1
|
Hu W, Kong X, Cui Y, Wang H, Gao J, Wang X, Chen S, Li X, Li S, Che F, Wan Q. Surfeit Locus Protein 4 as a Novel Target for Therapeutic Intervention in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024; 61:2033-2048. [PMID: 37843800 DOI: 10.1007/s12035-023-03687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Surfeit locus protein 4 (SURF4) functions as a cargo receptor that is capable of transporting newly formed proteins from the lumen of the endoplasmic reticulum into vesicles and Golgi bodies. However, the role of SURF4 in the central nervous system remains unclear. The aim of this study is to investigate the role of SURF4 and its underlying mechanisms in cerebral ischemia/reperfusion (I/R) injury in rats, and whether it can be used effectively for novel therapeutic intervention. We also examined whether transcranial direct-current stimulation (tDCS) can exert a neuroprotective effect via SURF4-dependent signalling. Following cerebral I/R injury in rats, a significant increase was observed in the expression of SURF4. In both I/R injury and oxygen-glucose deprivation (OGD) insult, suppressing the expression of SURF4 demonstrated a neuroprotective effect, while overexpression of SURF4 resulted in increased neuronal death. We further showed that the levels of nerve growth factor precursor (proNGF), p75 neurotrophin receptor (p75NTR), sortilin, and PTEN were increased following cerebral I/R injury, and that SURF4 acted through the PTEN/proNGF signal pathway to regulate neuronal viability. We demonstrated that tDCS treatment reduced SURF4 expression and decreased the infarct volume after cerebral I/R injury. Together, this study indicates that SURF4 plays a critical role in ischemic neuronal injury and may serve as a molecular target for the development of therapeutic strategies in acute ischemic stroke.
Collapse
Affiliation(s)
- Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
- Department of Biological Science, Jining Medical University, Rizhao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiyuran Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shujun Chen
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shifang Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, 27 East Jiefang Road, Linyi, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China.
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao High-tech Industrial Development District, 7 Fenglong Road, Qingdao, China.
| |
Collapse
|
2
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Robinson CM, Duggan A, Forrester A. ER exit in physiology and disease. Front Mol Biosci 2024; 11:1352970. [PMID: 38314136 PMCID: PMC10835805 DOI: 10.3389/fmolb.2024.1352970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
The biosynthetic secretory pathway is comprised of multiple steps, modifications and interactions that form a highly precise pathway of protein trafficking and secretion, that is essential for eukaryotic life. The general outline of this pathway is understood, however the specific mechanisms are still unclear. In the last 15 years there have been vast advancements in technology that enable us to advance our understanding of this complex and subtle pathway. Therefore, based on the strong foundation of work performed over the last 40 years, we can now build another level of understanding, using the new technologies available. The biosynthetic secretory pathway is a high precision process, that involves a number of tightly regulated steps: Protein folding and quality control, cargo selection for Endoplasmic Reticulum (ER) exit, Golgi trafficking, sorting and secretion. When deregulated it causes severe diseases that here we categorise into three main groups of aberrant secretion: decreased, excess and altered secretion. Each of these categories disrupts organ homeostasis differently, effecting extracellular matrix composition, changing signalling events, or damaging the secretory cells due to aberrant intracellular accumulation of secretory proteins. Diseases of aberrant secretion are very common, but despite this, there are few effective therapies. Here we describe ER exit sites (ERES) as key hubs for regulation of the secretory pathway, protein quality control and an integratory hub for signalling within the cell. This review also describes the challenges that will be faced in developing effective therapies, due to the specificity required of potential drug candidates and the crucial need to respect the fine equilibrium of the pathway. The development of novel tools is moving forward, and we can also use these tools to build our understanding of the acute regulation of ERES and protein trafficking. Here we review ERES regulation in context as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire M Robinson
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aislinn Duggan
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alison Forrester
- Research Unit of Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Guo CG, Sun R, Wang X, Yuan Y, Xu Y, Li S, Sun X, Wang J, Hu X, Guo T, Chen XW, Xiao RP, Zhang X. Intestinal SURF4 is essential for apolipoprotein transport and lipoprotein secretion. Mol Metab 2024; 79:101847. [PMID: 38042368 PMCID: PMC10755498 DOI: 10.1016/j.molmet.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
OBJECTIVE Lipoprotein assembly and secretion in the small intestine are critical for dietary fat absorption. Surfeit locus protein 4 (SURF4) serves as a cargo receptor, facilitating the cellular transport of multiple proteins and mediating hepatic lipid secretion in vivo. However, its involvement in intestinal lipid secretion is not fully understood. In this study, we investigated the role of SURF4 in intestinal lipid absorption. METHODS We generated intestine-specific Surf4 knockout mice and characterized the phenotypes. Additionally, we investigated the underlying mechanisms of SURF4 in intestinal lipid secretion using proteomics and cellular models. RESULTS We unveiled that SURF4 is indispensable for apolipoprotein transport and lipoprotein secretion. Intestine-specific Surf4 knockout mice exhibited ectopic lipid deposition in the small intestine and hypolipidemia. Deletion of SURF4 impeded the transport of apolipoprotein A1 (ApoA1), proline-rich acidic protein 1 (PRAP1), and apolipoprotein B48 (ApoB48) and hindered the assembly and secretion of chylomicrons and high-density lipoproteins. CONCLUSIONS SURF4 emerges as a pivotal regulator of intestinal lipid absorption via mediating the secretion of ApoA1, PRAP1 and ApoB48.
