1
|
Capetini VC, Quintanilha BJ, Garcia BREV, Rogero MM. Dietary modulation of microRNAs in insulin resistance and type 2 diabetes. J Nutr Biochem 2024; 133:109714. [PMID: 39097171 DOI: 10.1016/j.jnutbio.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The prevalence of type 2 diabetes is increasing worldwide. Various molecular mechanisms have been proposed to interfere with the insulin signaling pathway. Recent advances in proteomics and genomics indicate that one such mechanism involves the post-transcriptional regulation of insulin signaling by microRNA (miRNA). These noncoding RNAs typically induce messenger RNA (mRNA) degradation or translational repression by interacting with the 3' untranslated region (3'UTR) of target mRNA. Dietary components and patterns, which can either enhance or impair the insulin signaling pathway, have been found to regulate miRNA expression in both in vitro and in vivo studies. This review provides an overview of the current knowledge of how dietary components influence the expression of miRNAs related to the control of the insulin signaling pathway and discusses the potential application of these findings in precision nutrition.
Collapse
Affiliation(s)
- Vinícius Cooper Capetini
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil; Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, Department of Pharmacology, King's College London, London, United Kingdom.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | - Bruna Ruschel Ewald Vega Garcia
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| |
Collapse
|
2
|
Wen W, Huang SM, Zhang B. Mechanisms Underlying Obesity-induced Aβ Accumulation in Alzheimer's Disease: A Qualitative Review. J Integr Neurosci 2024; 23:163. [PMID: 39344225 DOI: 10.31083/j.jin2309163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 10/01/2024] Open
Abstract
Epidemiological studies show that individuals with obesity are more likely to develop Alzheimer's disease (AD) than those who do not have obesity. However, the mechanisms underlying the relationship between obesity and AD are not entirely unclear. Here, we have reviewed and analyzed relevant articles published in the literature and found that obesity has correlation or potential increase in the levels of β-amyloid (Aβ) protein, which may explain why people with obesity are more likely to suffer from AD. Additionally, the published findings point to the roles of obesity-related metabolic disorders, such as diabetes, inflammation, oxidative stress, and imbalance in gut microbiota in Aβ accumulation caused by obesity. Therefore, in-depth experimental and clinical studies on these mechanisms in the future may help shed light on appropriate prevention and treatment strategies for AD, such as dietary changes and regular exercise to reverse or prevent obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Wei Wen
- Department of Pharmacology, College of Basic Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Sen S, Mukhopadhyay D. A Holistic Analysis of Alzheimer's Disease-Associated lncRNA Communities Reveals Enhanced lncRNA-miRNA-RBP Regulatory Triad Formation Within Functionally Segregated Clusters. J Mol Neurosci 2024; 74:77. [PMID: 39143264 PMCID: PMC11324768 DOI: 10.1007/s12031-024-02244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
Recent studies on the regulatory networks implicated in Alzheimer's disease (AD) evince long non-coding RNAs (lncRNAs) as crucial regulatory players, albeit a poor understanding of the mechanism. Analyzing differential gene expression in the RNA-seq data from the post-mortem AD brain hippocampus, we categorized a list of AD-dysregulated lncRNA transcripts into functionally similar communities based on their k-mer profiles. Using machine-learning-based algorithms, their subcellular localizations were mapped. We further explored the functional relevance of each community through AD-dysregulated miRNA, RNA-binding protein (RBP) interactors, and pathway enrichment analyses. Further investigation of the miRNA-lncRNA and RBP-lncRNA networks from each community revealed the top RBPs, miRNAs, and lncRNAs for each cluster. The experimental validation community yielded ELAVL4 and miR-16-5p as the predominant RBP and miRNA, respectively. Five lncRNAs emerged as the top-ranking candidates from the RBP/miRNA-lncRNA networks. Further analyses of these networks revealed the presence of multiple regulatory triads where the RBP-lncRNA interactions could be augmented by the enhanced miRNA-lncRNA interactions. Our results advance the understanding of the mechanism of lncRNA-mediated AD regulation through their interacting partners and demonstrate how these functionally segregated but overlapping regulatory networks can modulate the disease holistically.
Collapse
Affiliation(s)
- Somenath Sen
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, India.
| |
Collapse
|
4
|
Alves HPDM, Duarte GBS, Souza Junior ACD, Pereira Batista LDS, Rogero MM, Barbosa F, Cozzolino SMF, Dantas-Komatsu RCS, Marinho Costa KZS, Reis BZ. Selenium biomarkers and miR-7-5p in overweight/obese women. J Trace Elem Med Biol 2024; 86:127499. [PMID: 39084121 DOI: 10.1016/j.jtemb.2024.127499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Chronic low-grade inflammation and oxidative stress are pivotal contributors to the metabolic complications associated with obesity. Selenoprotein P (SELENOP) and glutathione peroxidase 1 (GPx1) are selenoproteins involved in the reduction of reactive oxygen species and pro-inflammatory cytokines levels. Nutritional epigenomics revealed the interaction of microRNAs and nutrients with an important impact on metabolic pathways involved in obesity. However, the knowledge regarding the influence of microRNA on selenium biomarkers and its impact on metabolic pathways related to obesity remains scarce. Thus, the aim of this study was to investigate the association of plasma miR-7-5p expression with selenium and inflammatory biomarkers in women with overweight/obesity. MATERIAL AND METHODS Anthropometric evaluations were performed and blood samples were collected for the analysis of fasting glucose, insulin, inflammatory and selenium biomarkers, and miR-7-5p expression in 54 women with overweight/obesity. Gene expression of SELENOP and GPX1 were evaluated in peripheral mononuclear blood cells. RESULTS This study observed a negative correlation between SELENOP levels and miR-7-5p (rho = -0.350; p = 0.018). Additionally, it was observed that body fat (OR = 0.737; p = 0.011), age (OR = 1.214; p = 0.007), and miR-7-5p (OR = 0.990; p = 0.015) emerged as significant predictors of SELENOP levels. CONCLUSIONS In conclusion, we observed a significant inverse association between miR-7-5p expression and SELENOP concentration in overweight/obese women, suggesting that age and percentage of body fat are also associated. TRIAL REGISTRATION NUMBER Brazilian Registry of Clinical Trials (ReBEC) number RBR-2nfy5q.
Collapse
Affiliation(s)
- Higor Paiva de Mendonça Alves
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Graziela Biude Silva Duarte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Bloco 14 - Butantã, São Paulo, SP 05508-000, Brazil.
| | - Adriano Carlos de Souza Junior
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Leonam da Silva Pereira Batista
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo, 715 - Cerqueira César, São Paulo, SP 01246-904, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, Laboratory of Food Engineering, Semi Industrial Ed. - R. do Lago, 250 - Bloco C, São Paulo, SP 05468-140, Brazil.
| | - Fernando Barbosa
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, SP 14040903, Brazil.
| | - Silvia Maria Franciscato Cozzolino
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Bloco 14 - Butantã, São Paulo, SP 05508-000, Brazil.
| | - Raquel Costa Silva Dantas-Komatsu
- Postgraduate Program in Pharmaceutical Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Rua General Gustavo Cordeiro de Faria, s/nº - Petrópolis, Natal, RN 59012-570, Brazil.
| | - Karina Zaira Silva Marinho Costa
- Brazilian Company of Hospital Services (EBSERH), Onofre Lopes University Hospital, Av. Nilo Peçanha, 620 - Petrópolis, Natal, RN 59012-300, Brazil.
| | - Bruna Zavarize Reis
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil; Department of Nutrition, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| |
Collapse
|
5
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
6
|
Darbinian N, Hampe M, Martirosyan D, Bajwa A, Darbinyan A, Merabova N, Tatevosian G, Goetzl L, Amini S, Selzer ME. Fetal Brain-Derived Exosomal miRNAs from Maternal Blood: Potential Diagnostic Biomarkers for Fetal Alcohol Spectrum Disorders (FASDs). Int J Mol Sci 2024; 25:5826. [PMID: 38892014 PMCID: PMC11172088 DOI: 10.3390/ijms25115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are leading causes of neurodevelopmental disability but cannot be diagnosed early in utero. Because several microRNAs (miRNAs) are implicated in other neurological and neurodevelopmental disorders, the effects of EtOH exposure on the expression of these miRNAs and their target genes and pathways were assessed. In women who drank alcohol (EtOH) during pregnancy and non-drinking controls, matched individually for fetal sex and gestational age, the levels of miRNAs in fetal brain-derived exosomes (FB-Es) isolated from the mothers' serum correlated well with the contents of the corresponding fetal brain tissues obtained after voluntary pregnancy termination. In six EtOH-exposed cases and six matched controls, the levels of fetal brain and maternal serum miRNAs were quantified on the array by qRT-PCR. In FB-Es from 10 EtOH-exposed cases and 10 controls, selected miRNAs were quantified by ddPCR. Protein levels were quantified by ELISA. There were significant EtOH-associated reductions in the expression of several miRNAs, including miR-9 and its downstream neuronal targets BDNF, REST, Synapsin, and Sonic hedgehog. In 20 paired cases, reductions in FB-E miR-9 levels correlated strongly with reductions in fetal eye diameter, a prominent feature of FASDs. Thus, FB-E miR-9 levels might serve as a biomarker to predict FASDs in at-risk fetuses.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Monica Hampe
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
7
|
Grasberger H, Dumitrescu AM, Liao XH, Swanson EG, Weiss RE, Srichomkwun P, Pappa T, Chen J, Yoshimura T, Hoffmann P, França MM, Tagett R, Onigata K, Costagliola S, Ranchalis J, Vollger MR, Stergachis AB, Chong JX, Bamshad MJ, Smits G, Vassart G, Refetoff S. STR mutations on chromosome 15q cause thyrotropin resistance by activating a primate-specific enhancer of MIR7-2/MIR1179. Nat Genet 2024; 56:877-888. [PMID: 38714869 PMCID: PMC11472772 DOI: 10.1038/s41588-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/14/2024] [Indexed: 05/22/2024]
Abstract
Thyrotropin (TSH) is the master regulator of thyroid gland growth and function. Resistance to TSH (RTSH) describes conditions with reduced sensitivity to TSH. Dominantly inherited RTSH has been linked to a locus on chromosome 15q, but its genetic basis has remained elusive. Here we show that non-coding mutations in a (TTTG)4 short tandem repeat (STR) underlie dominantly inherited RTSH in all 82 affected participants from 12 unrelated families. The STR is contained in a primate-specific Alu retrotransposon with thyroid-specific cis-regulatory chromatin features. Fiber-seq and RNA-seq studies revealed that the mutant STR activates a thyroid-specific enhancer cluster, leading to haplotype-specific upregulation of the bicistronic MIR7-2/MIR1179 locus 35 kb downstream and overexpression of its microRNA products in the participants' thyrocytes. An imbalance in signaling pathways targeted by these micro-RNAs provides a working model for this cause of RTSH. This finding broadens our current knowledge of genetic defects altering pituitary-thyroid feedback regulation.
