1
|
Horste EL, Fansler MM, Cai T, Chen X, Mitschka S, Zhen G, Lee FCY, Ule J, Mayr C. Subcytoplasmic location of translation controls protein output. Mol Cell 2023; 83:4509-4523.e11. [PMID: 38134885 PMCID: PMC11146010 DOI: 10.1016/j.molcel.2023.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
The cytoplasm is highly compartmentalized, but the extent and consequences of subcytoplasmic mRNA localization in non-polarized cells are largely unknown. We determined mRNA enrichment in TIS granules (TGs) and the rough endoplasmic reticulum (ER) through particle sorting and isolated cytosolic mRNAs by digitonin extraction. When focusing on genes that encode non-membrane proteins, we observed that 52% have transcripts enriched in specific compartments. Compartment enrichment correlates with a combinatorial code based on mRNA length, exon length, and 3' UTR-bound RNA-binding proteins. Compartment-biased mRNAs differ in the functional classes of their encoded proteins: TG-enriched mRNAs encode low-abundance proteins with strong enrichment of transcription factors, whereas ER-enriched mRNAs encode large and highly expressed proteins. Compartment localization is an important determinant of mRNA and protein abundance, which is supported by reporter experiments showing that redirecting cytosolic mRNAs to the ER increases their protein expression. In summary, the cytoplasm is functionally compartmentalized by local translation environments.
Collapse
Affiliation(s)
- Ellen L Horste
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA; Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY 10021, USA
| | - Ting Cai
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Xiuzhen Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Sibylle Mitschka
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Gang Zhen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Flora C Y Lee
- UK Dementia Research Institute, King's College London, London SE5 9NU, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jernej Ule
- UK Dementia Research Institute, King's College London, London SE5 9NU, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christine Mayr
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA; Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY 10021, USA.
| |
Collapse
|
2
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
3
|
Ruan Y, Lv W, Li S, Cheng Y, Wang D, Zhang C, Shimizu K. Identification of telomere-related genes associated with aging-related molecular clusters and the construction of a diagnostic model in Alzheimer's disease based on a bioinformatic analysis. Comput Biol Med 2023; 159:106922. [PMID: 37094463 DOI: 10.1016/j.compbiomed.2023.106922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that is strongly associated with aging. Telomeres are DNA sequences that protect chromosomes from damage and shorten with age. Telomere-related genes (TRGs) may play a role in AD's pathogenesis. OBJECTIVES To identify TRGs related to aging clusters in AD patients, explore their immunological characteristics, and build a TRG-based prediction model for AD and AD subtypes. METHODS We analyzed the gene expression profiles of 97 AD samples from the GSE132903 dataset, using aging-related genes (ARGs) as clustering variables. We also assessed immune-cell infiltration in each cluster. We performed a weighted gene co-expression network analysis to identify cluster-specific differentially expressed TRGs. We compared four machine-learning models (random forest, generalized linear model [GLM], gradient boosting model, and support vector machine) for predicting AD and AD subtypes based on TRGs and validated TRGs by conducting an artificial neural network (ANN) analysis and a nomogram model. RESULTS We identified two aging clusters in AD patients with distinct immunological features: Cluster A had higher immune scores than Cluster B. Cluster A and the immune system are intimately associated, and this association could affect immunological function and result in AD via the digestive system. The GLM predicted AD and AD subtypes most accurately and was validated by the ANN analysis and nomogram model. CONCLUSION Our analyses revealed novel TRGs associated with aging clusters in AD patients and their immunological characteristics. We also developed a promising prediction model based on TRGs for assessing AD risk.