Collapse
Affiliation(s)
- Chun-Guang Guo
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Rui Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Xiao Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Ye Yuan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Yan Xu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Shihan Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xueting Sun
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Jue Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xinli Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Xiao-Wei Chen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Tang VT, Abbineni PS, Veiga Leprevost FD, Basrur V, Khoriaty R, Emmer BT, Nesvizhskii AI, Ginsburg D. Identification of LMAN1- and SURF4-Dependent Secretory Cargoes. J Proteome Res 2023; 22:3439-3446. [PMID: 37844105 PMCID: PMC10629478 DOI: 10.1021/acs.jproteome.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 10/18/2023]
Abstract
Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles and tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells, whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif..
Collapse
Affiliation(s)
- Vi T. Tang
- Department
of Molecular and Integrative Physiology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Prabhodh S. Abbineni
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Microbiology and Immunology, Loyola University
Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | | | - Venkatesha Basrur
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rami Khoriaty
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian T. Emmer
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexey I. Nesvizhskii
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David Ginsburg
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard
Hughes Medical Institute, University of
Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Zhang Y, Srivastava V, Zhang B. Mammalian cargo receptors for endoplasmic reticulum-to-Golgi transport: mechanisms and interactions. Biochem Soc Trans 2023:BST20220713. [PMID: 37334845 DOI: 10.1042/bst20220713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Proteins that are destined to enter the secretory pathway are synthesized on the rough endoplasmic reticulum (ER) and then translocated into the ER lumen, where they undergo posttranslational modifications, folding, and assembly. After passing a quality control system, the cargo proteins are packaged into coat protein complex II (COPII) vesicles to exit the ER. In metazoans, most COPII subunits have multiple paralogs, enabling COPII vesicles the flexibility to transport a diverse range of cargo. The cytoplasmic domains of transmembrane proteins can interact with SEC24 subunits of COPII to enter the ER exit sites. Some transmembrane proteins may also act as cargo receptors that bind soluble secretory proteins within the ER lumen, enabling them to enter COPII vesicles. The cytoplasmic domains of cargo receptors also contain coat protein complex I binding motifs that allow for their cycling back to the ER after unloading their cargo in the ER-Golgi intermediate compartment and cis-Golgi. Once unloaded, the soluble cargo proteins continue maturation through the Golgi before reaching their final destinations. This review provides an overview of receptor-mediated transport of secretory proteins from the ER to the Golgi, with a focus on the current understanding of two mammalian cargo receptors: the LMAN1-MCFD2 complex and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Yuan Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| | - Vishal Srivastava
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| | - Bin Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| |
Collapse
|
7
|
Tang VT, Abbineni PS, Leprevost FDV, Basrur V, Emmer BT, Nesvizhskii AI, Ginsburg D. Identification of LMAN1 and SURF4 dependent secretory cargoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535922. [PMID: 37066360 PMCID: PMC10104123 DOI: 10.1101/2023.04.06.535922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles/tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | | | | | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
8
|