Collapse
Affiliation(s)
- Helmut Grasberger
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra M Dumitrescu
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Elliott G Swanson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Roy E Weiss
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Theodora Pappa
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Junfeng Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Phillip Hoffmann
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Rebecca Tagett
- Michigan Medicine BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | | | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mitchell R Vollger
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Jessica X Chong
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Center of Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, and Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
- Committee on Genetics, The University of Chicago, Chicago, IL, USA.
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Martinez-Feduchi P, Jin P, Yao B. Epigenetic modifications of DNA and RNA in Alzheimer's disease. Front Mol Neurosci 2024; 17:1398026. [PMID: 38726308 PMCID: PMC11079283 DOI: 10.3389/fnmol.2024.1398026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common form of dementia. There are two main types of AD: familial and sporadic. Familial AD is linked to mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2). On the other hand, sporadic AD is the more common form of the disease and has genetic, epigenetic, and environmental components that influence disease onset and progression. Investigating the epigenetic mechanisms associated with AD is essential for increasing understanding of pathology and identifying biomarkers for diagnosis and treatment. Chemical covalent modifications on DNA and RNA can epigenetically regulate gene expression at transcriptional and post-transcriptional levels and play protective or pathological roles in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
Talebi Taheri A, Golshadi Z, Zare H, Alinaghipour A, Faghihi Z, Dadgostar E, Tamtaji Z, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. The Potential of Targeting Autophagy-Related Non-coding RNAs in the Treatment of Alzheimer's and Parkinson's Diseases. Cell Mol Neurobiol 2024; 44:28. [PMID: 38461204 PMCID: PMC10924707 DOI: 10.1007/s10571-024-01461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
Clearance of accumulated protein aggregates is one of the functions of autophagy. Recently, a clearer understanding of non-coding RNAs (ncRNAs) functions documented that ncRNAs have important roles in several biological processes associated with the development and progression of neurodegenerative disorders. Subtypes of ncRNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), are commonly dysregulated in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Dysregulation of these non-coding RNAs has been associated with inhibition or stimulation of autophagy. Decreased miR-124 led to decreased/increased autophagy in experimental model of Alzheimer and Parkinson diseases. Increased BACE1-AS showed enhanced autophagy in Alzheimer disease by targeting miR-214-3p, Beclin-1, LC3-I/LC3-II, p62, and ATG5. A significant increase in NEAT1led to stimulated autophagy in experimental model of PD by targeting PINK1, LC3-I, LC3-II, p62 and miR-374c-5p. In addition, increased BDNF-AS and SNHG1 decreased autophagy in MPTP-induced PD by targeting miR-125b-5p and miR-221/222, respectively. The upregulation of circNF1-419 and circSAMD4A resulted in an increased autophagy by regulating Dynamin-1 and miR-29c 3p, respectively. A detailed discussion of miRNAs, circRNAs, and lncRNAs in relation to their autophagy-related signaling pathways is presented in this study.
Collapse
Affiliation(s)
- Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zakieh Golshadi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
10
|
Rochín-Hernández LJ, Rochín-Hernández LS, Padilla-Cristerna ML, Duarte-García A, Jiménez-Acosta MA, Figueroa-Corona MP, Meraz-Ríos MA. Mesenchymal Stem Cells from Familial Alzheimer's Patients Express MicroRNA Differently. Int J Mol Sci 2024; 25:1580. [PMID: 38338859 PMCID: PMC10855944 DOI: 10.3390/ijms25031580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the predominant form of dementia globally. No reliable diagnostic, predictive techniques, or curative interventions are available. MicroRNAs (miRNAs) are vital to controlling gene expression, making them valuable biomarkers for diagnosis and prognosis. This study examines the transcriptome of olfactory ecto-mesenchymal stem cells (MSCs) derived from individuals with the PSEN1(A431E) mutation (Jalisco mutation). The aim is to determine whether this mutation affects the transcriptome and expression profile of miRNAs and their target genes at different stages of asymptomatic, presymptomatic, and symptomatic conditions. Expression microarrays compare the MSCs from mutation carriers with those from healthy donors. The results indicate a distinct variation in the expression of miRNAs and mRNAs among different symptomatologic groups and between individuals with the mutation. Using bioinformatics tools allows us to identify target genes for miRNAs, which in turn affect various biological processes and pathways. These include the cell cycle, senescence, transcription, and pathways involved in regulating the pluripotency of stem cells. These processes are closely linked to inter- and intracellular communication, vital for cellular functioning. These findings can enhance our comprehension and monitoring of the disease's physiological processes, identify new disorder indicators, and develop innovative treatments and diagnostic tools for preventing or treating AD.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Lory S. Rochín-Hernández
- Departamento de Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico;
| | - Mayte L. Padilla-Cristerna
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Andrea Duarte-García
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - María P. Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| |
Collapse
|
11
|
Kaur S, Verma H, Kaur S, Gangwar P, Yadav A, Yadav B, Rao R, Dhiman M, Mantha AK. Understanding the multifaceted role of miRNAs in Alzheimer's disease pathology. Metab Brain Dis 2024; 39:217-237. [PMID: 37505443 DOI: 10.1007/s11011-023-01265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of Aβ and tau is known to be associated with miRNA dysregulation. In addition, the β-site APP cleaving enzyme (BACE 1), which cleaves APP to form Aβ, is also found to be regulated by miRNAs, thus directly affecting Aβ accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF) signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD.
Collapse
Affiliation(s)
- Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Bharti Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Rashmi Rao
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
12
|
Alnaaim SA, Al-Kuraishy HM, Alexiou A, Papadakis M, Saad HM, Batiha GES. Role of Brain Liver X Receptor in Parkinson's Disease: Hidden Treasure and Emerging Opportunities. Mol Neurobiol 2024; 61:341-357. [PMID: 37606719 PMCID: PMC10791998 DOI: 10.1007/s12035-023-03561-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease due to the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). The liver X receptor (LXR) is involved in different neurodegenerative diseases. Therefore, the objective of the present review was to clarify the possible role of LXR in PD neuropathology. LXRs are the most common nuclear receptors of transcription factors that regulate cholesterol metabolism and have pleiotropic effects, including anti-inflammatory effects and reducing intracellular cholesterol accumulation. LXRs are highly expressed in the adult brain and act as endogenous sensors for intracellular cholesterol. LXRs have neuroprotective effects against the development of neuroinflammation in different neurodegenerative diseases by inhibiting the expression of pro-inflammatory cytokines. LXRs play an essential role in mitigating PD neuropathology by reducing the expression of inflammatory signaling pathways, neuroinflammation, oxidative stress, mitochondrial dysfunction, and enhancement of BDNF signaling.In conclusion, LXRs, through regulating brain cholesterol homeostasis, may be effectual in PD. Also, inhibition of node-like receptor pyrin 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) by LXRs could effectively prevent neuroinflammation in PD. Taken together, LXRs play a crucial role in PD neuropathology by inhibiting neuroinflammation and associated degeneration of DNs.
Collapse
Affiliation(s)
- Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, 14132, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
13
|
Toivakka M, Gordon K, Kumar S, Bermudez-Barrientos JR, Abreu-Goodger C, Zamoyska R, Buck AH. miR-7 is recruited to the high molecular weight RNA-induced silencing complex in CD8 + T cells upon activation and suppresses IL-2 signaling. RNA (NEW YORK, N.Y.) 2023; 30:26-36. [PMID: 37879863 PMCID: PMC10726160 DOI: 10.1261/rna.079030.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Increasing evidence suggests mammalian Argonaute (Ago) proteins partition into distinct complexes within cells, but there is still little biochemical or functional understanding of the miRNAs differentially associated with these complexes. In naïve T cells, Ago2 is found almost exclusively in low molecular weight (LMW) complexes which are associated with miRNAs but not their target mRNAs. Upon T-cell activation, a proportion of these Ago2 complexes move into a newly formed high molecular weight (HMW) RNA-induced silencing complex (RISC), which is characterized by the presence of the GW182 protein that mediates translational repression. Here, we demonstrate distinct partitioning of miRNAs and isomiRs in LMW versus HMW RISCs upon antigen-mediated activation of CD8+ T cells. We identify miR-7 as highly enriched in HMW RISC and demonstrate that miR-7 inhibition leads to increased production of IL-2 and up-regulation of the IL-2 receptor, the transferrin receptor, CD71 and the amino acid transporter, CD98. Our data support a model where recruitment of miR-7 to HMW RISC restrains IL-2 signaling and the metabolic processes regulated by IL-2.
