opioid-treated pain patients. This suggests that opioids may stimulate DNA methylation. The OPRM1 methylation had no immediate effect on μ-opioid receptor transcription and was not associated with opioid dosing requirements. However, the global DNA methylation at LINE-1 was significantly correlated with increased chronic pain. This suggests inhibitory effects on the transcription of still unspecified nocifensive gene products. It further implies that opioids may be causally associated with increased genome-wide DNA methylation, although currently there is no direct evidence of this. This has phenotypic consequences for pain and may provide a new, epigenetics-associated mechanism of opioid-induced hyperalgesia. The results indicate a potential influence of opioid analgesics on the patients' epigenome. They emphasize the need for reliable and cost-effective screening tools and may imply that high-throughput screening for lead compounds in artificial expression systems may not provide the best tools for identifying new pain medications.
Collapse
Affiliation(s)
- Alexandra Doehring
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany Fraunhofer Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor Stern Kai 7, D-60590 Frankfurt am Main, Germany Department of Anesthesiology, Universitätsklinikum Erlangen, Krankenhausstraße 12, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
42
|
Nielsen DA, Utrankar A, Reyes JA, Simons DD, Kosten TR. Epigenetics of drug abuse: predisposition or response. Pharmacogenomics 2013; 13:1149-60. [PMID: 22909205 DOI: 10.2217/pgs.12.94] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Drug addiction continues to be a serious medical and social problem. Vulnerability to develop an addiction to drugs is dependent on genetic, environmental, social and biological factors. In particular, the interactions of environmental and genetic factors indicate the significance of epigenetic mechanisms, which have been found to occur in response to illicit drug use or as underlying factors in chronic substance abuse and relapse. Epigenetics is defined as the heritable and possibly reversible modifications in gene expression that do not involve alterations in the DNA sequence. This review discusses the various types of epigenetic modifications and their relevance to drug addiction to elucidate whether epigenetics is a predisposing factor, or a response to, developing an addiction to drugs of abuse.
Collapse
Affiliation(s)
- David A Nielsen
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine & the Michael E DeBakey VA Medical Center, 2002 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
43
|
Wagley Y, Hwang CK, Lin HY, Kam AFY, Law PY, Loh HH, Wei LN. Inhibition of c-Jun NH2-terminal kinase stimulates mu opioid receptor expression via p38 MAPK-mediated nuclear NF-κB activation in neuronal and non-neuronal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1476-88. [PMID: 23485395 DOI: 10.1016/j.bbamcr.2013.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 12/20/2022]
Abstract
Despite its potential side effects of addiction, tolerance and withdrawal symptoms, morphine is widely used for reducing moderate and severe pain. Previous studies have shown that the analgesic effect of morphine depends on mu opioid receptor (MOR) expression levels, but the regulatory mechanism of MOR is not yet fully understood. Several in vivo and in vitro studies have shown that the c-Jun NH2-terminal kinase (JNK) pathway is closely associated with neuropathic hyperalgesia, which closely resembles the neuroplastic changes observed with morphine antinociceptive tolerance. In this study, we show that inhibition of JNK by SP600125, its inhibitory peptide, or JNK-1 siRNA induced MOR at both mRNA and protein levels in neuronal cells. This increase in MOR expression was reversed by inhibition of the p38 mitogen-activated protein kinase (MAPK) pathway, but not by inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK) pathway. Further experiments using cell signaling inhibitors showed that MOR upregulation by JNK inhibition involved nuclear factor-kappa B (NF-κB). The p38 MAPK dependent phosphorylation of p65 NF-κB subunit in the nucleus was increased by SP600125 treatment. We also observed by chromatin immunoprecipitation (ChIP) analysis that JNK inhibition led to increased bindings of CBP and histone-3 dimethyl K4, and decreased bindings of HDAC-2, MeCP2, and histone-3 trimethyl K9 to the MOR promoter indicating a transcriptional regulation of MOR by JNK inhibition. All these results suggest a regulatory role of the p38 MAPK and NF-κB pathways in MOR gene expression and aid to our better understanding of the MOR gene regulation.
