1
|
Baskal S, Posma RA, Bollenbach A, Dieperink W, Bakker SJL, Nijsten MW, Touw DJ, Tsikas D. GC-MS analysis of 4-hydroxyproline: elevated proline hydroxylation in metformin-associated lactic acidosis and metformin-treated Becker muscular dystrophy patients. Amino Acids 2024; 56:21. [PMID: 38461423 PMCID: PMC10925573 DOI: 10.1007/s00726-024-03383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Metformin (N,N-dimethylbiguanide), an inhibitor of gluconeogenesis and insulin sensitizer, is widely used for the treatment of type 2 diabetes. In some patients with renal insufficiency, metformin can accumulate and cause lactic acidosis, known as metformin-associated lactic acidosis (MALA, defined as lactate ≥ 5 mM, pH < 7.35, and metformin concentration > 38.7 µM). Here, we report on the post-translational modification (PTM) of proline (Pro) to 4-hydroxyproline (OH-Pro) in metformin-associated lactic acidosis and in metformin-treated patients with Becker muscular dystrophy (BMD). Pro and OH-Pro were measured simultaneously by gas chromatography-mass spectrometry before, during, and after renal replacement therapy in a patient admitted to the intensive care unit (ICU) because of MALA. At admission to the ICU, plasma metformin concentration was 175 µM, with a corresponding lactate concentration of 20 mM and a blood pH of 7.1. Throughout ICU admission, the Pro concentration was lower compared to healthy controls. Renal excretion of OH-Pro was initially high and decreased over time. Moreover, during the first 12 h of ICU admission, OH-Pro seems to be renally secreted while thereafter, it was reabsorbed. Our results suggest that MALA is associated with hyper-hydroxyprolinuria due to elevated PTM of Pro to OH-Pro by prolyl-hydroxylase and/or inhibition of OH-Pro metabolism in the kidneys. In BMD patients, metformin, at the therapeutic dose of 3 × 500 mg per day for 6 weeks, increased the urinary excretion of OH-Pro suggesting elevation of Pro hydroxylation to OH-Pro. Our study suggests that metformin induces specifically the expression/activity of prolyl-hydroxylase in metformin intoxication and BMD.
Collapse
Affiliation(s)
- Svetlana Baskal
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Rene A Posma
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Bollenbach
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Willem Dieperink
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten W Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Wu X, Cap AP, Bynum JA, Chance TC, Darlington DN, Meledeo MA. Prolyl hydroxylase domain inhibitor is an effective pre-hospital pharmaceutical intervention for trauma and hemorrhagic shock. Sci Rep 2024; 14:3874. [PMID: 38365865 PMCID: PMC10873291 DOI: 10.1038/s41598-024-53945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Pre-hospital potentially preventable trauma related deaths are mainly due to hypoperfusion-induced tissue hypoxia leading to irreversible organ dysfunction at or near the point of injury or during transportation prior to receiving definitive therapy. The prolyl hydroxylase domain (PHD) is an oxygen sensor that regulates tissue adaptation to hypoxia by stabilizing hypoxia inducible factor (HIF). The benefit of PHD inhibitors (PHDi) in the treatment of anemia and lactatemia arises from HIF stabilization, which stimulates endogenous production of erythropoietin and activates lactate recycling through gluconeogenesis. The results of this study provide insight into the therapeutic roles of MK-8617, a pan-inhibitor of PHD-1, 2, and 3, in the mitigation of lactatemia in anesthetized rats with polytrauma and hemorrhagic shock. Additionally, in an anesthetized rat model of lethal decompensated hemorrhagic shock, acute administration of MK-8617 significantly improves one-hour survival and maintains survival at least until 4 h following limited resuscitation with whole blood (20% EBV) at one hour after hemorrhage. This study suggests that pharmaceutical interventions to inhibit prolyl hydroxylase activity can be used as a potential pre-hospital countermeasure for trauma and hemorrhage at or near the point of injury.