Collapse
Affiliation(s)
- Matilda Toivakka
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sujai Kumar
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - José Roberto Bermudez-Barrientos
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Cei Abreu-Goodger
- Institute of Ecology & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
14
|
Tluli O, Al-Maadhadi M, Al-Khulaifi AA, Akomolafe AF, Al-Kuwari SY, Al-Khayarin R, Maccalli C, Pedersen S. Exploring the Role of microRNAs in Glioma Progression, Prognosis, and Therapeutic Strategies. Cancers (Basel) 2023; 15:4213. [PMID: 37686489 PMCID: PMC10486509 DOI: 10.3390/cancers15174213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
Gliomas, which arise from glial cells in the brain, remain a significant challenge due to their location and resistance to traditional treatments. Despite research efforts and advancements in healthcare, the incidence of gliomas has risen dramatically over the past two decades. The dysregulation of microRNAs (miRNAs) has prompted the creation of therapeutic agents that specially target them. However, it has been reported that they are involved in complex signaling pathways that contribute to the loss of expression of tumor suppressor genes and the upregulation of the expression of oncogenes. In addition, numerous miRNAs promote the development, progression, and recurrence of gliomas by targeting crucial proteins and enzymes involved in metabolic pathways such as glycolysis and oxidative phosphorylation. However, the complex interplay among these pathways along with other obstacles hinders the ability to apply miRNA targeting in clinical practice. This highlights the importance of identifying specific miRNAs to be targeted for therapy and having a complete understanding of the diverse pathways they are involved in. Therefore, the aim of this review is to provide an overview of the role of miRNAs in the progression and prognosis of gliomas, emphasizing the different pathways involved and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Omar Tluli
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Mazyona Al-Maadhadi
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Aisha Abdulla Al-Khulaifi
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Aishat F. Akomolafe
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Shaikha Y. Al-Kuwari
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Roudha Al-Khayarin
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | | | - Shona Pedersen
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| |
Collapse
|
15
|
Park A, Nam S. miRDM-rfGA: Genetic algorithm-based identification of a miRNA set for detecting type 2 diabetes. BMC Med Genomics 2023; 16:195. [PMID: 37608331 PMCID: PMC10463588 DOI: 10.1186/s12920-023-01636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/17/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) affects approximately 451 million adults globally. In this study, we identified the optimal combination of marker candidates for detecting T2DM using miRNA-Seq data from 95 samples including T2DM and healthy individuals. METHODS We utilized the genetic algorithm (GA) in the discovery of an optimal miRNA biomarker set. We discovered miRNA subsets consisting of three miRNAs for detecting T2DM by random forest-based GA (miRDM-rfGA) as a feature selection algorithm and created six GA parameter settings and three settings using traditional feature selection methods (F-test and Lasso). We then evaluated the prediction performance to detect T2DM in the miRNA subsets derived from each setting. RESULTS The miRNA subset in setting 5 using miRDM-rfGA performed the best in detecting T2DM (mean AUROC = 0.92). Target mRNA identification and functional enrichment analysis of the best miRNA subset (hsa-miR-125b-5p, hsa-miR-7-5p, and hsa-let-7b-5p) validated that this combination was involved in T2DM. We also confirmed that the targeted genes were negatively correlated with the clinical variables related to T2DM in the BxD mouse genetic reference population database. CONCLUSIONS Using GA in miRNA-Seq data, we identified the optimal miRNA biomarker set for T2DM detection. GA can be a useful tool for biomarker discovery and drug-target identification.
Collapse
Affiliation(s)
- Aron Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Korea.
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Korea.
| |
Collapse
|
16
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Puri S, Hu J, Sun Z, Lin M, Stein TD, Farrer LA, Wolozin B, Zhang X. Identification of circRNAs linked to Alzheimer's disease and related dementias. Alzheimers Dement 2023; 19:3389-3405. [PMID: 36795937 PMCID: PMC10427739 DOI: 10.1002/alz.12960] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 02/18/2023]
Abstract
INTRODUCTION Circular RNAs (circRNAs) exhibit selective expression in the brain and differential regulation in Alzheimer's disease (AD). To explore the role of circRNAs in AD, we investigated how circRNA expression varies between brain regions and with AD-related stress in human neuronal precursor cells (NPCs). METHODS Ribosomal RNA-depleted hippocampus RNA-sequencing data were generated. Differentially regulated circRNAs in AD and related dementias were detected using CIRCexplorer3 and limma. circRNA results were validated using quantitative real-time PCR of cDNA from the brain and NPCs. RESULTS We identified 48 circRNAs that were significantly associated with AD. We observed that circRNA expression differed by dementia subtype. Using NPCs, we demonstrated that exposure to oligomeric tau elicits downregulation of circRNA similar to that observed in the AD brain. DISCUSSION Our study shows that differential expression of circRNA can vary by dementia subtype and brain region. We also demonstrated that circRNAs can be regulated by AD-linked neuronal stress independently from their cognate linear messenger RNAs (mRNAs).
Collapse
Affiliation(s)
- Sambhavi Puri
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Junming Hu
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Zhuorui Sun
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Mintao Lin
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Thor D. Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Lindsay A. Farrer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
| | - Benjamin Wolozin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
| |
Collapse
|
18
|
Frutos MFD, Pardo-Marqués V, Torrecilla-Parra M, Rada P, Pérez-García A, Martín-Martín Y, de la Peña G, Gómez A, Toledano-Zaragoza A, Gómez-Coronado D, Casarejos MJ, Solís JM, Rotllán N, Pastor Ó, Ledesma MD, Valverde ÁM, Busto R, Ramírez CM. "MiR-7 controls cholesterol biosynthesis through posttranscriptional regulation of DHCR24 expression". BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194938. [PMID: 37086967 DOI: 10.1016/j.bbagrm.2023.194938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Dysregulation of cholesterol homeostasis is associated with several pathologies including cardiovascular diseases and neurological disorders such as Alzheimer's disease (AD). MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of cholesterol metabolism. We previously established the role of miR-7 in regulating insulin resistance and amyloidosis, which represents a common pathological feature between type 2 diabetes and AD. We show here an additional metabolic function of miR-7 in cholesterol biosynthesis. We found that miR-7 blocks the last steps of the cholesterol biosynthetic pathway in vitro by targeting relevant genes including DHCR24 and SC5D posttranscriptionally. Intracranial infusion of miR-7 on an adeno-associated viral vector reduced the expression of DHCR24 in the brain of wild-type mice, supporting in vivo miR-7 targeting. We also found that cholesterol regulates endogenous levels of miR-7 in vitro, correlating with transcriptional regulation through SREBP2 binding to its promoter region. In parallel to SREBP2 inhibition, the levels of miR-7 and hnRNPK (the host gene of miR-7) were concomitantly reduced in brain in a mouse model of Niemann Pick type C1 disease and in murine fatty liver, which are both characterized by intracellular cholesterol accumulation. Taken together, the results establish a novel regulatory feedback loop by which miR-7 modulates cholesterol homeostasis at the posttranscriptional level, an effect that could be exploited for therapeutic interventions against prevalent human diseases.
Collapse
Affiliation(s)
| | | | | | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Pérez-García
- IMDEA Research Institute of Food & Health Sciences, Madrid, Spain
| | | | - Gema de la Peña
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Ana Gómez
- Department of Neurobiology-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Ana Toledano-Zaragoza
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - María José Casarejos
- Department of Neurobiology-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - José M Solís
- Department of Neurobiology-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Noemí Rotllán
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Óscar Pastor
- Department of Clinical Biochemistry, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - María Dolores Ledesma
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Rebeca Busto
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain.
| | | |
Collapse
|
19
|
Sun F, Zhang Y, Wu X, Xu X, Zhu C, Huang W. Breviscapine Combined with BMSCs Reduces Aβ Deposition in Rat with Alzheimer's Disease by Regulating Circular RNA ciRS-7. Curr Mol Med 2023; 23:76-86. [PMID: 35048805 DOI: 10.2174/1566524022666220113151044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
AIMS This study aimed to clarify that breviscapine combined with bone marrow mesenchymal stem cells (BMSCs) treatment can reduce Aβ deposition in Alzheimer's disease (AD) patients. BACKGROUND AD is a common degenerative disease of the central nervous system. Aβ protein deposition in the cerebral cortex and hippocampus causes neuronal peroxidation damage, synaptic dysfunction, neuroinflammation, and nerve cell apoptosis, and ultimately leads to AD. OBJECTIVE To investigate whether breviscapine combined with BMSCs treatment can reduce Aβ deposition in AD. METHODS The AD rat model was successfully induced by Aβ1-42. The expression of protein and mRNA was detected by western blot and reverse transcription-quantitative PCR (RT-qPCR), respectively. RESULTS In AD rat brain tissue, the expression of circular RNA ciRS-7 (ciRS-7), ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), and NF-kappaB p65 was significantly downregulated, and the expression of β-amyloid precursor protein (APP), β-site APPcleaving enzyme 1 (BAEC1), and Aβ was upregulated. The expression of ciRS-7, UCHL1, and p65 was significantly upregulated after breviscapine or BMSCs treatment, and there was increased APP and BAEC1 degradation. Notably, breviscapine combined with BMSCs treatment was more effective than either treatment alone. In SH-SY5Y cells, overexpression of ciRS-7 reduced Aβ deposition by upregulating UCHL1 to degrade APP and BAEC1, but these effects were reversed with inhibition of NF-kB signaling. Finally, knockdown of ciRS-7 elevated Aβ, APP, and BAEC1 expression in each group of rats compared with the control. CONCLUSION Breviscapine combined with BMSCs treatment can reduce Aβ deposition in AD rats and promote the degradation of APP and BAEC1 by activating NF-kB to promote UCHL1 expression.