Collapse
Affiliation(s)
- Yang Ruan
- Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Weichao Lv
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuaiyu Li
- Saigo Laboratory, School of Information Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuzhong Cheng
- Joint Graduate School of Mathematics for Innovation, Kyushu University, Fukuoka, 819-0395, Japan
| | - Duanyang Wang
- Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kuniyoshi Shimizu
- Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol 2022; 23:779-796. [PMID: 35798852 PMCID: PMC9261900 DOI: 10.1038/s41580-022-00507-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
Alternative cleavage and polyadenylation (APA) is a widespread mechanism to generate mRNA isoforms with alternative 3' untranslated regions (UTRs). The expression of alternative 3' UTR isoforms is highly cell type specific and is further controlled in a gene-specific manner by environmental cues. In this Review, we discuss how the dynamic, fine-grained regulation of APA is accomplished by several mechanisms, including cis-regulatory elements in RNA and DNA and factors that control transcription, pre-mRNA cleavage and post-transcriptional processes. Furthermore, signalling pathways modulate the activity of these factors and integrate APA into gene regulatory programmes. Dysregulation of APA can reprogramme the outcome of signalling pathways and thus can control cellular responses to environmental changes. In addition to the regulation of protein abundance, APA has emerged as a major regulator of mRNA localization and the spatial organization of protein synthesis. This role enables the regulation of protein function through the addition of post-translational modifications or the formation of protein-protein interactions. We further discuss recent transformative advances in single-cell RNA sequencing and CRISPR-Cas technologies, which enable the mapping and functional characterization of alternative 3' UTRs in any biological context. Finally, we discuss new APA-based RNA therapeutics, including compounds that target APA in cancer and therapeutic genome editing of degenerative diseases.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Kwon B, Fansler MM, Patel ND, Lee J, Ma W, Mayr C. Enhancers regulate 3' end processing activity to control expression of alternative 3'UTR isoforms. Nat Commun 2022; 13:2709. [PMID: 35581194 PMCID: PMC9114392 DOI: 10.1038/s41467-022-30525-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multi-UTR genes are widely transcribed and express their alternative 3'UTR isoforms in a cell type-specific manner. As transcriptional enhancers regulate mRNA expression, we investigated if they also regulate 3'UTR isoform expression. Endogenous enhancer deletion of the multi-UTR gene PTEN did not impair transcript production but prevented 3'UTR isoform switching which was recapitulated by silencing of an enhancer-bound transcription factor. In reporter assays, enhancers increase transcript production when paired with single-UTR gene promoters. However, when combined with multi-UTR gene promoters, they change 3'UTR isoform expression by increasing 3' end processing activity of polyadenylation sites. Processing activity of polyadenylation sites is affected by transcription factors, including NF-κB and MYC, transcription elongation factors, chromatin remodelers, and histone acetyltransferases. As endogenous cell type-specific enhancers are associated with genes that increase their short 3'UTRs in a cell type-specific manner, our data suggest that transcriptional enhancers integrate cellular signals to regulate cell type-and condition-specific 3'UTR isoform expression.
Collapse
Affiliation(s)
- Buki Kwon
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA
| | - Neil D Patel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jihye Lee
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Weirui Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA.
| |
Collapse
|
6
|
Bae B, Miura P. CRISPR-Mediated Knockout of Long 3' UTR mRNA Isoforms in mESC-Derived Neurons. Front Genet 2022; 12:789434. [PMID: 34976020 PMCID: PMC8718760 DOI: 10.3389/fgene.2021.789434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Alternative cleavage and polyadenylation (APA) is pervasive, occurring for more than 70% of human and mouse genes. Distal poly(A) site selection to generate longer 3′ UTR mRNA isoforms is prevalent in the nervous system, affecting thousands of genes. Here, we establish mouse embryonic stem cell (mESC)-derived neurons (mES-neurons) as a suitable system to study long 3′ UTR isoforms. RNA-seq analysis revealed that mES-neurons show widespread 3′ UTR lengthening that closely resembles APA patterns found in mouse cortex. mESCs are highly amenable to genetic manipulation. We present a method to eliminate long 3′ UTR isoform expression using CRISPR/Cas9 editing. This approach can lead to clones with the desired deletion within several weeks. We demonstrate this strategy on the Mprip gene as a proof-of-principle. To confirm loss of long 3′ UTR expression and the absence of cryptic poly(A) site usage stemming from the CRISPR deletion, we present a simple and cost-efficient targeted long-read RNA-sequencing strategy using the Oxford Nanopore Technologies platform. Using this method, we confirmed specific loss of the Mprip long 3′ UTR isoform. CRISPR gene editing of mESCs thus serves as a highly relevant platform for studying the molecular and cellular functions of long 3′ UTR mRNA isoforms.