Collapse
Affiliation(s)
- Yadav Wagley
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Song KY, Choi HS, Law PY, Wei LN, Loh HH. Vimentin interacts with the 5'-untranslated region of mouse mu opioid receptor (MOR) and is required for post-transcriptional regulation. RNA Biol 2013; 10:256-66. [PMID: 23353576 PMCID: PMC3594284 DOI: 10.4161/rna.23022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The opioid receptors are among the most highly studied members of the superfamily of G-protein coupled receptors. Morphine and endogenous mu opioid peptides exert their pharmacological actions mainly through the mu opioid receptor (MOR). Expression of opioid receptor proteins is controlled by extensive transcriptional and post-transcriptional processing. Previously, the 5′-untranslated region (UTR) of the mouse MOR was found to be important for post-transcriptional regulation of the MOR gene in neuronal cells. Here, we demonstrate for the first time the role of vimentin as a post-transcriptional repressor in MOR gene regulation. To identify potential regulators of the mouse MOR gene, we performed affinity column chromatography using 5′-UTR-specific RNA oligonucleotides using neuroblastoma NS20Y cells. Chromatography was followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. We identified an intermediate filament protein, vimentin, which bound specifically to the region between -175 and -150 (175–150) of the MOR 5′-UTR. Binding was confirmed by western blot analysis and RNA supershift assay. Furthermore, a cotransfection study demonstrated that the presence of vimentin resulted in reduced expression of the mouse MOR. Our data suggest that vimentin functions as a repressor of MOR translation, dependent on 175–150 of the MOR 5′-UTR.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | | | | | | | | |
Collapse
|
45
|
Wu Q, Hwang CK, Zheng H, Wagley Y, Lin HY, Kim DK, Law PY, Loh HH, Wei LN. MicroRNA 339 down-regulates μ-opioid receptor at the post-transcriptional level in response to opioid treatment. FASEB J 2012; 27:522-35. [PMID: 23085997 DOI: 10.1096/fj.12-213439] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
μ-Opioid receptor (MOR) level is directly related to the function of opioid drugs, such as morphine and fentanyl. Although agonist treatment generally does not affect transcription of mor, previous studies suggest that morphine can affect the translation efficiency of MOR transcript via microRNAs (miRNAs). On the basis of miRNA microarray analyses of the hippocampal total RNA isolated from mice chronically treated with μ-opioid agonists, we found a miRNA (miR-339-3p) that was consistently and specifically increased by morphine (2-fold) and by fentanyl (3.8-fold). miR-339-3p bound to the MOR 3'-UTR and specifically suppressed reporter activity. Suppression was blunted by adding miR-339-3p inhibitor or mutating the miR-339-3p target site. In cells endogenously expressing MOR, miR-339-3p inhibited the production of MOR protein by destabilizing MOR mRNA. Up-regulation of miR-339-3p by fentanyl (EC(50)=0.75 nM) resulted from an increase in primary miRNA transcript. Mapping of the miR-339-3p primary RNA and its promoter revealed that the primary miR-339-3p was embedded in a noncoding 3'-UTR region of an unknown host gene and was coregulated by the host promoter. The identified promoter was activated by opioid agonist treatment (10 nM fentanyl or 10 μM morphine), a specific effect blocked by the opioid antagonist naloxone (10 μM). Taken together, these results suggest that miR-339-3p may serve as a negative feedback modulator of MOR signals by regulating intracellular MOR biosynthesis.
Collapse
Affiliation(s)
- Qifang Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Buchheit T, Van de Ven T, Shaw A. Epigenetics and the transition from acute to chronic pain. PAIN MEDICINE 2012; 13:1474-90. [PMID: 22978429 DOI: 10.1111/j.1526-4637.2012.01488.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The objective of this study was to review the epigenetic modifications involved in the transition from acute to chronic pain and to identify potential targets for the development of novel, individualized pain therapeutics. BACKGROUND Epigenetics is the study of heritable modifications in gene expression and phenotype that do not require a change in genetic sequence to manifest their effects. Environmental toxins, medications, diet, and psychological stresses can alter epigenetic processes such as DNA methylation, histone acetylation, and RNA interference. As epigenetic modifications potentially play an important role in inflammatory cytokine metabolism, steroid responsiveness, and opioid sensitivity, they are likely key factors in the development of chronic pain. Although our knowledge of the human genetic code and disease-associated polymorphisms has grown significantly in the past decade, we have not yet been able to elucidate the mechanisms that lead to the development of persistent pain after nerve injury or surgery. DESIGN This is a focused literature review of epigenetic science and its relationship to chronic pain. RESULTS Significant laboratory and clinical data support the notion that epigenetic modifications are affected by the environment and lead to differential gene expression. Similar to mechanisms involved in the development of cancer, neurodegenerative disease, and inflammatory disorders, the literature endorses an important potential role for epigenetics in chronic pain. CONCLUSIONS Epigenetic analysis may identify mechanisms critical to the development of chronic pain after injury, and may provide new pathways and target mechanisms for future drug development and individualized medicine.