Collapse
Affiliation(s)
- Fengqin Sun
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Yulin Zhang
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Xinran Wu
- Teaching Research Department, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Xu Xu
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Chaodie Zhu
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Wei Huang
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| |
Collapse
|
20
|
Kenkpen AK, Storey JJ, Olson ER, Guden TE, Card TT, Jensen AS, Ahrens JL, Hellmann Whitaker RA. Developing Connections Between LINC00298 RNA and Alzheimer's Disease Through Mapping Its Interactome and Through Biochemical Characterization. J Alzheimers Dis 2023; 95:641-661. [PMID: 37574728 DOI: 10.3233/jad-230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Long non-coding RNAs are ubiquitous throughout the human system, yet many of their biological functions remain unknown. LINC00298 RNA, a long intergenic non-coding RNA, has been shown to have preferential expression in the central nervous system where it contributes to neuronal differentiation and development. Furthermore, previous research has indicated that LINC00298 RNA is known to be a genetic risk factor for the development of Alzheimer's disease. OBJECTIVE To biochemically characterize LINC00298 RNA and to elucidate its biological function within hippocampal neuronal cells, thereby providing a greater understanding of its role in Alzheimer's disease pathogenesis. METHODS LINC00298 RNA was in vitro transcribed and then subjected to structural analysis using circular dichroism, and UV-Vis spectroscopy. Additionally, affinity column chromatography was used to capture LINC00298 RNA's protein binding partners from hippocampal neuronal cells, which were then identified using liquid chromatography and mass spectrometry (LC/MS). RESULTS LINC00298 RNA is comprised of stem-loop secondary structural elements, with a cylindrical tertiary structure that has highly dynamic regions, which result in high positional entropy. LC/MS identified 24 proteins within the interactome of LINC00298 RNA. CONCLUSION Through analysis of LINC00298 RNA's 24 protein binding partners, it was determined that LINC00298 RNA may play significant roles in neuronal development, proliferation, and cellular organization. Furthermore, analysis of LINC00298 RNA's interactome indicated that LINC00298 RNA is capable of intracellular motility with dual localization in the nucleus and the cytosol. This biochemical characterization of LINC00298 RNA has shed light on its role in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Angel K Kenkpen
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Joshua J Storey
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Emma R Olson
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Ty E Guden
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Tate T Card
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Ashley S Jensen
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Jordyn L Ahrens
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | | |
Collapse
|
21
|
Abyadeh M, Yadav VK, Kaya A. Common Molecular Signatures Between Coronavirus Infection and Alzheimer's Disease Reveal Targets for Drug Development. J Alzheimers Dis 2023; 95:995-1011. [PMID: 37638446 DOI: 10.3233/jad-230684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cognitive decline is a common consequence of COVID-19, and studies suggest a link between COVID-19 and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. OBJECTIVE To understand the potential molecular mechanisms underlying the association between COVID-19 and AD development, and identify the potential genetic targets for pharmaceutical approaches to reduce the risk or delay the development of COVID-19-related neurological pathologies. METHODS We analyzed transcriptome datasets of 638 brain samples using a novel Robust Rank Aggregation method, followed by functional enrichment, protein-protein, hub genes, gene-miRNA, and gene-transcription factor (TF) interaction analyses to identify molecular markers altered in AD and COVID-19 infected brains. RESULTS Our analyses of frontal cortex from COVID-19 and AD patients identified commonly altered genes, miRNAs and TFs. Functional enrichment and hub gene analysis of these molecular changes revealed commonly altered pathways, including downregulation of the cyclic adenosine monophosphate (cAMP) signaling and taurine and hypotaurine metabolism, alongside upregulation of neuroinflammatory pathways. Furthermore, gene-miRNA and gene-TF network analyses provided potential up- and downstream regulators of identified pathways. CONCLUSION We found that downregulation of cAMP signaling pathway, taurine metabolisms, and upregulation of neuroinflammatory related pathways are commonly altered in AD and COVID-19 pathogenesis, and may make COVID-19 patients more susceptible to cognitive decline and AD. We also identified genetic targets, regulating these pathways that can be targeted pharmaceutically to reduce the risk or delay the development of COVID-19-related neurological pathologies and AD.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Common wealth University, Richmond, VA, USA
| | - Vijay K Yadav
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Common wealth University, Richmond, VA, USA
| |
Collapse
|
22
|
Aranda JF, Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Mateos-Gómez PA, Pardo-Marqués V, Busto R, Ramírez CM. Role of miR-199a-5p in the post-transcriptional regulation of ABCA1 in response to hypoxia in peritoneal macrophages. Front Cardiovasc Med 2022; 9:994080. [DOI: 10.3389/fcvm.2022.994080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Hypoxia is a crucial factor contributing to maintenance of atherosclerotic lesions. The ability of ABCA1 to stimulate the efflux of cholesterol from cells in the periphery, particularly foam cells in atherosclerotic plaques, is an important anti-atherosclerotic mechanism. The posttranscriptional regulation by miRNAs represents a key regulatory mechanism of a number of signaling pathways involved in atherosclerosis. Previously, miR-199a-5p has been shown to be implicated in the endocytic and retrograde intracellular transport. Although the regulation of miR-199a-5p and ABCA1 by hypoxia has been already reported independently, the role of miR-199a-5p in macrophages and its possible role in atherogenic processes such us regulation of lipid homeostasis through ABCA1 has not been yet investigated. Here, we demonstrate that both ABCA1 and miR-199a-5p show an inverse regulation by hypoxia and Ac-LDL in primary macrophages. Moreover, we demonstrated that miR-199a-5p regulates ABCA1 mRNA and protein levels by directly binding to its 3’UTR. As a result, manipulation of cellular miR-199a-5p levels alters ABCA1 expression and cholesterol efflux in primary mouse macrophages. Taken together, these results indicate that the correlation between ABCA1-miR-199a-5p could be exploited to control macrophage cholesterol efflux during the onset of atherosclerosis, where cholesterol alterations and hypoxia play a pathogenic role.
Collapse
|
23
|
LaPierre MP, Lawler K, Godbersen S, Farooqi IS, Stoffel M. MicroRNA-7 regulates melanocortin circuits involved in mammalian energy homeostasis. Nat Commun 2022; 13:5733. [PMID: 36175420 PMCID: PMC9522793 DOI: 10.1038/s41467-022-33367-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) modulate physiological responses by repressing the expression of gene networks. We found that global deletion of microRNA-7 (miR-7), the most enriched miRNA in the hypothalamus, causes obesity in mice. Targeted deletion of miR-7 in Single-minded homolog 1 (Sim1) neurons, a critical component of the hypothalamic melanocortin pathway, causes hyperphagia, obesity and increased linear growth, mirroring Sim1 and Melanocortin-4 receptor (MC4R) haplo-insufficiency in mice and humans. We identified Snca (α-Synuclein) and Igsf8 (Immunoglobulin Superfamily Member 8) as miR-7 target genes that act in Sim1 neurons to regulate body weight and endocrine axes. In humans, MIR-7-1 is located in the last intron of HNRNPK, whose promoter drives the expression of both genes. Genetic variants at the HNRNPK locus that reduce its expression are associated with increased height and truncal fat mass. These findings demonstrate that miR-7 suppresses gene networks involved in the hypothalamic melanocortin pathway to regulate mammalian energy homeostasis.
Collapse
Affiliation(s)
- Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland.
- Medical Faculty, University of Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
24
|
Mendonca A, Thandapani P, Nagarajan P, Venkatesh S, Sundaresan S. Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. J Biosci 2022. [DOI: 10.1007/s12038-022-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Mak KWY, Mustafa AF, Belsham DD. Neuroendocrine microRNAs linked to energy homeostasis: future therapeutic potential. Pharmacol Rep 2022; 74:774-789. [PMID: 36083576 DOI: 10.1007/s43440-022-00409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
The brain orchestrates whole-body metabolism through an intricate system involving interneuronal crosstalk and communication. Specifically, a key player in this complex circuitry is the hypothalamus that controls feeding behaviour, energy expenditure, body weight and metabolism, whereby hypothalamic neurons sense and respond to circulating hormones, nutrients, and chemicals. Dysregulation of these neurons contributes to the development of metabolic disorders, such as obesity and type 2 diabetes. The involvement of hypothalamic microRNAs, post-transcriptional regulators of gene expression, in the central regulation of energy homeostasis has become increasingly apparent, although not completely delineated. This review summarizes current evidence demonstrating the regulation of feeding-related neuropeptides by brain-derived microRNAs as well as the regulation of specific miRNAs by nutrients and other peripheral signals. Moreover, the involvement of microRNAs in the central nervous system control of insulin, leptin, and estrogen signal transduction is examined. Finally, the therapeutic and diagnostic potential of microRNAs for metabolic disorders will be discussed and the regulation of brain-derived microRNAs by nutrients and other peripheral signals is considered. Demonstrating a critical role of microRNAs in hypothalamic regulation of energy homeostasis is an innovative route to uncover novel biomarkers and therapeutic candidates for metabolic disorders.
Collapse
Affiliation(s)
- Kimberly W Y Mak
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Aws F Mustafa
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
New Insights on the Regulation of the Insulin-Degrading Enzyme: Role of microRNAs and RBPs. Cells 2022; 11:cells11162538. [PMID: 36010613 PMCID: PMC9406717 DOI: 10.3390/cells11162538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The evident implication of the insulin-degrading enzyme (IDE) in Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM), among its capacity to degrade insulin and amyloid-β peptide (Aβ), suggests that IDE could be an essential link in the relation between hyperinsulinemia, insulin resistance and AD. However, little is known about the cellular and molecular regulation of IDE expression, and even less has been explored regarding the post-transcriptional regulation of IDE, although it represents a great molecular target of interest for therapeutic treatments. We recently described that miR-7, a novel candidate for linking AD and T2DM at the molecular level, regulates IDE and other key genes in both pathologies, including some key genes involved in the insulin signaling pathway. Here, we explored whether other miRNAs as well as other post-transcriptional regulators, such as RNA binding proteins (RBP), could potentially participate in the regulation of IDE expression in vitro. Our data showed that in addition to miR-7, miR-125, miR-490 and miR-199 regulate IDE expression at the post-transcriptional level. Moreover, we also found that IDE contains multiple potential binding sites for several RBPs, and a narrow-down prediction analysis led us to speculate on a novel regulation of IDE by RALY and HuD. Taken together, these results demonstrate the novel players controlling IDE expression that could represent potential therapeutical targets to treat several metabolic diseases with a high impact on human health, including AD and T2DM.
Collapse
|
27
|
Zhang X, Zhu X, Bi X, Huang J, Zhou L. The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. Int J Mol Sci 2022; 23:7793. [PMID: 35887136 PMCID: PMC9325136 DOI: 10.3390/ijms23147793] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The insulin receptor (IR) is a transmembrane protein that is activated by ligands in insulin signaling pathways. The IR has been considered as a novel therapeutic target for clinical intervention, considering the overexpression of its protein and A-isoform in multiple cancers, Alzheimer's disease, and Type 2 diabetes mellitus in humans. Meanwhile, it may also serve as a potential target in pest management due to its multiple physiological influences in insects. In this review, we provide an overview of the structural and molecular biology of the IR, functions of IRs in humans and insects, physiological and nonpeptide small molecule modulators of the IR, and the regulating mechanisms of the IR. Xenobiotic compounds and the corresponding insecticidal chemicals functioning on the IR are also discussed. This review is expected to provide useful information for a better understanding of human IR-related diseases, as well as to facilitate the development of novel small-molecule activators and inhibitors of the IR for use as medicines or pesticides.