Collapse
Affiliation(s)
- Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
7
|
Chen X, Mayr C. A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly. RNA (NEW YORK, N.Y.) 2022; 28:76-87. [PMID: 34706978 PMCID: PMC8675283 DOI: 10.1261/rna.078995.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Most cellular processes are carried out by protein complexes, but it is still largely unknown how the subunits of lowly expressed complexes find each other in the crowded cellular environment. Here, we will describe a working model where RNA-binding proteins in cytoplasmic condensates act as matchmakers between their bound proteins (called protein targets) and newly translated proteins of their RNA targets to promote their assembly into complexes. Different RNA-binding proteins act as scaffolds for various cytoplasmic condensates with several of them supporting translation. mRNAs and proteins are recruited into the cytoplasmic condensates through binding to specific domains in the RNA-binding proteins. Scaffold RNA-binding proteins have a high valency. In our model, they use homotypic interactions to assemble condensates and they use heterotypic interactions to recruit protein targets into the condensates. We propose that unoccupied binding sites in the scaffold RNA-binding proteins transiently retain recruited and newly translated proteins in the condensates, thus promoting their assembly into complexes. Taken together, we propose that lowly expressed subunits of protein complexes combine information in their mRNAs and proteins to colocalize in the cytoplasm. The efficiency of protein complex assembly is increased by transient entrapment accomplished by multivalent RNA-binding proteins within cytoplasmic condensates.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
8
|
Li L, Yu J, Ji SJ. Axonal mRNA localization and translation: local events with broad roles. Cell Mol Life Sci 2021; 78:7379-7395. [PMID: 34698881 PMCID: PMC11072051 DOI: 10.1007/s00018-021-03995-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Messenger RNA (mRNA) can be transported and targeted to different subcellular compartments and locally translated. Local translation is an evolutionally conserved mechanism that in mammals, provides an important tool to exquisitely regulate the subcellular proteome in different cell types, including neurons. Local translation in axons is involved in processes such as neuronal development, function, plasticity, and diseases. Here, we summarize the current progress on axonal mRNA transport and translation. We focus on the regulatory mechanisms governing how mRNAs are transported to axons and how they are locally translated in axons. We discuss the roles of axonally synthesized proteins, which either function locally in axons, or are retrogradely trafficked back to soma to achieve neuron-wide gene regulation. We also examine local translation in neurological diseases. Finally, we give a critical perspective on the remaining questions that could be answered to uncover the fundamental rules governing local translation, and discuss how this could lead to new therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Lichao Li
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jun Yu
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Sheng-Jian Ji
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
9
|
Mitschka S, Fansler MM, Mayr C. Generation of 3'UTR knockout cell lines by CRISPR/Cas9-mediated genome editing. Methods Enzymol 2021; 655:427-457. [PMID: 34183132 DOI: 10.1016/bs.mie.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to the protein code, messenger RNAs (mRNAs) also contain untranslated regions (UTRs). 3'UTRs span the region between the translational stop codon and the poly(A) tail. Sequence elements located in 3'UTRs are essential for pre-mRNA processing. 3'UTRs also contain elements that can regulate protein abundance, localization, and function. At least half of all human genes use alternative cleavage and polyadenylation (APA) to further diversify the regulatory potential of protein functions. Traditional gene editing approaches are designed to disrupt the production of functional proteins. Here, we describe a method that allows investigators to manipulate 3'UTR sequences of endogenous genes for both single- 3'UTR and multi-3'UTR genes. As 3'UTRs can regulate individual functions of proteins, techniques to manipulate 3'UTRs at endogenous gene loci will help to disentangle multi-functionality of proteins. Furthermore, the ability to directly examine the impact of gene regulatory elements in 3'UTRs will provide further insights into their functional significance.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY, United States
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY, United States.