Tao G, Wang H, Shen Y, Zhai L, Liu B, Wang B, Chen W, Xing S, Chen Y, Gu HM, Qin S, Zhang DW. Surf4 (Surfeit Locus Protein 4) Deficiency Reduces Intestinal Lipid Absorption and Secretion and Decreases Metabolism in Mice. Arterioscler Thromb Vasc Biol 2023; 43:562-580. [PMID: 36756879 PMCID: PMC10026970 DOI: 10.1161/atvbaha.123.318980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Postprandial dyslipidemia is a causative risk factor for cardiovascular disease. The majority of absorbed dietary lipids are packaged into chylomicron and then delivered to circulation. Previous studies showed that Surf4 (surfeit locus protein 4) mediates very low-density lipoprotein secretion from hepatocytes. Silencing hepatic Surf4 markedly reduces the development of atherosclerosis in different mouse models of atherosclerosis without causing hepatic steatosis. However, the role of Surf4 in chylomicron secretion is unknown. METHODS We developed inducible intestinal-specific Surf4 knockdown mice (Surf4IKO) using Vil1Cre-ERT2 and Surf4flox mice. Metabolic cages were used to monitor mouse metabolism. Enzymatic kits were employed to measure serum and tissue lipid levels. The expression of target genes was detected by qRT-PCR and Western Blot. Transmission electron microscopy and radiolabeled oleic acid were used to assess the structure of enterocytes and intestinal lipid absorption and secretion, respectively. Proteomics was performed to determine changes in protein expression in serum and jejunum. RESULTS Surf4IKO mice, especially male Surf4IKO mice, displayed significant body weight loss, increased mortality, and reduced metabolism. Surf4IKO mice exhibited lipid accumulation in enterocytes and impaired fat absorption and secretion. Lipid droplets and small lipid vacuoles were accumulated in the cytosol and the endoplasmic reticulum lumen of the enterocytes of Surf4IKO mice, respectively. Surf4 colocalized with apoB and co-immunoprecipitated with apoB48 in differentiated Caco-2 cells. Intestinal Surf4 deficiency also significantly reduced serum triglyceride, cholesterol, and free fatty acid levels in mice. Proteomics data revealed that diverse pathways were altered in Surf4IKO mice. In addition, Surf4IKO mice had mild liver damage, decreased liver size and weight, and reduced hepatic triglyceride levels. CONCLUSIONS Our findings demonstrate that intestinal Surf4 plays an essential role in lipid absorption and chylomicron secretion and suggest that the therapeutic use of Surf4 inhibition requires highly cell/tissue-specific targeting.
Collapse
Affiliation(s)
- Geru Tao
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Hao Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | | | - Lei Zhai
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Boyan Liu
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Bingxiang Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Wei Chen
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Sijie Xing
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Yuan Chen
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (H.-M.G., D.-W.Z.)
| | - Shucun Qin
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (H.-M.G., D.-W.Z.)
| |
Collapse
|
9
|
Shen Y, Gu HM, Qin S, Zhang DW. Surf4, cargo trafficking, lipid metabolism, and therapeutic implications. J Mol Cell Biol 2023; 14:6852946. [PMID: 36574593 PMCID: PMC9929512 DOI: 10.1093/jmcb/mjac063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Surfeit 4 is a polytopic transmembrane protein that primarily resides in the endoplasmic reticulum (ER) membrane. It is ubiquitously expressed and functions as a cargo receptor, mediating cargo transport from the ER to the Golgi apparatus via the canonical coat protein complex II (COPII)-coated vesicles or specific vesicles. It also participates in ER-Golgi protein trafficking through a tubular network. Meanwhile, it facilitates retrograde transportation of cargos from the Golgi apparatus to the ER through COPI-coated vesicles. Surf4 can selectively mediate export of diverse cargos, such as PCSK9 very low-density lipoprotein (VLDL), progranulin, α1-antitrypsin, STING, proinsulin, and erythropoietin. It has been implicated in facilitating VLDL secretion, promoting cell proliferation and migration, and increasing replication of positive-strand RNA viruses. Therefore, Surf4 plays a crucial role in various physiological and pathophysiological processes and emerges as a promising therapeutic target. However, the molecular mechanisms by which Surf4 selectively sorts diverse cargos for ER-Golgi protein trafficking remain elusive. Here, we summarize the most recent advances in Surf4, focusing on its role in lipid metabolism.