Collapse
Affiliation(s)
| | | | | | - Jiguang Huang
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| | - Lijuan Zhou
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| |
Collapse
|
28
|
Gaulee P, Yang Z, Sura L, Xu H, Rossignol C, Weiss MD, Bliznyuk N. Concentration of Serum Biomarkers of Brain Injury in Neonates With a Low Cord pH With or Without Mild Hypoxic-Ischemic Encephalopathy. Front Neurol 2022; 13:934755. [PMID: 35873777 PMCID: PMC9301366 DOI: 10.3389/fneur.2022.934755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To determine the concentrations of four neuroprotein biomarkers and 68 miRNAs in neonates with low cord pH and/or mild hypoxic-ischemic encephalopathy (HIE). Study Design A prospective cohort study enrolled neonates with low cord pH (n = 18), moderate-severe HIE (n = 40), and healthy controls (n = 38). Groups provided serum samples at 0–6 h of life. The concentrations of biomarkers and miRNAs were compared between cohorts. Result The low cord pH and moderate-severe HIE groups had increased concentrations of GFAP, NFL and Tau compared to controls (P < 0.05, P < 0.001, respectively). NFL concentrations in mild HIE was higher than controls (P < 0.05) but less than moderate-severe HIE (P < 0.001). Of 68 miRNAs, 36 in low cord pH group and 40 in moderate-severe HIE were upregulated compared to controls (P < 0.05). Five miRNAs in low cord pH group (P < 0.05) and 3 in moderate-severe HIE were downregulated compared to controls (P < 0.05). Conclusion A biomarker panel in neonates with low cord pH may help clinicians make real-time decisions.
Collapse
Affiliation(s)
- Pratima Gaulee
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
- *Correspondence: Pratima Gaulee
| | - Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Livia Sura
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Haiyan Xu
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Candace Rossignol
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Michael D. Weiss
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Nikolay Bliznyuk
- Department of Agricultural and Biological Engineering, Biostatistics and Statistics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
29
|
Xie Y, Cui Z, Wang N, Li P. Research on Potential Network Markers and Signaling Pathways in Type 2 Diabetes Based on Conditional Cell-Specific Network. Genes (Basel) 2022; 13:1155. [PMID: 35885938 PMCID: PMC9320152 DOI: 10.3390/genes13071155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional methods concerning type 2 diabetes (T2D) are limited to grouped cells instead of each single cell, and thus the heterogeneity of single cells is erased. Therefore, it is still challenging to study T2D based on a single-cell and network perspective. In this study, we construct a conditional cell-specific network (CCSN) for each single cell for the GSE86469 dataset which is a single-cell transcriptional set from nondiabetic (ND) and T2D human islet samples, and obtain a conditional network degree matrix (CNDM). Since beta cells are the key cells leading to T2D, we search for hub genes in CCSN of beta cells and find that ATP6AP2 is essential for regulation and storage of insulin, and the renin-angiotensin system involving ATP6AP2 is related to most pathological processes leading to diabetic nephropathy. The communication between beta cells and other endocrine cells is performed and three gene pairs with obvious interaction are found. In addition, different expression genes (DEGs) are found based on CNDM and the gene expression matrix (GEM), respectively. Finally, 'dark' genes are identified, and enrichment analysis shows that NFATC2 is involved in the VEGF signaling pathway and indirectly affects the production of Prostacyclin (PGI2), which may be a potential biomarker for diabetic nephropathy.
Collapse
Affiliation(s)
| | | | | | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China; (Y.X.); (Z.C.); (N.W.)
| |
Collapse
|
30
|
Medina-Gil JM, Pérez-García A, Saavedra-Santana P, Díaz-Carrasco A, Martínez-Quintana E, Rodríguez-González F, Ramírez CM, Riaño M, Garay-Sánchez P, Tugores A. A Common Variant at the 3'untranslated Region of the CCL7 Gene (rs17735770) Is Associated With Decreased Susceptibility to Coronary Heart Disease. Front Cardiovasc Med 2022; 9:908070. [PMID: 35711383 PMCID: PMC9194478 DOI: 10.3389/fcvm.2022.908070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Monocytes participate in the development of atherosclerosis through the action of cytokines and other inflammatory mediators. Among them, CCR2 and its ligands, CCL2 and CCL7 play an important role, so the main objective of this work was to determine whether genetic variants affecting their activity were associated with cardiovascular disease. A cohort of 519 patients that have suffered coronary events was analyzed under a propensity score-matching protocol selecting a homogeneous set of cases and controls, according to age, sex, smoking status, dyslipidemia, arterial hypertension and type 2 diabetes as risk factors. While dyslipidemia and arterial hypertension were more prevalent among patients with angina pectoris, current smoking status and elevated inflammatory markers, including total leukocyte and monocyte counts, were more likely associated with acute coronary events. Propensity score matching analysis, performed to eliminate the influence of these risk factors and highlight genetic modifiers, revealed that a single nucleotide variant, rs17735770 at the 3'untranslated region of the CCL7 gene transcript, was associated with decreased cardiovascular risk in a group represented mostly by men, with an average age of 57, and without significant differences in traditional risk factors. Furthermore, the presence of this variant altered the local mRNA structure encompassing a binding site for miR-23ab, resulting in increased translation of a reporter gene in a miR23 independent fashion. The rs17735770 genetic variant led to increased expression of CCL7, a potential antagonist of CCR2 at inflammatory sites, where it could play a meaningful role during the evolution of atherosclerosis.
Collapse
Affiliation(s)
- José María Medina-Gil
- Servicio de Cardiología, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Ana Pérez-García
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | - Pedro Saavedra-Santana
- Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Efrén Martínez-Quintana
- Servicio de Cardiología, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Fayna Rodríguez-González
- Servicio de Oftalmología, Hospital Universitario Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | | | - Marta Riaño
- Servicio de Bioquímica Clínica y Análisis Clínicos, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Paloma Garay-Sánchez
- Unidad de Investigación, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Antonio Tugores
- Unidad de Investigación, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
- *Correspondence: Antonio Tugores
| |
Collapse
|
31
|
Moayedi K, Orandi S, Ebrahimi R, Tanhapour M, Moradi M, Abbastabar M, Golestani A. A novel approach to type 3 diabetes mechanism: The interplay between noncoding RNAs and insulin signaling pathway in Alzheimer's disease. J Cell Physiol 2022; 237:2838-2861. [PMID: 35580144 DOI: 10.1002/jcp.30779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/06/2022]
Abstract
Today, growing evidence indicates that patients with type 2 diabetes (T2D) are at a higher risk of developing Alzheimer's disease (AD). Indeed, AD as one of the main causes of dementia in people aged more than 65 years can be aggravated by insulin resistance (IR) and other metabolic risk factors related to T2D which are also linked to the function of the brain. Remarkably, a new term called "type 3 diabetes" has been suggested for those people who are diagnosed with AD while also showing the symptoms of IR and T2D. In this regard, the role of genetic and epigenetic changes associated with AD has been confirmed by many studies. On the other hand, it should be noted that the insulin signaling pathway is highly regulated by various mechanisms, including epigenetic factors. Among these, the role of noncoding RNAs (ncRNAs), including microRNAs and long noncoding RNAs has been comprehensively studied with respect to the pathology of AD and the most well-known underlying mechanisms. Nevertheless, the number of studies exploring the association between ncRNAs and the downstream targets of the insulin signaling pathway in the development of AD has notably increased in recent years. With this in view, the present study aimed to review the interplay between different ncRNAs and the insulin signaling pathway targets in the pathogenesis of AD to find a new approach in the field of combining biomarkers or therapeutic targets for this disease.
Collapse
Affiliation(s)
- Kiana Moayedi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Tanhapour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Moradi
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Abbastabar
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Dysregulated miRNAs as Biomarkers and Therapeutical Targets in Neurodegenerative Diseases. J Pers Med 2022; 12:jpm12050770. [PMID: 35629192 PMCID: PMC9143965 DOI: 10.3390/jpm12050770] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are representative neurodegenerative diseases (NDs) characterized by degeneration of selective neurons, as well as the lack of effective biomarkers and therapeutic treatments. In the last decade, microRNAs (miRNAs) have gained considerable interest in diagnostics and therapy of NDs, owing to their aberrant expression and their ability to target multiple molecules and pathways. Here, we provide an overview of dysregulated miRNAs in fluids (blood or cerebrospinal fluid) and nervous tissue of AD, PD, and ALS patients. By emphasizing those that are commonly dysregulated in these NDs, we highlight their potential role as biomarkers or therapeutical targets and describe the use of antisense oligonucleotides as miRNA therapies.