| |
Collapse
|
10
|
Mitschka S, Mayr C. Endogenous p53 expression in human and mouse is not regulated by its 3'UTR. eLife 2021; 10:65700. [PMID: 33955355 PMCID: PMC8137139 DOI: 10.7554/elife.65700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The TP53 gene encodes the tumor suppressor p53 which is functionally inactivated in many human cancers. Numerous studies suggested that 3′UTR-mediated p53 expression regulation plays a role in tumorigenesis and could be exploited for therapeutic purposes. However, these studies did not investigate post-transcriptional regulation of the native TP53 gene. Here, we used CRISPR/Cas9 to delete the human and mouse TP53/Trp53 3′UTRs while preserving endogenous mRNA processing. This revealed that the endogenous 3′UTR is not involved in regulating p53 mRNA or protein expression neither in steady state nor after genotoxic stress. Using reporter assays, we confirmed the previously observed repressive effects of the isolated 3′UTR. However, addition of the TP53 coding region to the reporter had a dominant negative impact on expression as its repressive effect was stronger and abrogated the contribution of the 3′UTR. Our data highlight the importance of genetic models in the validation of post-transcriptional gene regulatory effects.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
11
|
HMGN5 Silencing Suppresses Cell Biological Progression via AKT/MAPK Pathway in Human Glioblastoma Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8610271. [PMID: 32596388 PMCID: PMC7273445 DOI: 10.1155/2020/8610271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
HMGN5 regulates biological function and molecular transcription via combining with a nucleosome. There has been growing evidence that aberrant expression of HMGN5 is associated with malignant neoplasm development and progression. In the present study, we found that the expression of HMGN5 is significantly higher in high-grade glioblastoma tissues than in low-grade samples. To clarify the function of HMGN5 in glioblastoma, we knocked down HMGN5 in U87 and U251 glioblastoma cells via siRNA. The results demonstrated that HMGN5 was involved in the regulation of proliferation and apoptosis, migration, and invasion of glioblastoma cells. These outcomes also indicated that silencing HMGN5 possibly suppressed the expression of p-AKT and p-ERK1/2. Taken together, our research reveals that HMGN5 might be an efficient target for glioblastoma-targeted therapy.
Collapse
|
12
|
Biological Functions of HMGN Chromosomal Proteins. Int J Mol Sci 2020; 21:ijms21020449. [PMID: 31936777 PMCID: PMC7013550 DOI: 10.3390/ijms21020449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin plays a key role in regulating gene expression programs necessary for the orderly progress of development and for preventing changes in cell identity that can lead to disease. The high mobility group N (HMGN) is a family of nucleosome binding proteins that preferentially binds to chromatin regulatory sites including enhancers and promoters. HMGN proteins are ubiquitously expressed in all vertebrate cells potentially affecting chromatin function and epigenetic regulation in multiple cell types. Here, we review studies aimed at elucidating the biological function of HMGN proteins, focusing on their possible role in vertebrate development and the etiology of disease. The data indicate that changes in HMGN levels lead to cell type-specific phenotypes, suggesting that HMGN optimize epigenetic processes necessary for maintaining cell identity and for proper execution of specific cellular functions. This manuscript contains tables that can be used as a comprehensive resource for all the English written manuscripts describing research aimed at elucidating the biological function of the HMGN protein family.
Collapse
|
13
|
Cagnetta R, Frese CK, Shigeoka T, Krijgsveld J, Holt CE. Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome. Neuron 2018; 99:29-46.e4. [PMID: 30008298 PMCID: PMC6048689 DOI: 10.1016/j.neuron.2018.06.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/24/2017] [Accepted: 05/31/2018] [Indexed: 01/13/2023]
Abstract
Axonal protein synthesis and degradation are rapidly regulated by extrinsic signals during neural wiring, but the full landscape of proteomic changes remains unknown due to limitations in axon sampling and sensitivity. By combining pulsed stable isotope labeling of amino acids in cell culture with single-pot solid-phase-enhanced sample preparation, we characterized the nascent proteome of isolated retinal axons on an unparalleled rapid timescale (5 min). Our analysis detects 350 basally translated axonal proteins on average, including several linked to neurological disease. Axons stimulated by different cues (Netrin-1, BDNF, Sema3A) show distinct signatures with more than 100 different nascent protein species up- or downregulated within the first 5 min followed by further dynamic remodeling. Switching repulsion to attraction triggers opposite regulation of a subset of common nascent proteins. Our findings thus reveal the rapid remodeling of the axonal proteomic landscape by extrinsic cues and uncover a logic underlying attraction versus repulsion.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christian K Frese
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany; CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Toshiaki Shigeoka
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany; Excellence Cluster CellNetworks, University of Heidelberg, Im Neuenheimer Feld 581, Heidelberg 69120, Germany.
