1
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
2
|
Chen Y, Kokic G, Dienemann C, Dybkov O, Urlaub H, Cramer P. Structure of the transcribing RNA polymerase II-Elongin complex. Nat Struct Mol Biol 2023; 30:1925-1935. [PMID: 37932450 PMCID: PMC10716050 DOI: 10.1038/s41594-023-01138-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Elongin is a heterotrimeric elongation factor for RNA polymerase (Pol) II transcription that is conserved among metazoa. Here, we report three cryo-EM structures of human Elongin bound to transcribing Pol II. The structures show that Elongin subunit ELOA binds the RPB2 side of Pol II and anchors the ELOB-ELOC subunit heterodimer. ELOA contains a 'latch' that binds between the end of the Pol II bridge helix and funnel helices, thereby inducing a conformational change near the polymerase active center. The latch is required for the elongation-stimulatory activity of Elongin, but not for Pol II binding, indicating that Elongin functions by allosterically regulating the conformational mobility of the polymerase active center. Elongin binding to Pol II is incompatible with association of the super elongation complex, PAF1 complex and RTF1, which also contain an elongation-stimulatory latch element.
Collapse
Affiliation(s)
- Ying Chen
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Goran Kokic
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
3
|
The Paf1 complex is required for RNA polymerase II removal in response to DNA damage. Proc Natl Acad Sci U S A 2022; 119:e2207332119. [PMID: 36161924 DOI: 10.1073/pnas.2207332119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rpb1, the largest subunit of RNA polymerase II (RNAPII), is rapidly polyubiquitinated and degraded in response to DNA damage; this process is considered to be a "mechanism of last resort'' employed by cells. The underlying mechanism of this process remains elusive. Here, we uncovered a previously uncharacterized multistep pathway in which the polymerase-associated factor 1 (Paf1) complex (PAF1C, composed of the subunits Ctr9, Paf1, Leo1, Cdc73, and Rtf1) is involved in regulating the RNAPII pool by stimulating Elongin-Cullin E3 ligase complex-mediated Rpb1 polyubiquitination and subsequent degradation by the proteasome following DNA damage. Mechanistically, Spt5 is dephosphorylated following DNA damage, thereby weakening the interaction between the Rtf1 subunit and Spt5, which might be a key step in initiating Rpb1 degradation. Next, Rad26 is loaded onto stalled RNAPII to replace the Spt4/Spt5 complex in an RNAPII-dependent manner and, in turn, recruits more PAF1C to DNA lesions via the binding of Rad26 to the Leo1 subunit. Importantly, the PAF1C, assembled in a Ctr9-mediated manner, coordinates with Rad26 to localize the Elongin-Cullin complex on stalled RNAPII, thereby inducing RNAPII removal, in which the heterodimer Paf1/Leo1 and the subunit Cdc73 play important roles. Together, our results clearly revealed a new role of the intact PAF1C in regulating the RNAPII pool in response to DNA damage.
Collapse
|
4
|
Herlihy AE, Boeing S, Weems JC, Walker J, Dirac-Svejstrup AB, Lehner MH, Conaway RC, Conaway JW, Svejstrup JQ. UBAP2/UBAP2L regulate UV-induced ubiquitylation of RNA polymerase II and are the human orthologues of yeast Def1. DNA Repair (Amst) 2022; 115:103343. [PMID: 35633597 DOI: 10.1016/j.dnarep.2022.103343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022]
Abstract
During transcription, RNA polymerase II (RNAPII) faces numerous obstacles, including DNA damage, which can lead to stalling or arrest. One mechanism to contend with this situation is ubiquitylation and degradation of the largest RNAPII subunit, RPB1 - the 'last resort' pathway. This conserved, multi-step pathway was first identified in yeast, and the functional human orthologues of all but one protein, RNAPII Degradation Factor 1 (Def1), have been discovered. Here we show that following UV-irradiation, human Ubiquitin-associated protein 2 (UBAP2) or its paralogue UBAP2-like (UBAP2L) are involved in the ubiquitylation and degradation of RNAPII through the recruitment of Elongin-Cul5 ubiquitin ligase. Together, our data indicate that UBAP2 and UBAP2L are the human orthologues of yeast Def1, and so identify the key missing proteins in the human last resort pathway.