Collapse
Affiliation(s)
- Yishi Shen
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| |
Collapse
|
10
|
Zhao Y, Yu H. Functions of SURF4 gene in vivo. Chin Med J (Engl) 2023; 136:248-250. [PMID: 36752799 PMCID: PMC10106245 DOI: 10.1097/cm9.0000000000002438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 02/09/2023] Open
Affiliation(s)
- Yan Zhao
- Department of Pathology and Pathophysiology, Medical College of Nantong University, Nantong, Jiangsu 226007, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| |
Collapse
|
11
|
Tang VT, Ginsburg D. Cargo selection in endoplasmic reticulum-to-Golgi transport and relevant diseases. J Clin Invest 2023; 133:163838. [PMID: 36594468 PMCID: PMC9797344 DOI: 10.1172/jci163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Most proteins destined for the extracellular space or various intracellular compartments must traverse the intracellular secretory pathway. The first step is the recruitment and transport of cargoes from the endoplasmic reticulum (ER) lumen to the Golgi apparatus by coat protein complex II (COPII), consisting of five core proteins. Additional ER transmembrane proteins that aid cargo recruitment are referred to as cargo receptors. Gene duplication events have resulted in multiple COPII paralogs present in the mammalian genome. Here, we review the functions of each COPII protein, human disorders associated with each paralog, and evidence for functional conservation between paralogs. We also provide a summary of current knowledge regarding two prototypical cargo receptors in mammals, LMAN1 and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology,,Life Sciences Institute
| | - David Ginsburg
- Life Sciences Institute,,Department of Internal Medicine,,Department of Human Genetics,,Department of Pediatrics and Communicable Diseases, and,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Identification of novel γ-globin inducers among all potential erythroid druggable targets. Blood Adv 2022; 6:3280-3285. [PMID: 35240686 PMCID: PMC9198928 DOI: 10.1182/bloodadvances.2021006802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 01/28/2023] Open
Abstract
Human γ-globin is predominantly expressed in fetal liver erythroid cells during gestation from 2 nearly identical genes, HBG1 and HBG2, that are both perinatally silenced. Reactivation of these fetal genes in adult red blood cells can ameliorate many symptoms associated with the inherited β-globinopathies, sickle cell disease, and Cooley anemia. Although promising genetic strategies to reactivate the γ-globin genes to treat these diseases have been explored, there are significant barriers to their effective implementation worldwide; alternatively, pharmacological induction of γ-globin synthesis could readily reach the majority of affected individuals. In this study, we generated a CRISPR knockout library that targeted all erythroid genes for which prospective or actual therapeutic compounds already exist. By probing this library for genes that repress fetal hemoglobin (HbF), we identified several novel, potentially druggable, γ-globin repressors, including VHL and PTEN. We demonstrate that deletion of VHL induces HbF through activation of the HIF1α pathway and that deletion of PTEN induces HbF through AKT pathway stimulation. Finally, we show that small-molecule inhibitors of PTEN and EZH induce HbF in both healthy and β-thalassemic human primary erythroid cells.
Collapse
|
13
|
Cargo receptor Surf4 regulates endoplasmic reticulum export of proinsulin in pancreatic β-cells. Commun Biol 2022; 5:458. [PMID: 35562580 PMCID: PMC9106718 DOI: 10.1038/s42003-022-03417-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Insulin is an essential peptide hormone that maintains blood glucose levels. Although the mechanisms underlying insulin exocytosis have been investigated, the mechanism of proinsulin export from the endoplasmic reticulum (ER) remains unclear. Here, we demonstrated that Surf4, a cargo receptor homolog, regulates the ER export of proinsulin via its recruitment to ER exit sites (ERES). Under high-glucose conditions, Surf4 expression was upregulated, and Surf4 proteins mainly localized to the ER at a steady state and accumulated in the ERES, along with proinsulin in rat insulinoma INS-1 cells. Surf4-knockdown resulted in proinsulin retention in the ER and decreased the levels of mature insulin in secretory granules, thereby significantly reducing insulin secretion. Surf4 forms an oligomer and can physically interact with proinsulin and Sec12, essential for COPII vesicle formation. Our findings suggest that Surf4 interacts with proinsulin and delivers it into COPII vesicles for ER export in co-operation with Sec12 and COPII.