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
14
|
Sahoo PK, Smith DS, Perrone-Bizzozero N, Twiss JL. Axonal mRNA transport and translation at a glance. J Cell Sci 2018; 131:jcs196808. [PMID: 29654160 PMCID: PMC6518334 DOI: 10.1242/jcs.196808] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Localization and translation of mRNAs within different subcellular domains provides an important mechanism to spatially and temporally introduce new proteins in polarized cells. Neurons make use of this localized protein synthesis during initial growth, regeneration and functional maintenance of their axons. Although the first evidence for protein synthesis in axons dates back to 1960s, improved methodologies, including the ability to isolate axons to purity, highly sensitive RNA detection methods and imaging approaches, have shed new light on the complexity of the transcriptome of the axon and how it is regulated. Moreover, these efforts are now uncovering new roles for locally synthesized proteins in neurological diseases and injury responses. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of how axonal mRNA transport and translation are regulated, and discuss their emerging links to neurological disorders and neural repair.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| | - Deanna S Smith
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, MSC08 4740, Albuquerque, NM 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Chuang CF, King CE, Ho BW, Chien KY, Chang YC. Unbiased Proteomic Study of the Axons of Cultured Rat Cortical Neurons. J Proteome Res 2018; 17:1953-1966. [DOI: 10.1021/acs.jproteome.8b00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Proteomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | | |
Collapse
|
16
|
Messenger RNAs localized to distal projections of human stem cell derived neurons. Sci Rep 2017; 7:611. [PMID: 28377585 PMCID: PMC5428799 DOI: 10.1038/s41598-017-00676-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 12/26/2022] Open
Abstract
The identification of mRNAs in distal projections of model organisms has led to the discovery of multiple proteins that are locally synthesized for functional roles such as axon guidance, injury signaling and regeneration. The extent to which local protein synthesis is conserved in human neurons is unknown. Here we used compartmentalized microfluidic chambers to characterize the transcriptome of distal projections of human embryonic stem cells differentiated using a protocol which enriched for glutamatergic neurons (hESC-neurons). Using gene expression analysis, we identified mRNAs proportionally enriched in these projections, representing a functionally unique local transcriptome as compared to the human neuronal transcriptome inclusive of somata. Further, we found that the most abundant mRNAs within these hESC-neuron projections were functionally similar to the axonal transcriptome of rat cortical neurons. We confirmed the presence of two well characterized axonal mRNAs in model organisms, β-actin and GAP43, within hESC-neuron projections using multiplexed single molecule RNA-FISH. Additionally, we report the novel finding that oxytocin mRNA localized to these human projections and confirmed its localization using RNA-FISH. This new evaluation of mRNA within human projections provides an important resource for studying local mRNA translation and has the potential to reveal both conserved and unique translation dependent mechanisms.
Collapse
|
17
|
Twiss JL, Merianda TT. Old dogs with new tricks: intra-axonal translation of nuclear proteins. Neural Regen Res 2015; 10:1560-2. [PMID: 26692839 PMCID: PMC4660735 DOI: 10.4103/1673-5374.165264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA ; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Tanuja T Merianda
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
18
|
Abstract
Neurons are extremely polarized cells. Axon lengths often exceed the dimension of the neuronal cell body by several orders of magnitude. These extreme axonal lengths imply that neurons have mastered efficient mechanisms for long distance signaling between soma and synaptic terminal. These elaborate mechanisms are required for neuronal development and maintenance of the nervous system. Neurons can fine-tune long distance signaling through calcium wave propagation and bidirectional transport of proteins, vesicles, and mRNAs along microtubules. The signal transmission over extreme lengths also ensures that information about axon injury is communicated to the soma and allows for repair mechanisms to be engaged. This review focuses on the different mechanisms employed by neurons to signal over long axonal distances and how signals are interpreted in the soma, with an emphasis on proteomic studies. We also discuss how proteomic approaches could help further deciphering the signaling mechanisms operating over long distance in axons.
Collapse
Affiliation(s)
- Atsushi Saito
- From the ‡Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St Louis, 63110, Missouri
| | - Valeria Cavalli
- From the ‡Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St Louis, 63110, Missouri.
| |
Collapse
|