Collapse
Affiliation(s)
- Thomas Buchheit
- Department of Anesthesiology, Duke University Medical Center, Durham VA Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
47
|
Oertel BG, Doehring A, Roskam B, Kettner M, Hackmann N, Ferreirós N, Schmidt PH, Lötsch J. Genetic-epigenetic interaction modulates μ-opioid receptor regulation. Hum Mol Genet 2012; 21:4751-60. [PMID: 22875838 DOI: 10.1093/hmg/dds314] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic and epigenetic mechanisms play important roles in protein expression, although at different levels. Genetic variations can alter CpG sites and thus influence the epigenetic regulation of mRNA expression, providing an increasingly recognized mechanism of functional consequences of genetic polymorphisms. One of those genetic effects is the association of reduced μ-opioid receptor expression with the functional genetic variant N40D (OPRM1 118A>G, rs1799971) that causes an amino acid exchange in the extracellular terminal of the μ-opioid receptor. We report that the nucleotide exchange at gene position +118 introduces a new CpG-methylation site into the OPRM1 DNA at position +117. This leads to an enhanced methylation of the OPRM1 DNA at this site and downstream. This epigenetic mechanism impedes μ-opioid receptor upregulation in brain tissue of Caucasian chronic opiate addicts, assessed postmortem. While in wild-type subjects, a reduced signalling efficiency associated with chronic heroin exposure was compensated by an increased receptor density, this upregulation was absent in carriers of the 118G receptor variant due to a diminished OPRM1 mRNA transcription. Thus, the OPRM1 118A>G SNP variant not only reduces µ-opioid receptor signalling efficiency, but, by a genetic-epigenetic interaction, reduces opioid receptor expression and therefore, depletes the opioid system of a compensatory reaction to chronic exposure. This demonstrates that a change in the genotype can cause a change in the epigenotype with major functional consequences.
Collapse
Affiliation(s)
- Bruno G Oertel
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Smith MT, Muralidharan A. Pharmacogenetics of pain and analgesia. Clin Genet 2012; 82:321-30. [PMID: 22779698 DOI: 10.1111/j.1399-0004.2012.01936.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/08/2012] [Accepted: 07/08/2012] [Indexed: 12/19/2022]
Abstract
Pain severity ratings and the analgesic dosing requirements of patients with apparently similar pain conditions may differ considerably between individuals. Contributing factors include those of genetic and environmental origin with epigenetic mechanisms that enable dynamic gene-environment interaction, more recently implicated in pain modulation. Insight into genetic factors underpinning inter-patient variability in pain sensitivity has come from rodent heritability studies as well as familial aggregation and twin studies in humans. Indeed, more than 350 candidate pain genes have been identified as potentially contributing to heritable differences in pain sensitivity. A large number of genetic association studies conducted in patients with a variety of clinical pain types or in humans exposed to experimentally induced pain stimuli in the laboratory setting, have examined the impact of single-nucleotide polymorphisms in various target genes on pain sensitivity and/or analgesic dosing requirements. However, the findings of such studies have generally failed to replicate or have been only partially replicated by independent investigators. Deficiencies in study conduct including use of small sample size, inappropriate statistical methods and inadequate attention to the possibility that between-study differences in environmental factors may alter pain phenotypes through epigenetic mechanisms, have been identified as being significant.
Collapse
Affiliation(s)
- M T Smith
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
49
|
Regan PM, Dave RS, Datta PK, Khalili K. Epigenetics of µ-opioid receptors: intersection with HIV-1 infection of the central nervous system. J Cell Physiol 2012; 227:2832-41. [PMID: 22034138 DOI: 10.1002/jcp.24004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The abuse of intravenous drugs, such as heroin, has become a major public health concern due to the increased risk of HIV-1 infection. Opioids such as heroin were originally identified and subsequently abused for their analgesic effects. However, many investigations have found additional effects of opioids, including regulation of the immune system. As such, chronic opioid abuse has been shown to promote HIV-1 pathogenesis and facilitate HIV-1-associated neurocognitive dysfunction. Clinical opioids, such as morphine and methadone, as well as illicit opioids, such as heroin, exert their effects primarily through interactions with the µ-opioid receptor (MOR). However, the mechanisms by which opioids enhance neurocognitive dysfunction through MOR-mediated signaling pathways are not completely understood. New findings in the regulation of MOR expression, particularly epigenetic and transcriptional regulation as well as alternative splicing, sheds new insights into possible mechanisms of HIV-1 and opiate synergy. In this review, we identify mechanisms regulating MOR expression and propose novel mechanisms by which opioids and HIV-1 may modulate this regulation. Additionally, we suggest that differential regulation of newly identified MOR isoforms by opioids and HIV-1 has functional consequence in enhancing HIV-1 neurocognitive dysfunction.
Collapse
Affiliation(s)
- Patrick M Regan
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
50
|
Modulation of histone deacetylase attenuates naloxone-precipitated opioid withdrawal syndrome. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:605-19. [DOI: 10.1007/s00210-012-0739-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/06/2012] [Indexed: 01/01/2023]
|