Collapse
|
14
|
Devireddy S, Ferguson SM. Efficient progranulin exit from the ER requires its interaction with prosaposin, a Surf4 cargo. J Cell Biol 2022; 221:e202104044. [PMID: 34919127 PMCID: PMC8689666 DOI: 10.1083/jcb.202104044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
Progranulin is a lysosomal protein whose haploinsufficiency causes frontotemporal dementia, while homozygous loss of progranulin causes neuronal ceroid lipofuscinosis, a lysosomal storage disease. The sensitivity of cells to progranulin deficiency raises important questions about how cells coordinate intracellular trafficking of progranulin to ensure its efficient delivery to lysosomes. In this study, we discover that progranulin interactions with prosaposin, another lysosomal protein, first occur within the lumen of the endoplasmic reticulum (ER) and are required for the efficient ER exit of progranulin. Mechanistically, we identify an interaction between prosaposin and Surf4, a receptor that promotes loading of lumenal cargos into COPII-coated vesicles, and establish that Surf4 is critical for the efficient export of progranulin and prosaposin from the ER. Collectively, this work demonstrates that a network of interactions occurring early in the secretory pathway promote the ER exit and subsequent lysosomal delivery of newly translated progranulin and prosaposin.
Collapse
Affiliation(s)
| | - Shawn M. Ferguson
- Departments of Cell Biology and Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
15
|
Chang X, Zhao Y, Qin S, Wang H, Wang B, Zhai L, Liu B, Gu HM, Zhang DW. Loss of Hepatic Surf4 Depletes Lipid Droplets in the Adrenal Cortex but Does Not Impair Adrenal Hormone Production. Front Cardiovasc Med 2021; 8:764024. [PMID: 34859075 PMCID: PMC8631933 DOI: 10.3389/fcvm.2021.764024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
The adrenal gland produces steroid hormones to play essential roles in regulating various physiological processes. Our previous studies showed that knockout of hepatic Surf4 (Surf4LKO) markedly reduced fasting plasma total cholesterol levels in adult mice, including low-density lipoprotein and high-density lipoprotein cholesterol. Here, we found that plasma cholesterol levels were also dramatically reduced in 4-week-old young mice and non-fasted adult mice. Circulating lipoprotein cholesterol is an important source of the substrate for the production of adrenal steroid hormones. Therefore, we investigated whether adrenal steroid hormone production was affected in Surf4LKO mice. We observed that lacking hepatic Surf4 essentially eliminated lipid droplets and significantly reduced cholesterol levels in the adrenal gland; however, plasma levels of aldosterone and corticosterone were comparable in Surf4LKO and the control mice under basal and stress conditions. Further analysis revealed that mRNA levels of genes encoding enzymes important for hormone synthesis were not altered, whereas the expression of scavenger receptor class B type I (SR-BI), low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methyl-glutaryl-CoA reductase was significantly increased in the adrenal gland of Surf4LKO mice, indicating increased de novo cholesterol biosynthesis and enhanced LDLR and SR-BI-mediated lipoprotein cholesterol uptake. We also observed that the nuclear form of SREBP2 was increased in the adrenal gland of Surf4 LKO mice. Taken together, these findings indicate that the very low levels of circulating lipoprotein cholesterol in Surf4LKO mice cause a significant reduction in adrenal cholesterol levels but do not significantly affect adrenal steroid hormone production. Reduced adrenal cholesterol levels activate SREBP2 and thus increase the expression of genes involved in cholesterol biosynthesis, which increases de novo cholesterol synthesis to compensate for the loss of circulating lipoprotein-derived cholesterol in the adrenal gland of Surf4LKO mice.