Collapse
Affiliation(s)
- Anna E Herlihy
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefan Boeing
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Juston C Weems
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac-Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark
| | - Michelle Harreman Lehner
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ronald C Conaway
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Joan W Conaway
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark.
| |
Collapse
|
5
|
Weems JC, Slaughter BD, Unruh JR, Weaver KJ, Miller BD, Delventhal KM, Conaway JW, Conaway RC. A role for the Cockayne Syndrome B (CSB)-Elongin ubiquitin ligase complex in signal-dependent RNA polymerase II transcription. J Biol Chem 2021; 297:100862. [PMID: 34116057 PMCID: PMC8294581 DOI: 10.1016/j.jbc.2021.100862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022] Open
Abstract
The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.
Collapse
Affiliation(s)
- Juston C Weems
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Kyle J Weaver
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Brandon D Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Kym M Delventhal
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
6
|
Noe Gonzalez M, Blears D, Svejstrup JQ. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat Rev Mol Cell Biol 2021; 22:3-21. [PMID: 33208928 DOI: 10.1038/s41580-020-00308-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The journey of RNA polymerase II (Pol II) as it transcribes a gene is anything but a smooth ride. Transcript elongation is discontinuous and can be perturbed by intrinsic regulatory barriers, such as promoter-proximal pausing, nucleosomes, RNA secondary structures and the underlying DNA sequence. More substantial blocking of Pol II translocation can be caused by other physiological circumstances and extrinsic obstacles, including other transcribing polymerases, the replication machinery and several types of DNA damage, such as bulky lesions and DNA double-strand breaks. Although numerous different obstacles cause Pol II stalling or arrest, the cell somehow distinguishes between them and invokes different mechanisms to resolve each roadblock. Resolution of Pol II blocking can be as straightforward as temporary backtracking and transcription elongation factor S-II (TFIIS)-dependent RNA cleavage, or as drastic as premature transcription termination or degradation of polyubiquitylated Pol II and its associated nascent RNA. In this Review, we discuss the current knowledge of how these different Pol II stalling contexts are distinguished by the cell, how they overlap with each other, how they are resolved and how, when unresolved, they can cause genome instability.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Blears
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK.
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Spasskaya DS, Nadolinskaia NI, Tutyaeva VV, Lysov YP, Karpov VL, Karpov DS. Yeast Rpn4 Links the Proteasome and DNA Repair via RAD52 Regulation. Int J Mol Sci 2020; 21:ijms21218097. [PMID: 33143019 PMCID: PMC7672625 DOI: 10.3390/ijms21218097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Environmental and intracellular factors often damage DNA, but multiple DNA repair pathways maintain genome integrity. In yeast, the 26S proteasome and its transcriptional regulator and substrate Rpn4 are involved in DNA damage resistance. Paradoxically, while proteasome dysfunction may induce hyper-resistance to DNA-damaging agents, Rpn4 malfunction sensitizes yeasts to these agents. Previously, we proposed that proteasome inhibition causes Rpn4 stabilization followed by the upregulation of Rpn4-dependent DNA repair genes and pathways. Here, we aimed to elucidate the key Rpn4 targets responsible for DNA damage hyper-resistance in proteasome mutants. We impaired the Rpn4-mediated regulation of candidate genes using the CRISPR/Cas9 system and tested the sensitivity of mutant strains to 4-NQO, MMS and zeocin. We found that the separate or simultaneous deregulation of 19S or 20S proteasome subcomplexes induced MAG1, DDI1, RAD23 and RAD52 in an Rpn4-dependent manner. Deregulation of RAD23, DDI1 and RAD52 sensitized yeast to DNA damage. Genetic, epigenetic or dihydrocoumarin-mediated RAD52 repression restored the sensitivity of the proteasome mutants to DNA damage. Our results suggest that the Rpn4-mediated overexpression of DNA repair genes, especially RAD52, defines the DNA damage hyper-resistant phenotype of proteasome mutants. The developed yeast model is useful for characterizing drugs that reverse the DNA damage hyper-resistance phenotypes of cancers.
Collapse
Affiliation(s)
- Daria S. Spasskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia; (D.S.S.); (V.V.T.)
| | - Nonna I. Nadolinskaia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.I.N.); (Y.P.L.); (V.L.K.)
| | - Vera V. Tutyaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia; (D.S.S.); (V.V.T.)
| | - Yuriy P. Lysov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.I.N.); (Y.P.L.); (V.L.K.)