Collapse
Affiliation(s)
- Xiaowu Wu
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA.
| | - Andrew P Cap
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - James A Bynum
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tiffani C Chance
- Department of Health and Human Services, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniel N Darlington
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - Michael A Meledeo
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| |
Collapse
|
3
|
Zhao L, Tang X, Huang R, Liu Q, Liao L, Hu Y, He K, Zhang X, Guo J, Chen S, Yang S. Acute hypoxia promotes the liver angiogenesis of largemouth bass (Micropterus salmoides) by HIF - Dependent pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 131:264-273. [PMID: 35940542 DOI: 10.1016/j.fsi.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A 24-h hypoxia exposure experiment was conducted to determine how hypoxia exposure induce liver angiogenesis in largemouth bass. Nitrogen (N2) was pumped into water to exclude dissolved oxygen into 1.2 ± 0.2 mg/L, and liver tissues were sampled during hypoxia exposure of 0 h, 4 h, 8 h, 12 h, 24 h and re-oxygenation for 12 h. Firstly, the results showed that hypoxia exposure promoted the angiogenesis occurrence by immunohistochemical analysis of vascular endothelial growth factor receptor 2 (VEGFR2). Secondly, the concentration of vasodilation factor increased and it's activity was elevated during 8 h exposure, such as nitric oxide (NO) and nitric oxide synthase (NOS) (p < 0.05). Thirdly, hypoxia exposure promoted angiogenesis through up-regulation the expression of matrix metalloproteinase 2 (MMP-2), jagged, protein kinase B (AKT), phosphoinositide-3-kinase (PI3K), mitogen-activated protein kinase (MAPK) at 4 h; contrarily, the expression of inhibiting angiogenesis genes presented up-regulated at 8 h (p < 0.05), such as matrix metalloproteinase inhibitor-2 (TIMP-2), matrix metalloproteinase inhibitor-3 (TIMP-3). Finally, the genes and proteins that regulate angiogenesis presented obvious chronological order. Parts of them promoted the budding and extension of blood vessels were up-regulated during 4 h-8 h (p < 0.05), such as vascular endothelial growth factor a (VEGFA), VEGFR2, monocarboxylic acid transporter 1 (MCT1), CD147, prolyl hydroxylase (PHD), nuclear factor kappa-B (NF-κB); other part of them promoted blood vessel maturation were highly expressed during 12 h-24 h (p < 0.05), such as angiogenin-1 (Ang-1) and angiogenin-2 (Ang-2). In short, acute hypoxia can promote the liver angiogenesis of largemouth bass by HIF - dependent pathway.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaohong Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Resources and Environment in the Lpper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, Sichuan, 610011, China.
| | - Rui Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
4
|
Lu F, Kato J, Toramaru T, Sugai M, Zhang M, Morisaki H. Objective and Quantitative Evaluation of Spontaneous Pain-Like Behaviors Using Dynamic Weight-Bearing System in Mouse Models of Postsurgical Pain. J Pain Res 2022; 15:1601-1612. [PMID: 35685298 PMCID: PMC9171055 DOI: 10.2147/jpr.s359220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background The paucity of objective and reliable measurements of pain-like behaviors has impeded the translatability of mouse models of postsurgical pain. The advanced dynamic weight-bearing (DWB) system enables evaluation of spontaneous pain-like behaviors in pain models. This study investigated the suitability and efficiency of the DWB system for assessing spontaneous pain-like behaviors and analgesic therapies in murine models of postsurgical pain. Methods Male adult C57BL/6JJcl mice were subjected to multiple surgical pain models with distinct levels of invasiveness, including a superficial incisional pain model involving only hind paw skin incision, deep incisional pain model that also involved incision and elevation of the underlying hind paw muscles, and orthopedic pain model involving tibial bone fracture and fixation with a pin (fracture and pinning [F/P] model). Spontaneous pain-like behaviors post-surgery were evaluated using weight distribution, pawprint area of the operated paw in the DWB system, and guarding pain score. Mechanical hypersensitivity was assessed using the von Frey test. The therapeutic effects of analgesics (diclofenac and buprenorphine for the deep incision model and diclofenac for the F/P model) were evaluated using the DWB system and von Frey test. Results The von Frey test demonstrated contradictory results between superficial and deep incisional pain models. The DWB system captured weight distribution changes in the operated hind paw, in accordance with the invasiveness and time course of wound healing in these surgical pain models. The reduction in weight-bearing on the operated paw correlated with guarding score, degree of paw swelling, and local expression of inflammatory mediators. DWB enabled accurate evaluation of the pharmacological effects of analgesics for detecting attenuation of surgery-induced weight-bearing changes in these models. Conclusion The DWB system serves as an objective and reliable method for quantifying pain-like behaviors and evaluating the therapeutic effects of analgesics in mouse models of postsurgical pain models.