Collapse
Affiliation(s)
- Xiaole Chang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Yongfang Zhao
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Shucun Qin
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Hao Wang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Bingxiang Wang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Lei Zhai
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Boyan Liu
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
King R, Lin Z, Balbin-Cuesta G, Myers G, Friedman A, Zhu G, McGee B, Saunders TL, Kurita R, Nakamura Y, Engel JD, Reddy P, Khoriaty R. SEC23A rescues SEC23B-deficient congenital dyserythropoietic anemia type II. SCIENCE ADVANCES 2021; 7:eabj5293. [PMID: 34818036 PMCID: PMC8612686 DOI: 10.1126/sciadv.abj5293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/04/2021] [Indexed: 05/12/2023]
Abstract
Congenital dyserythropoietic anemia type II (CDAII) results from loss-of-function mutations in SEC23B. In contrast to humans, SEC23B-deficient mice deletion do not exhibit CDAII but die perinatally with pancreatic degeneration. Here, we demonstrate that expression of the full SEC23A protein (the SEC23B paralog) from the endogenous regulatory elements of Sec23b completely rescues the SEC23B-deficient mouse phenotype. Consistent with these data, while mice with erythroid-specific deletion of either Sec23a or Sec23b do not exhibit CDAII, we now show that mice with erythroid-specific deletion of all four Sec23 alleles die in mid-embryogenesis with features of CDAII and that mice with deletion of three Sec23 alleles exhibit a milder erythroid defect. To test whether the functional overlap between the SEC23 paralogs is conserved in human erythroid cells, we generated SEC23B-deficient HUDEP-2 cells. Upon differentiation, these cells exhibited features of CDAII, which were rescued by increased expression of SEC23A, suggesting a novel therapeutic strategy for CDAII.
Collapse
Affiliation(s)
- Richard King
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ginette Balbin-Cuesta
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Gregg Myers
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann Friedman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Beth McGee
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas L. Saunders
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Sun P, Kumar N, Tin A, Zhao J, Brown MR, Lin Z, Yang ML, Zheng Q, Jia J, Bielak LF, Yu B, Boerwinkle E, Hunker KL, Coresh J, Chen YE, Huo Y, Kardia SL, Khoriaty R, Zhou X, Morrison AC, Zhang Y, Ganesh SK. Epidemiologic and Genetic Associations of Erythropoietin With Blood Pressure, Hypertension, and Coronary Artery Disease. Hypertension 2021; 78:1555-1566. [PMID: 34488438 PMCID: PMC8516734 DOI: 10.1161/hypertensionaha.121.17597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pengfei Sun
- Department of cardiology, Peking University First hospital, Beijing, 100034, China
| | - Nitin Kumar
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Adrienne Tin
- Johns Hopkins Bloomberg School of Public Health, MD, 21205, USA
- University of Mississippi Medical Center, MS, 38677, USA
| | - Jing Zhao
- Department of cardiology, Peking University First hospital, Beijing, 100034, China
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zesen Lin
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qiwen Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia Jia
- Department of cardiology, Peking University First hospital, Beijing, 100034, China
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kristina L. Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Josef Coresh
- Johns Hopkins Bloomberg School of Public Health, MD, 21205, USA
| | - Y. Eugene Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yong Huo
- Department of cardiology, Peking University First hospital, Beijing, 100034, China
| | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rami Khoriaty
- Division of Hematology, Department of Internal Medicine and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Xiang Zhou
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yan Zhang
- Department of cardiology, Peking University First hospital, Beijing, 100034, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, 100034, China
| | - Santhi K. Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
18
|
Wu L, He S, Ye W, Shen J, Zhao K, Zhang Y, Zhang R, Wei J, Cao S, Chen K, Le R, Xi C, Kou X, Zhao Y, Wang H, Kang L, Gao S. Surf4 facilitates reprogramming by activating the cellular response to endoplasmic reticulum stress. Cell Prolif 2021; 54:e13133. [PMID: 34585448 PMCID: PMC8560622 DOI: 10.1111/cpr.13133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Maternal factors that are enriched in oocytes have attracted great interest as possible key factors in somatic cell reprogramming. We found that surfeit locus protein 4 (Surf4), a maternal factor, can facilitate the generation of induced pluripotent stem cells (iPSCs) previously, but the mechanism remains elusive. MATERIALS AND METHODS In this study, we investigated the function and mechanism of Surf4 in somatic cell reprogramming using a secondary reprogramming system. Alkaline phosphatase (AP) staining, qPCR and immunofluorescence (IF) staining of expression of related markers were used to evaluate efficiency of iPSCs derived from mouse embryonic fibroblasts. Embryoid body and teratoma formation assays were performed to evaluate the differentiation ability of the iPSC lines. RNA-seq, qPCR and western blot analysis were applied to validate the downstream targets of Surf4. RESULTS Surf4 can significantly facilitate the generation of iPSCs in a proliferation-independent manner. When co-expressed with Oct4, Sox2, Klf4 and c-Myc (OSKM), Surf4 can activate the response to endoplasmic reticulum (ER) stress at the early stage of reprogramming. We further demonstrated that Hspa5, a major ER chaperone, and the active spliced form of Xbp1 (sXbp1), a major mediator of ER stress, can mimic the effects of Surf4 on somatic cell reprogramming. Concordantly, blocking the unfolded protein response compromises the effect of Surf4 on reprogramming. CONCLUSIONS Surf4 promotes somatic cell reprogramming by activating the response to ER stress.