Collapse
|
33
|
Tsamou M, Carpi D, Pistollato F, Roggen EL. Sporadic Alzheimer's Disease- and Neurotoxicity-Related microRNAs Affecting Key Events of Tau-Driven Adverse Outcome Pathway Toward Memory Loss. J Alzheimers Dis 2022; 86:1427-1457. [PMID: 35213375 DOI: 10.3233/jad-215434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD). OBJECTIVE Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression. METHODS Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted. Functional miR analysis using PathDip was performed to create miR-target interaction networks. RESULTS The identified miRs were successfully linked to the hypothetical starting point and key events of the earlier proposed tau-driven adverse outcome pathway toward memory loss. Functional miR analysis confirmed most of the findings retrieved from literature and revealed some interesting findings. The analysis identified 40 miRs involved in both sAD and neurotoxicity that dysregulated processes governing the plausible adverse outcome pathway for memory loss. CONCLUSION Creating miR-target interaction networks related to pathological processes involved in sAD initiation and progression, and environmental chemical-induced neurotoxicity, respectively, provided overlapping miR-target interaction networks. This overlap offered an opportunity to create an alternative picture of the mechanisms underlying sAD initiation and early progression. Looking at initiation and progression of sAD from this new angle may open for new biomarkers and novel drug targets for sAD before the appearance of the first clinical symptoms.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra VA, Italy
| | | | | |
Collapse
|
34
|
Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules 2022; 12:biom12020208. [PMID: 35204710 PMCID: PMC8961590 DOI: 10.3390/biom12020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance defines an impairment in the biologic response to insulin action in target tissues, primarily the liver, muscle, adipose tissue, and brain. Insulin resistance affects physiology in many ways, causing hyperglycemia, hypertension, dyslipidemia, visceral adiposity, hyperinsulinemia, elevated inflammatory markers, and endothelial dysfunction, and its persistence leads to the development metabolic disease, including diabetes, obesity, cardiovascular disease, or nonalcoholic fatty liver disease (NAFLD), as well as neurological disorders such as Alzheimer’s disease. In addition to classical transcriptional factors, posttranscriptional control of gene expression exerted by microRNAs and RNA-binding proteins constitutes a new level of regulation with important implications in metabolic homeostasis. In this review, we describe miRNAs and RBPs that control key genes involved in the insulin signaling pathway and related regulatory networks, and their impact on human metabolic diseases at the molecular level, as well as their potential use for diagnosis and future therapeutics.
Collapse
|
35
|
Lieu CV, Loganathan N, Belsham DD. Mechanisms Driving Palmitate-Mediated Neuronal Dysregulation in the Hypothalamus. Cells 2021; 10:3120. [PMID: 34831343 PMCID: PMC8617942 DOI: 10.3390/cells10113120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
The hypothalamus maintains whole-body homeostasis by integrating information from circulating hormones, nutrients and signaling molecules. Distinct neuronal subpopulations that express and secrete unique neuropeptides execute the individual functions of the hypothalamus, including, but not limited to, the regulation of energy homeostasis, reproduction and circadian rhythms. Alterations at the hypothalamic level can lead to a myriad of diseases, such as type 2 diabetes mellitus, obesity, and infertility. The excessive consumption of saturated fatty acids can induce neuroinflammation, endoplasmic reticulum stress, and resistance to peripheral signals, ultimately leading to hyperphagia, obesity, impaired reproductive function and disturbed circadian rhythms. This review focuses on the how the changes in the underlying molecular mechanisms caused by palmitate exposure, the most commonly consumed saturated fatty acid, and the potential involvement of microRNAs, a class of non-coding RNA molecules that regulate gene expression post-transcriptionally, can result in detrimental alterations in protein expression and content. Studying the involvement of microRNAs in hypothalamic function holds immense potential, as these molecular markers are quickly proving to be valuable tools in the diagnosis and treatment of metabolic disease.
Collapse
Affiliation(s)
- Calvin V. Lieu
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
- Departments of Obstetrics/Gynecology and Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
36
|
Zeng J, Li X, Liang L, Duan H, Xie S, Wang C. Phosphorylation of CAP1 regulates lung cancer proliferation, migration, and invasion. J Cancer Res Clin Oncol 2021; 148:137-153. [PMID: 34636991 PMCID: PMC8752530 DOI: 10.1007/s00432-021-03819-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/27/2021] [Indexed: 01/13/2023]
Abstract
Purpose Cyclase-associated protein 1 (CAP1) is a ubiquitous protein which regulates actin dynamics. Previous studies have shown that S308 and S310 are the two major phosphorylated sites in human CAP1. In the present study, we aimed to investigate the role of CAP1 phosphorylation in lung cancer. Methods Massive bioinformatics analysis was applied to determine CAP1’s role in different cancers and especially in lung cancer. Lung cancer patients’ serum and tissue were collected and analyzed in consideration of clinical background. CAP1 shRNA-lentivirus and siRNA were applied to CAP1 gene knockdown, and plasmids were constructed for CAP1 phosphorylation and de-phosphorylation. Microarray analysis was used for CAP1-associated difference analysis. Both in vitro and in vivo experiments were performed to investigate the roles of CAP1 phosphorylation and de-phosphorylation in lung cancer A549 cells. Results CAP1 is a kind of cancer-related protein. Its mRNA was overexpressed in most types of cancer tissues when compared with normal tissues. CAP1 high expression correlated with poor prognosis. Our results showed that serum CAP1 protein concentrations were significantly upregulated in non-small cell lung cancer (NSCLC) patients when compared with the healthy control group, higher serum CAP1 protein concentration correlated with shorter overall survival (OS) in NSCLC patients, and higher pCAP1 and CAP1 protein level were observed in lung cancer patients’ tumor tissue compared with adjacent normal tissue. Knockdown CAP1 in A549 cells can inhibit proliferation and migration, and the effect is validated in H1975 cells. It can also lead to an increase ratio of F-actin/G-actin. In addition, phosphorylated S308 and S310 in CAP1 promoted lung cancer cell proliferation, migration, and metastasis both in vitro and in vivo. When de-phosphorylated, these two sites in CAP1 showed the opposite effect. Phosphorylation of CAP1 can promote epithelial–mesenchymal transition (EMT). Conclusion These findings indicated that CAP1 phosphorylation can promote lung cancer proliferation, migration, and invasion. Phosphorylation sites of CAP1 might be a novel target for lung cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03819-9.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Mid Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Xuan Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Mid Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Long Liang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Mid Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Hongxia Duan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Mid Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Mid Yanchang Rd, Shanghai, 200072, People's Republic of China.
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Mid Yanchang Rd, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
37
|
Matsuzaki F, Uda S, Yamauchi Y, Matsumoto M, Soga T, Maehara K, Ohkawa Y, Nakayama KI, Kuroda S, Kubota H. An extensive and dynamic trans-omic network illustrating prominent regulatory mechanisms in response to insulin in the liver. Cell Rep 2021; 36:109569. [PMID: 34433063 DOI: 10.1016/j.celrep.2021.109569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/24/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
An effective combination of multi-omic datasets can enhance our understanding of complex biological phenomena. To build a context-dependent network with multiple omic layers, i.e., a trans-omic network, we perform phosphoproteomics, transcriptomics, proteomics, and metabolomics of murine liver for 4 h after insulin administration and integrate the resulting time series. Structural characteristics and dynamic nature of the network are analyzed to elucidate the impact of insulin. Early and prominent changes in protein phosphorylation and persistent and asynchronous changes in mRNA and protein levels through non-transcriptional mechanisms indicate enhanced crosstalk between phosphorylation-mediated signaling and protein expression regulation. Metabolic response shows different temporal regulation with transient increases at early time points across categories and enhanced response in the amino acid and nucleotide categories at later time points as a result of process convergence. This extensive and dynamic view of the trans-omic network elucidates prominent regulatory mechanisms that drive insulin responses through intricate interlayer coordination.
Collapse
Affiliation(s)
- Fumiko Matsuzaki
- Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Shinsuke Uda
- Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yukiyo Yamauchi
- Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Kazumitsu Maehara
- Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kubota
- Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| |
Collapse
|
38
|
Expression of IDE and PITRM1 genes in ERN1 knockdown U87 glioma cells: effect of hypoxia and glucose deprivation. Endocr Regul 2021; 54:183-195. [PMID: 32857715 DOI: 10.2478/enr-2020-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE The aim of the present investigation was to study the expression of genes encoding polyfunctional proteins insulinase (insulin degrading enzyme, IDE) and pitrilysin metallopeptidase 1 (PITRM1) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of metabolism through ERN1 signaling as well as hypoxia, glucose and glutamine deprivations. METHODS The expression level of IDE and PITRM1 genes was studied in control and ERN1 knockdown U87 glioma cells under glucose and glutamine deprivations as well as hypoxia by quantitative polymerase chain reaction. RESULTS It was found that the expression level of IDE and PITRM1 genes was down-regulated in ERN1 knockdown (without ERN1 protein kinase and endoribonuclease activity) glioma cells in comparison with the control glioma cells, being more significant for PITRM1 gene. We also found up-regulation of microRNA MIR7-2 and MIRLET7A2, which have specific binding sites in 3'-untranslated region of IDE and PITRM1 mRNAs, correspondingly, and can participate in posttranscriptional regulation of these mRNA expressions. Only inhibition of ERN1 endoribonuclease did not change significantly the expression of IDE and PITRM1 genes in glioma cells. The expression of IDE and PITRM1 genes is preferentially regulated by ERN1 protein kinase. We also showed that hypoxia down-regulated the expression of IDE and PITRM1 genes and that knockdown of ERN1 signaling enzyme function modified the response of these gene expressions to hypoxia. Glucose deprivation increased the expression level of IDE and PITRM1 genes, but ERN1 knockdown enhanced only the effect of glucose deprivation on PITRM1 gene expression. Glutamine deprivation did not affect the expression of IDE gene in both types of glioma cells, but up-regulated PITRM1 gene and this up-regulation was stronger in ERN1 knockdown cells. CONCLUSIONS Results of this investigation demonstrate that ERN1 knockdown significantly decreases the expression of IDE and PITRM1 genes by ERN1 protein kinase mediated mechanism. The expression of both studied genes was sensitive to hypoxia as well as glucose deprivation and dependent on ERN1 signaling in gene-specific manner. It is possible that the level of these genes expression under hypoxia and glucose deprivation is a result of complex interaction of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to the control of the cell metabolism.