Collapse
Affiliation(s)
- Fanglin Lu
- Keio University Graduate School of Medicine Doctoral Programs, Tokyo, Japan
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Jungo Kato
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Toramaru
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Megumi Sugai
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Mengting Zhang
- Keio University Graduate School of Medicine Doctoral Programs, Tokyo, Japan
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Morisaki
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Chang MY, Tsai TI, Chou LF, Hsu SH, Yang HY, Hung CC, Tian YC, Ong ACM, Yang CW. Metformin induces lactate accumulation and accelerates renal cyst progression in Pkd1-deficient mice. Hum Mol Genet 2021; 31:1560-1573. [PMID: 34957500 DOI: 10.1093/hmg/ddab340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Metabolic reprogramming is a potential treatment strategy for autosomal dominant polycystic kidney disease (ADPKD). Metformin has been shown to inhibit the early stages of cyst formation in animal models. However, metformin can lead to lactic acidosis in diabetic patients with advanced chronic kidney disease, and its efficacy in ADPKD is still not fully understood. Here, we investigated the effect of metformin in an established hypomorphic mouse model of PKD that presents stable and heritable knockdown of Pkd1. The Pkd1 miRNA transgenic mice of both genders were randomized to receive metformin or saline injections. Metformin was administrated through daily intraperitoneal injection from postnatal day 35 for 4 weeks. Unexpectedly, metformin treatment at a concentration of 150 mg/kg increased disease severity, including kidney-to-body weight ratio, cystic index and plasma BUN levels, and was associated with increased renal tubular cell proliferation and plasma lactate levels. Functional enrichment analysis for cDNA microarrays from kidney samples revealed significant enrichment of several pro-proliferative pathways including β-catenin, hypoxia-inducible factor-1α, protein kinase Cα and Notch signaling pathways in the metformin-treated mutant mice. The plasma metformin concentrations were still within the recommended therapeutic range for type 2 diabetic patients. Short-term metformin treatment in a second Pkd1 hypomorphic model (Pkd1RC/RC) was however neutral. These results demonstrate that metformin may exacerbate late-stage cyst growth associated with the activation of lactate-related signaling pathways in Pkd1 deficiency. Our findings indicate that using metformin in the later stage of ADPKD might accelerate disease progression and call for the cautious use of metformin in these patients.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Tsung-Inn Tsai
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Li-Fang Chou
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Albert C M Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Hanna RM, Rhee CM, Kalantar-Zadeh K. Metformin in chronic kidney disease: a strong dose of caution. Kidney Int 2020; 98:1101-1105. [PMID: 33126975 DOI: 10.1016/j.kint.2020.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Ramy M Hanna
- Department of Medicine, Division of Nephrology, University of California Irvine Medical Center, Irvine, California, USA; Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA
| | - Connie M Rhee
- Department of Medicine, Division of Nephrology, University of California Irvine Medical Center, Irvine, California, USA; Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Nephrology Section, Department of Medicine, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
| | - Kamyar Kalantar-Zadeh
- Department of Medicine, Division of Nephrology, University of California Irvine Medical Center, Irvine, California, USA; Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Nephrology Section, Department of Medicine, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA; Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA.
| |
Collapse
|
7
|
Andrew Minamishima Y. [Hypoxic response as a therapeutic target of human diseases]. Nihon Yakurigaku Zasshi 2020; 155:40-45. [PMID: 31902847 DOI: 10.1254/fpj.19138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hypoxic responses are mainly regulated by heterodimeric transcription factor HIF, composed of unstable α-subunit (HIFα) and stable β-subunit (HIF1β/ARNT). Protein stability of HIFα depends on the hydroxylation status of its specific proline residue(s). Prolyl hydroxylation of HIFα is regulated by iron- and 2-oxoglutarate (2-OG)-dependent dioxygenase PHDs, whose enzyme activities are oxygen-dependent. Hence, PHDs act as an oxygen sensor, and inhibiting PHDs can activate the hypoxic response regardless of the normoxic environment. Small compounds that inhibit PHDs have been developed as the therapeutics for renal anemia. Here we also introduce the medical application of the PHD-inhibitors other than the renal anemia treatment. Finally, it is a great pleasure to announce here that the Nobel Prize in Physiology or Medicine 2019 was awarded to William G. Kaelin Jr, Sir Peter J. Ratcliffe, and Gregg L. Semenza, who have been studying how cells sense and adapt to oxygen availability over the years.