Collapse
Affiliation(s)
- Li Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shengxiang He
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Anhui Toneker Biotechnology Co., Ltd., Jinzhai, China
| | - Wen Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiacheng Shen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kun Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ran Zhang
- Anhui Toneker Biotechnology Co., Ltd., Jinzhai, China
| | - Junhao Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuyuan Cao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rongrong Le
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenxiang Xi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lan Kang
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Sharmin MM, Hayashi S, Miyaji M, Ishizaki H, Matsuyama H, Haga S, Yonekura S. IGF-1 induces IRE1-XBP1-dependent endoplasmic reticulum biogenesis in bovine mammary epithelial cells. J Dairy Sci 2021; 104:12094-12104. [PMID: 34364639 DOI: 10.3168/jds.2021-20268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) plays a key role in proliferation and galactopoiesis in mammary epithelial cells (MEC), but its definitive functions on endoplasmic reticulum (ER) during protein synthesis remain unknown. The present study aimed to elucidate the effects of IGF-1 on ER biogenesis in MEC in vitro and examined the expression of ER biogenesis-associated genes in the mammary gland during early lactation. We treated mammary alveolar cells-large T antigen cells (immortalized bovine MEC line established via stable transfection with simian virus-40 large T-antigen) with IGF-1 and examined ER biogenesis using the fluorescence intensity of an ER tracker and quantitative real-time PCR. We found IGF-1 significantly increased ER tracker staining and upregulated mRNA levels of ER biogenesis-related genes, such as CHKA (choline kinase α), PCYT1A (choline-phosphate cytidylyltransferase A), and SURF4 (surfeit locus protein 4). We focused on unfolded protein response to explore molecular mechanisms by which IGF-1 induces ER biogenesis. We found IGF-1 significantly increased mRNA levels of the XBP1 splicing form (XBP1s). Based on western blot analysis, IGF-1 induced the expression of (inositol-requiring kinase 1 α) protein, upstream of XBP1s, and phosphorylated-IRE1α. The inhibition of IRE1 endoribonuclease activity with 4-methylumbelliferone 8-carbaldehyde (4μ8C) significantly suppressed the increase in ER tracker fluorescence and ER biogenesis-related gene expression induced by IGF-1. Also, IGF-1-induced XBP1s and ER biogenesis-associated gene expression was inhibited by rapamycin, an inhibitor of mTORC1 (mammalian target of rapamycin complex 1), indicating that IRE1-XBP1 activation by IGF-1 is mediated by mTORC1. Moreover, to clarify the expression of XBP1s and ER biogenesis-associated genes expression under normal physiological conditions, mammary gland tissue from biopsies of dairy cows during late gestation and lactation were analyzed. In vivo data highlighted the significant increases in the mRNA levels of XBP1s and ER biogenesis-related genes in mammary gland tissue immediately after calving through 6 wk of lactation. The mRNA levels of IGF1R (IGF-1 receptor) in mammary glands increased during 6 wk of lactation. Therefore, the present study indicated for the first time that IGF-1 induces ER biogenesis by activating the IRE1-XBP1 axis under the regulation of mTORC1 in bovine MEC line.
Collapse
Affiliation(s)
- Mst Mamuna Sharmin
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| | - Satoko Hayashi
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| | - Makoto Miyaji
- Feed Production and Utilization Group, Division of Dairy Production Research, Hokkaido Agricultural Research Center, NARO, 1 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-8555, Japan
| | - Hiroshi Ishizaki
- Grazing Animal Unit, Division of Grassland Farming, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan
| | - Hiroki Matsuyama
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
| | - Satoshi Haga
- Grazing Animal Unit, Division of Grassland Farming, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan
| | - Shinichi Yonekura
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| |
Collapse
|