Collapse
|
39
|
Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105292. [PMID: 34069857 PMCID: PMC8157344 DOI: 10.3390/ijms22105292] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| |
Collapse
|
40
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|
41
|
Li X, Tsolis KC, Koper MJ, Ronisz A, Ospitalieri S, von Arnim CAF, Vandenberghe R, Tousseyn T, Scheuerle A, Economou A, Carpentier S, Otto M, Thal DR. Sequence of proteome profiles in preclinical and symptomatic Alzheimer's disease. Alzheimers Dement 2021; 17:946-958. [PMID: 33871169 DOI: 10.1002/alz.12345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Proteome profile changes in Alzheimer's disease (AD) brains have been reported. However, it is unclear whether they represent a continuous process, or whether there is a sequential involvement of distinct proteins. To address this question, we used mass spectrometry. We analyzed soluble, dispersible, sodium dodecyl sulfate, and formic acid fractions of neocortex homogenates (mainly Brodmann area 17-19) from 18 pathologically diagnosed preclinical AD, 17 symptomatic AD, and 18 cases without signs of neurodegeneration. By doing so, we identified four groups of AD-related proteins being changed in levels in preclinical and symptomatic AD cases: early-responding, late-responding, gradually-changing, and fraction-shifting proteins. Gene ontology analysis of these proteins and all known AD-risk/causative genes identified vesicle endocytosis and the secretory pathway-related processes as an early-involved AD component. In conclusion, our findings suggest that subtle changes involving the secretory pathway and endocytosis precede severe proteome changes in symptomatic AD as part of the preclinical phase of AD. The respective early-responding proteins may also contribute to synaptic vesicle cycle alterations in symptomatic AD.
Collapse
Affiliation(s)
- Xiaohang Li
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Konstantinos C Tsolis
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Simona Ospitalieri
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Rik Vandenberghe
- Department of Neurology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium
| | - Thomas Tousseyn
- Department of Pathology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium
| | | | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Sebastien Carpentier
- BIOMED facility for SYstems BIOlogy based MAss spectrometry, KU Leuven (University of Leuven), Leuven, Belgium
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.,Department of Pathology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium
| |
Collapse
|
42
|
Prokopenko D, Morgan SL, Mullin K, Hofmann O, Chapman B, Kirchner R, Amberkar S, Wohlers I, Lange C, Hide W, Bertram L, Tanzi RE. Whole-genome sequencing reveals new Alzheimer's disease-associated rare variants in loci related to synaptic function and neuronal development. Alzheimers Dement 2021; 17:1509-1527. [PMID: 33797837 PMCID: PMC8519060 DOI: 10.1002/alz.12319] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Introduction Genome‐wide association studies have led to numerous genetic loci associated with Alzheimer's disease (AD). Whole‐genome sequencing (WGS) now permits genome‐wide analyses to identify rare variants contributing to AD risk. Methods We performed single‐variant and spatial clustering–based testing on rare variants (minor allele frequency [MAF] ≤1%) in a family‐based WGS‐based association study of 2247 subjects from 605 multiplex AD families, followed by replication in 1669 unrelated individuals. Results We identified 13 new AD candidate loci that yielded consistent rare‐variant signals in discovery and replication cohorts (4 from single‐variant, 9 from spatial‐clustering), implicating these genes: FNBP1L, SEL1L, LINC00298, PRKCH, C15ORF41, C2CD3, KIF2A, APC, LHX9, NALCN, CTNNA2, SYTL3, and CLSTN2. Discussion Downstream analyses of these novel loci highlight synaptic function, in contrast to common AD‐associated variants, which implicate innate immunity and amyloid processing. These loci have not been associated previously with AD, emphasizing the ability of WGS to identify AD‐associated rare variants, particularly outside of the exome.
Collapse
Affiliation(s)
- Dmitry Prokopenko
- Genetics and Aging Research Unit and The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah L Morgan
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts, USA
| | - Kristina Mullin
- Genetics and Aging Research Unit and The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Oliver Hofmann
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Brad Chapman
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rory Kirchner
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Sandeep Amberkar
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Inken Wohlers
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Christoph Lange
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Winston Hide
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts, USA
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit and The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Korać P, Antica M, Matulić M. MiR-7 in Cancer Development. Biomedicines 2021; 9:325. [PMID: 33806891 PMCID: PMC8004586 DOI: 10.3390/biomedicines9030325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.
Collapse
Affiliation(s)
- Petra Korać
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Bosković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Maja Matulić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| |
Collapse
|
44
|
Samadian M, Gholipour M, Hajiesmaeili M, Taheri M, Ghafouri-Fard S. The Eminent Role of microRNAs in the Pathogenesis of Alzheimer's Disease. Front Aging Neurosci 2021; 13:641080. [PMID: 33790780 PMCID: PMC8005705 DOI: 10.3389/fnagi.2021.641080] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is an irrevocable neurodegenerative condition characterized by the presence of senile plaques comprising amassed β-amyloid peptides (Aβ) and neurofibrillary tangles mainly comprising extremely phosphorylated Tau proteins. Recent studies have emphasized the role of microRNAs (miRNAs) in the development of AD. A number of miRNAs, namely, miR-200a-3p, miR-195, miR-338-5p, miR-34a-5p, miR-125b-5p, miR-132, miR-384, miR-339-5p, miR-135b, miR-425-5p, and miR-339-5p, have been shown to participate in the development of AD through interacting with BACE1. Other miRNAs might affect the inflammatory responses in the course of AD. Aberrant expression of several miRNAs in the plasma samples of AD subjects has been shown to have the aptitude for differentiation of AD subjects from healthy subjects. Finally, a number of AD-modifying agents affect miRNA profile in cell cultures or animal models. We have performed a comprehensive search and summarized the obtained data about the function of miRNAs in AD in the current review article.
Collapse
Affiliation(s)
- Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Reimunde P, Pensado-López A, Carreira Crende M, Lombao Iglesias V, Sánchez L, Torrecilla-Parra M, Ramírez CM, Anfray C, Torres Andón F. Cellular and Molecular Mechanisms Underlying Glioblastoma and Zebrafish Models for the Discovery of New Treatments. Cancers (Basel) 2021; 13:1087. [PMID: 33802571 PMCID: PMC7961726 DOI: 10.3390/cancers13051087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common of all brain malignant tumors; it displays a median survival of 14.6 months with current complete standard treatment. High heterogeneity, aggressive and invasive behavior, the impossibility of completing tumor resection, limitations for drug administration and therapeutic resistance to current treatments are the main problems presented by this pathology. In recent years, our knowledge of GBM physiopathology has advanced significantly, generating relevant information on the cellular heterogeneity of GBM tumors, including cancer and immune cells such as macrophages/microglia, genetic, epigenetic and metabolic alterations, comprising changes in miRNA expression. In this scenario, the zebrafish has arisen as a promising animal model to progress further due to its unique characteristics, such as transparency, ease of genetic manipulation, ethical and economic advantages and also conservation of the major brain regions and blood-brain-barrier (BBB) which are similar to a human structure. A few papers described in this review, using genetic and xenotransplantation zebrafish models have been used to study GBM as well as to test the anti-tumoral efficacy of new drugs, their ability to interact with target cells, modulate the tumor microenvironment, cross the BBB and/or their toxicity. Prospective studies following these lines of research may lead to a better diagnosis, prognosis and treatment of patients with GBM.
Collapse
Affiliation(s)
- Pedro Reimunde
- Department of Medicine, Campus de Oza, Universidade da Coruña, 15006 A Coruña, Spain
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Martín Carreira Crende
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Vanesa Lombao Iglesias
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Marta Torrecilla-Parra
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain; (M.T.-P.); (C.M.R.)
| | - Cristina M. Ramírez
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain; (M.T.-P.); (C.M.R.)
| | - Clément Anfray
- IRCCS Istituto Clinico Humanitas, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy;
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- IRCCS Istituto Clinico Humanitas, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy;
| |
Collapse
|
46
|
Herrero-Aguayo V, Jiménez-Vacas JM, Sáez-Martínez P, Gómez-Gómez E, López-Cánovas JL, Garrido-Sánchez L, Herrera-Martínez AD, García-Bermejo L, Macías-González M, López-Miranda J, Castaño JP, Gahete MD, Luque RM. Influence of Obesity in the miRNome: miR-4454, a Key Regulator of Insulin Response Via Splicing Modulation in Prostate. J Clin Endocrinol Metab 2021; 106:e469-e484. [PMID: 32841353 DOI: 10.1210/clinem/dgaa580] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Obesity is a major health problem associated with severe comorbidities, including type 2 diabetes and cancer, wherein microRNAs (miRNAs) might be useful as diagnostic/prognostic tools or therapeutic targets. OBJECTIVE To explore the differential expression pattern of miRNAs in obesity and their putative role in obesity-related comorbidities such as insulin resistance. METHODS An Affymetrix-miRNA array was performed in plasma samples from normoweight (n = 4/body mass index < 25) and obese subjects (n = 4/body mass index > 30). The main changes were validated in 2 independent cohorts (n = 221/n = 18). Additionally, in silico approaches were performed and in vitro assays applied in tissue samples and prostate (RWPE-1) and liver (HepG2) cell-lines. RESULTS A total of 26 microRNAs were altered (P < 0.01) in plasma of obese subjects compared to controls using the Affymetrix-miRNA array. Validation in ampler cohorts revealed that miR-4454 levels were consistently higher in obesity, associated with insulin-resistance (Homeostatic Model Assessment of Insulin Resistance/insulin) and modulated by medical (metformin/statins) and surgical (bariatric surgery) strategies. miR-4454 was highly expressed in prostate and liver tissues and its expression was increased in prostate and liver cells by insulin. In vitro, overexpression of miR-4454 in prostate cells resulted in decreased expression levels of INSR, GLUT4, and phosphorylation of AMPK/AKT/ERK, as well as in altered expression of key spliceosome components (ESRP1/ESRP2/RBM45/RNU2) and insulin-receptor splicing variants. CONCLUSIONS Obesity was associated to an alteration of the plasmatic miRNA landscape, wherein miR-4454 levels were higher, associated with insulin-resistance and modulated by obesity-controlling interventions. Insulin regulated miR-4454, which, in turn may impair the cellular response to insulin, in a cell type-dependent manner (i.e., prostate gland), by modulating the splicing process.