Collapse
|
8
|
Derkach KV, Romanova IV, Zorina II, Bakhtyukov AA, Perminova AA, Ivantsov AO, Shpakov AO. Effect of High-Dose Metformin on the Metabolic Parameters and Functional State of the Liver of Agouti Mice with Melanocortin Obesity. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Yasar E, Altıparmak B, Gümüş Demirbilek S. An Unexpected Complication Due to Metformin Use After Femur Fracture Operation: Metabolic Acidosis Without Lactic Acidosis. Cureus 2019; 11:e4584. [PMID: 31309009 PMCID: PMC6609304 DOI: 10.7759/cureus.4584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 74-year- old male, who was known to have hypertension, chronic obstructive lung disease, and benign prostate hyperplasia, was evaluated preoperatively in our clinic for a femur fracture. In addition, it was found that the patient was using 1000 mg of metformin per oral due to type 2 diabetes. At the preoperative cardiology evaluation, the ejection fraction was 60% with normal systolic ventricular function. Routine laboratory tests were normal. Metformin was held 24 hours before surgery. Spinal anesthesia was applied with 10 mg bupivacaine and 20 mcg fentanyl. Total blood loss at surgery was 150 cc. After an uneventful surgery, the patient was observed at the surgical postanesthesia care unit. Cardiac and respiratory physical examinations seemed normal but the patient had minimal acidosis and hypoxia in the arterial blood gas analysis. Twelve hours after the operation, compensated high anion gap ( 30 mEq/l) metabolic acidosis emerged, but lactate was normal. The patient's urea and creatinine levels were normal in the control blood tests, and the patient's urine output was above 0.5 ml/kg. Within this period, glucose levels were around 80-140 mg/dl. To overcome metabolic acidosis, bolus intravenous 8.4 % bicarbonate solution was administered. Bicarbonate infusion was started on the continuation of metabolic acidosis and base loss despite the bolus bicarbonate treatment. Since there was no other reason for the metabolic acidosis, metformin usage was considered to cause metabolic acidosis. During this treatment period, despite high anion gap acidosis, there was no lactate elevation. The patient had normal laboratory and hemodynamic values and was discharged from the intensive care unit at postoperative Day 3.
Collapse
Affiliation(s)
- Eylem Yasar
- Anesthesiology, Mugla Sıtkı Kocman University, Muğla, TUR
| | | | | |
Collapse
|
10
|
Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A. The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 2019; 14:e0213779. [PMID: 30870482 PMCID: PMC6417728 DOI: 10.1371/journal.pone.0213779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
In diet-induced obesity, metformin (MF) has weight-lowering effect and improves glucose homeostasis and insulin sensitivity. However, there is no information on the efficiency of MF and the mechanisms of its action in melanocortin-type obesity. We studied the effect of the 10-day treatment with MF at the doses of 200, 400 and 600 mg/kg/day on the food intake and the metabolic and hormonal parameters in female C57Bl/6J (genotype Ay/a) agouti-mice with melanocortin-type obesity, and the influence of MF on the hypothalamic signaling in obese animals at the most effective metabolic dose (600 mg/kg/day). MF treatment led to a decrease in food intake, the body and fat weights, the plasma levels of glucose, insulin and leptin, all increased in agouti-mice, to an improvement of the lipid profile and glucose sensitivity, and to a reduced fatty liver degeneration. In the hypothalamus of obese agouti-mice, the leptin and insulin content was reduced and the expression of the genes encoding leptin receptor (LepR), MC3- and MC4-melanocortin receptors and pro-opiomelanocortin (POMC), the precursor of anorexigenic melanocortin peptides, was increased. The activities of AMP-activated kinase (AMPK) and the transcriptional factor STAT3 were increased, while Akt-kinase activity did not change from control C57Bl/6J (a/a) mice. In the hypothalamus of MF-treated agouti-mice (10 days, 600 mg/kg/day), the leptin and insulin content was restored, Akt-kinase activity was increased, and the activities of AMPK and STAT3 were reduced and did not differ from control mice. In the hypothalamus of MF-treated agouti-mice, the Pomc gene expression was six times higher than in control, while the gene expression for orexigenic neuropeptide Y was decreased by 39%. Thus, we first showed that MF treatment leads to an improvement of metabolic parameters and a decrease of hyperleptinemia and hyperinsulinaemia in genetically-induced melanocortin obesity, and the specific changes in the hypothalamic signaling makes a significant contribution to this effect of MF.