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.I.N.); (Y.P.L.); (V.L.K.)
| | - Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia; (D.S.S.); (V.V.T.)
- Correspondence: ; Tel.: +7-499-135-98-01
| |
Collapse
|
8
|
A SUMO-dependent pathway controls elongating RNA Polymerase II upon UV-induced damage. Sci Rep 2019; 9:17914. [PMID: 31784551 PMCID: PMC6884465 DOI: 10.1038/s41598-019-54027-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
RNA polymerase II (RNAPII) is the workhorse of eukaryotic transcription and produces messenger RNAs and small nuclear RNAs. Stalling of RNAPII caused by transcription obstacles such as DNA damage threatens functional gene expression and is linked to transcription-coupled DNA repair. To restore transcription, persistently stalled RNAPII can be disassembled and removed from chromatin. This process involves several ubiquitin ligases that have been implicated in RNAPII ubiquitylation and proteasomal degradation. Transcription by RNAPII is heavily controlled by phosphorylation of the C-terminal domain of its largest subunit Rpb1. Here, we show that the elongating form of Rpb1, marked by S2 phosphorylation, is specifically controlled upon UV-induced DNA damage. Regulation of S2-phosphorylated Rpb1 is mediated by SUMOylation, the SUMO-targeted ubiquitin ligase Slx5-Slx8, the Cdc48 segregase as well as the proteasome. Our data suggest an RNAPII control pathway with striking parallels to known disassembly mechanisms acting on defective RNA polymerase III.
Collapse
|
9
|
Tufegdzic Vidakovic A, Harreman M, Dirac-Svejstrup AB, Boeing S, Roy A, Encheva V, Neumann M, Wilson M, Snijders AP, Svejstrup JQ. Analysis of RNA polymerase II ubiquitylation and proteasomal degradation. Methods 2019; 159-160:146-156. [PMID: 30769100 PMCID: PMC6617506 DOI: 10.1016/j.ymeth.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
Transcribing RNA polymerase II (RNAPII) is decorated by a plethora of post-translational modifications that mark different stages of transcription. One important modification is RNAPII ubiquitylation, which occurs in response to numerous different stimuli that cause RNAPII stalling, such as DNA damaging agents, RNAPII inhibitors, or depletion of the nucleotide pool. Stalled RNAPII triggers a so-called "last resort pathway", which involves RNAPII poly-ubiquitylation and proteasome-mediated degradation. Different approaches have been described to study RNAPII poly-ubiquitylation and degradation, each method with its own advantages and caveats. Here, we describe optimised strategies for detecting ubiquitylated RNAPII and studying its degradation, but these protocols are suitable for studying other ubiquitylated proteins as well.
Collapse
Affiliation(s)
- Ana Tufegdzic Vidakovic
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michelle Harreman
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac-Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefan Boeing
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anindya Roy
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vesela Encheva
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michelle Neumann
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marcus Wilson
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
10
|
Ccr4-Not maintains genomic integrity by controlling the ubiquitylation and degradation of arrested RNAPII. Genes Dev 2019; 33:705-717. [PMID: 30948432 PMCID: PMC6546055 DOI: 10.1101/gad.322453.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
Abstract
The Ccr4-Not complex regulates essentially every aspect of gene expression, from mRNA synthesis to protein destruction. The Not4 subunit of the complex contains an E3 RING domain and targets proteins for ubiquitin-dependent proteolysis. Ccr4-Not associates with elongating RNA polymerase II (RNAPII), which raises the possibility that it controls the degradation of elongation complex components. Here, we demonstrate that Ccr4-Not controls the ubiquitylation and turnover of Rpb1, the largest subunit of RNAPII, during transcription arrest. Deleting NOT4 or mutating its RING domain strongly reduced the DNA damage-dependent ubiquitylation and destruction of Rpb1. Surprisingly, in vitro ubiquitylation assays indicate that Ccr4-Not does not directly ubiquitylate Rpb1 but instead promotes Rpb1 ubiquitylation by the HECT domain-containing ligase Rsp5. Genetic analyses suggest that Ccr4-Not acts upstream of RSP5, where it acts to initiate the destruction process. Ccr4-Not binds Rsp5 and forms a ternary complex with it and the RNAPII elongation complex. Analysis of mutant Ccr4-Not lacking the RING domain of Not4 suggests that it both recruits Rsp5 and delivers the E2 Ubc4/5 to RNAPII. Our work reveals a previously unknown function of Ccr4-Not and identifies an essential new regulator of RNAPII turnover during genotoxic stress.