Collapse
Affiliation(s)
- Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Juan L López-Cánovas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Lourdes Garrido-Sánchez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Unidad de Gestión Clínica y Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria), Universidad de Málaga, Málaga, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Service of Endocrinology and Nutrition, Córdoba, Spain
| | | | - Manuel Macías-González
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Unidad de Gestión Clínica y Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria), Universidad de Málaga, Málaga, Spain
| | - José López-Miranda
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Lipids and Atherosclerosis Unit, Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
47
|
Ji Z, Luo J, Su T, Chen C, Su Y. miR-7a Targets Insulin Receptor Substrate-2 Gene and Suppresses Viability and Invasion of Cells in Diabetic Retinopathy Mice via PI3K-Akt-VEGF Pathway. Diabetes Metab Syndr Obes 2021; 14:719-728. [PMID: 33623407 PMCID: PMC7896799 DOI: 10.2147/dmso.s288482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Diabetic retinopathy (DR) is one of the major leading causes for vision loss globally. Current study illustrates the role of miR-7a in DR. MATERIAL AND METHODS Retinal pericytes (RPs) and Endothelial cells (ECs) were isolated from mouse model of DR. qRT-PCR was done for expression of miR-7a and target gene mRNA, Western blot for protein expression. Identification of miR-7a target gene was done by TargetScan and Luciferase assay. Cell viability and invasion was done by MTT and Transwell chamber assay. RESULTS The expression of miR-7a was down-regulated whereas level of IRS-2 was unregulated in isolated RPs and ECs. Luciferase assay suggested correlation between miR-7a and IRS-2, over-expression of miR-7a using a mimic resulted in suppression in viability and invasion capacity of RPs and ECs and inhibited the protein levels of PI3K/Akt cascade and IRS-2, and however the inhibitor reversed them respectively. Transfection of siRNA targeting IRS-2 caused alteration in miR-7a mediated changes in ECs suggesting that miR-7a may decrease angiogenesis in DR by inhibiting the levels of IRS-2. CONCLUSION miR-7a suppresses PI3K/Akt cascade via targeting IRS-2, thus decreasing the viability and invasion capacity of RPs and ECs, suggesting an interesting treatment target for DR.
Collapse
Affiliation(s)
- Zhenyu Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Jinyuan Luo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Ting Su
- Eye Institute of Xiamen University, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Changzheng Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Yu Su
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
- Correspondence: Yu Su Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of ChinaTel/Fax +86-2788041911 Email
| |
Collapse
|
48
|
Ramírez CM, Torrecilla-Parra M, Pardo-Marqués V, de-Frutos MF, Pérez-García A, Tabraue C, de la Rosa JV, Martín-Rodriguez P, Díaz-Sarmiento M, Nuñez U, Orizaola MC, Través PG, Camps M, Boscá L, Castrillo A. Crosstalk Between LXR and Caveolin-1 Signaling Supports Cholesterol Efflux and Anti-Inflammatory Pathways in Macrophages. Front Endocrinol (Lausanne) 2021; 12:635923. [PMID: 34122329 PMCID: PMC8190384 DOI: 10.3389/fendo.2021.635923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
Macrophages are immune cells that play crucial roles in host defense against pathogens by triggering their exceptional phagocytic and inflammatory functions. Macrophages that reside in healthy tissues also accomplish important tasks to preserve organ homeostasis, including lipid uptake/efflux or apoptotic-cell clearance. Both homeostatic and inflammatory functions of macrophages require the precise stability of lipid-rich microdomains located at the cell membrane for the initiation of downstream signaling cascades. Caveolin-1 (Cav-1) is the main protein responsible for the biogenesis of caveolae and plays an important role in vascular inflammation and atherosclerosis. The Liver X receptors (LXRs) are key transcription factors for cholesterol efflux and inflammatory gene responses in macrophages. Although the role of Cav-1 in cellular cholesterol homeostasis and vascular inflammation has been reported, the connection between LXR transcriptional activity and Cav-1 expression and function in macrophages has not been investigated. Here, using gain and loss of function approaches, we demonstrate that LXR-dependent transcriptional pathways modulate Cav-1 expression and compartmentation within the membrane during macrophage activation. As a result, Cav-1 participates in LXR-dependent cholesterol efflux and the control of inflammatory responses. Together, our data show modulation of the LXR-Cav-1 axis could be exploited to control exacerbated inflammation and cholesterol overload in the macrophage during the pathogenesis of lipid and immune disorders, such as atherosclerosis.
Collapse
Affiliation(s)
- Cristina M. Ramírez
- Instituto Madrileño de Estudios Avanzados (IMDEA) Research Institute of Food and Health Sciences, Madrid, Spain
- *Correspondence: Antonio Castrillo, ; Cristina M. Ramírez,
| | - Marta Torrecilla-Parra
- Instituto Madrileño de Estudios Avanzados (IMDEA) Research Institute of Food and Health Sciences, Madrid, Spain
| | - Virginia Pardo-Marqués
- Instituto Madrileño de Estudios Avanzados (IMDEA) Research Institute of Food and Health Sciences, Madrid, Spain
| | - Mario Fernández de-Frutos
- Instituto Madrileño de Estudios Avanzados (IMDEA) Research Institute of Food and Health Sciences, Madrid, Spain
| | - Ana Pérez-García
- Instituto Madrileño de Estudios Avanzados (IMDEA) Research Institute of Food and Health Sciences, Madrid, Spain
| | - Carlos Tabraue
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Juan Vladimir de la Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Patricia Martín-Rodriguez
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Mercedes Díaz-Sarmiento
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Uxue Nuñez
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Marta C. Orizaola
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Paqui G. Través
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Camps
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Lisardo Boscá
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas CSIC-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Red sobre Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas CSIC-Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Antonio Castrillo, ; Cristina M. Ramírez,
| |
Collapse
|
49
|
Huang S, Zeng Z, Sun Y, Cai Y, Xu X, Li H, Wu S. Association study of hsa_circ_0001946, hsa-miR-7-5p and PARP1 in coronary atherosclerotic heart disease. Int J Cardiol 2020; 328:1-7. [PMID: 33326806 DOI: 10.1016/j.ijcard.2020.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Our previous work identified an aberrant expression of hsa_circ_0001946 in coronary atherosclerotic heart disease (CHD). Here we aimed to verify the role of hsa_circ_0001946 as a biomarker for CHD, and explore the clues of its downstream regulation. METHODS The hsa_circ_0001946 expression in CHD patients (n = 120) and controls (n = 120) were confirmed with qRT-PCR. CircBank and miRDB were used for target analysis in silico. Spearman correlation test was performed to infer potential interrelationships among the nucleic acid molecular biomarkers, and their predictive abilities were examined using receiver operating characteristic (ROC) curves. RESULTS Hsa_circ_0001946 was validated to be significantly up-regulated in the peripheral blood mononuclear cells of CHD patients, and revealed as an independent indicator of increased CHD risk (odds ratio: 2.364; 95% confidence interval [CI]: 1.765-3.165) after adjusting for confounding factors. Hsa-miR-7-5p was found to own the largest number of binding sites in has_circ_0001946 sequence, and among its targets predicted, the poly ADP-ribose polymerase 1 (PARP1) has been implicated in the pathophysiology of CHD. Spearman analysis indicated negative correlations of hsa-miR-7-5p with hsa_circ_0001946 and PARP1, respectively; while hsa_circ_0001946 was positively correlated with PARP1. The prediction accuracy of hsa_circ_0001946 in CHD was evaluated, showing an area under the ROC curve of 0.897 (95% CI: 0.791-0.961), which could further increase to 0.957 (95% CI: 0.870-0.992) upon a combination of hsa-miR-7-5p and PARP1. CONCLUSION The present work demonstrated the predictive power of hsa_circ_0001946, hsa-miR-7-5p and PARP1 as combined biomarkers for CHD, and suggests a regulatory axis they consisted might contribute to the CHD development.
Collapse
Affiliation(s)
- Shuna Huang
- Department of Clinical Research and Translation Center Office, the First Affiliated Hospital of Fujian Medical University, China
| | - Zhaonan Zeng
- Department of Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, China
| | - Yi Sun
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China
| | - Yingying Cai
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xingyan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China.
| | - Siying Wu
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, China.
| |
Collapse
|
50
|
Benito-Vicente A, Uribe KB, Rotllan N, Ramírez CM, Jebari-Benslaiman S, Goedeke L, Canfrán-Duque A, Galicia-García U, Saenz De Urturi D, Aspichueta P, Suárez Y, Fernández-Hernando C, Martín C. miR-27b Modulates Insulin Signaling in Hepatocytes by Regulating Insulin Receptor Expression. Int J Mol Sci 2020; 21:ijms21228675. [PMID: 33212990 PMCID: PMC7698485 DOI: 10.3390/ijms21228675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance (IR) is one of the key contributing factors in the development of type 2 diabetes mellitus (T2DM). However, the molecular mechanisms leading to IR are still unclear. The implication of microRNAs (miRNAs) in the pathophysiology of multiple cardiometabolic pathologies, including obesity, atherosclerotic heart failure and IR, has emerged as a major focus of interest in recent years. Indeed, upregulation of several miRNAs has been associated with obesity and IR. Among them, miR-27b is overexpressed in the liver in patients with obesity, but its role in IR has not yet been thoroughly explored. In this study, we investigated the role of miR-27b in regulating insulin signaling in hepatocytes, both in vitro and in vivo. Therefore, assessment of the impact of miR-27b on insulin resistance through the hepatic tissue is of special importance due to the high expression of miR-27b in the liver together with its known role in regulating lipid metabolism. Notably, we found that miR-27b controls post-transcriptional expression of numerous components of the insulin signaling pathway including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1) in human hepatoma cells. These results were further confirmed in vivo showing that overexpression and inhibition of hepatic miR-27 enhances and suppresses hepatic INSR expression and insulin sensitivity, respectively. This study identified a novel role for miR-27 in regulating insulin signaling, and this finding suggests that elevated miR-27 levels may contribute to early development of hepatic insulin resistance.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Kepa B. Uribe
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Cristina M. Ramírez
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Unai Galicia-García
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
- Fundación Biofisika Bizkaia, 48940 Leioa, Spain
| | - Diego Saenz De Urturi
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain; (D.S.D.U.); (P.A.)
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain; (D.S.D.U.); (P.A.)
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
- Correspondence: (C.F.-H.); (C.M.)
| | - Cesar Martín
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
- Correspondence: (C.F.-H.); (C.M.)
| |
Collapse
|