Collapse
Affiliation(s)
- Kira Derkach
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Zakharova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Inna Zorina
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrey Bakhtyukov
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Romanova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Liubov Bayunova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander Shpakov
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
11
|
Hypoxia-Inducible Factor Prolyl 4-Hydroxylases and Metabolism. Trends Mol Med 2018; 24:1021-1035. [DOI: 10.1016/j.molmed.2018.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
|
12
|
Chowdhury W, Lodhi MU, Syed IA, Ahmed U, Miller M, Rahim M. Metformin-Induced Lactic Acidosis: A Case Study. Cureus 2018; 10:e2152. [PMID: 29637033 PMCID: PMC5884577 DOI: 10.7759/cureus.2152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Metformin is the first line management for patients with Type 2 diabetes mellitus. Metformin-induced lactic acidosis (MALA) is a severe side effect of metformin in high doses. However, there have not been many reported cases of MALA. The threshold metformin concentration needed to induce lactic acidosis is still not fully understood. It is important for physicians to measure metformin levels upon admission in Type 2 diabetes patients who take metformin and present with suspected lactic acidosis. We present a case of a 40-year-old Caucasian male who presented with severe lactic acidosis shortly after overdosing on metformin.
Collapse
Affiliation(s)
- Waliul Chowdhury
- Medical Student, Department of Medicine, Raleigh General Hospital, Beckley, Wv
| | | | | | - Umer Ahmed
- Research Associate, Broad Institute of Mit and Harvard
| | - Maxwell Miller
- Medical Student, Department of Medicine, Lincoln Memorial University-Debusk College of Osteopathic Medicine
| | - Mustafa Rahim
- Assistant Clinical Professor of Internal Medicine, West Virginia University School of Medicine
| |
Collapse
|
13
|
Tojo K, Tamada N, Nagamine Y, Yazawa T, Ota S, Goto T. Enhancement of glycolysis by inhibition of oxygen-sensing prolyl hydroxylases protects alveolar epithelial cells from acute lung injury. FASEB J 2018; 32:2258-2268. [PMID: 32172532 DOI: 10.1096/fj.201700888r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/04/2017] [Indexed: 01/17/2023]
Abstract
Cellular bioenergetic failure caused by mitochondrial dysfunction is a key process of alveolar epithelial injury during acute respiratory distress syndrome (ARDS). Prolyl hydroxylases (PHDs) act as cellular oxygen sensors, and their inhibition activates hypoxia-inducible factor (HIF), resulting in enhanced cellular glycolytic activity, which could compensate for impaired mitochondrial function and protect alveolar epithelial cells from ARDS. Here, we evaluated the effects of pharmacological PHD inhibition with dimethyloxalylglycine (DMOG) on alveolar epithelial cell injury using in vitro and in vivo ARDS models. We established an in vitro model of alveolar epithelial injury mimicking ARDS by adding isolated neutrophils and LPS to cultured MLE12 alveolar epithelial cells. DMOG treatment protected MLE12 cells from neutrophil-LPS-induced ATP decline and cell death. Knockdown of HIF-1α or inhibition of glycolysis abolished the protective effect of DMOG, suggesting that it was exerted by HIF-1-dependent enhancement of glycolysis. Additionally, intratracheal DMOG administration to mice protected the alveolar epithelial barrier and improved arterial oxygenation, preventing ATP decline during LPS-induced lung injury. In summary, enhancement of glycolysis by PHD inhibition is a potential therapeutic approach for ARDS, protecting alveolar epithelial cells from bioenergetic failure and cell death.- Tojo, K., Tamada, N., Nagamine, Y., Yazawa, T., Ota, S., Goto, T. Enhancement of glycolysis by inhibition of oxygen-sensing prolyl hydroxylases protects alveolar epithelial cells from acute lung injury. FASEB J. 32, 2258-2268 (2018). www.fasebj.org.
Collapse
Affiliation(s)
- Kentaro Tojo
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Nao Tamada
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yusuke Nagamine
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takuya Yazawa
- Department of Pathology, Dokkyo Medical University, Tochigi, Japan
| | - Shuhei Ota
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|