Collapse
|
11
|
Weems JC, Unruh JR, Slaughter BD, Conaway RC, Conaway JW. Imaging-based assays for investigating functions of the RNA polymerase II elongation factor Elongin and the Elongin ubiquitin ligase. Methods 2019; 159-160:157-164. [DOI: 10.1016/j.ymeth.2019.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
|
12
|
Selvam K, Ding B, Sharma R, Li S. Evidence that Moderate Eviction of Spt5 and Promotion of Error-Free Transcriptional Bypass by Rad26 Facilitates Transcription Coupled Nucleotide Excision Repair. J Mol Biol 2019; 431:1322-1338. [PMID: 30790631 DOI: 10.1016/j.jmb.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 11/18/2022]
Abstract
Transcription coupled repair (TC-NER) is a subpathway of nucleotide excision repair triggered by stalling of RNA polymerase at DNA lesions. It has been suspected that transcriptional misincorporations of certain nucleotides opposite lesions that result in irreversible transcription stalling might be important for TC-NER. However, the spectra of nucleotide misincorporations opposite UV photoproducts and how they are implicated in transcriptional stalling and TC-NER in the cell remain unknown. Rad26, a low abundant yeast protein, and its human homolog CSB have been proposed to facilitate TC-NER in part by positioning and stabilizing stalling of RNA polymerase II (RNAPII) at DNA lesions. Here, we found that substantial AMPs but no other nucleotides are transcriptionally misincoporated and extended opposite UV photoproducts and adjacent bases in Saccharomyces cerevisiae. Rad26 does not significantly affect either the misincorporation or extension of AMPs. At normally low or moderately increased levels, Rad26 promotes error-free transcriptional bypass and TC-NER of UV photoproducts. However, Rad26 completely loses these functions when it is overexpressed to ~1/3 the level of RNAPII molecules. Also, Rad26 does not directly displace RNAPII but constitutively evicts Spt5, a key transcription elongation factor and TC-NER repressor, from the chromatin. Our results indicate that transcriptional nucleotide misincorporation is not implicated in TC-NER, and moderate eviction of Spt5 and promotion of error-free transcriptional bypass of DNA lesions by Rad26 facilitates TC-NER.
Collapse
Affiliation(s)
- Kathiresan Selvam
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd, Lafayette, LA 70503, USA
| | - Rahul Sharma
- National Hansen's Disease Program, Laboratory Research Branch at Louisiana State University, 3519E School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
UV-induced proteolysis of RNA polymerase II is mediated by VCP/p97 segregase and timely orchestration by Cockayne syndrome B protein. Oncotarget 2017; 8:11004-11019. [PMID: 28036256 PMCID: PMC5355241 DOI: 10.18632/oncotarget.14205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/20/2016] [Indexed: 11/25/2022] Open
Abstract
RNA polymerase II (RNAPII) acts as a damage sensor for transcription-coupled nucleotide excision repair (TC-NER) and undergoes proteolytic clearance from damaged chromatin by the ubiquitin-proteasome system (UPS). Here, we report that Valosin-containing protein (VCP)/p97, a druggable oncotarget, is essential for RNAPII's proteolytic clearance in mammalian cells. We show that inhibition of VCP/p97, or siRNA-mediated ablation of VCP/p97 and its cofactors UFD1 and UBXD7 severely impairs ultraviolet radiation (UVR)-induced RNAPII degradation. VCP/p97 interacts with RNAPII, and the interaction is enhanced by Cockayne syndrome B protein (CSB). However, the VCP/p97-mediated RNAPII proteolysis occurs independent of CSB. Surprisingly, CSB enhances UVR-induced RNAPII ubiquitination but delays its turnover. Additionally, VCP/p97-mediated RNAPII turnover occurs with and without Von Hippel-Lindau tumor suppressor protein (pVHL), a known substrate receptor of Elongin E3 ubiquitin ligase for RNAPII. Moreover, pVHL re-expression improves cell viability following UVR. Whereas, VCP/p97 inhibition decreases cell viability and enhances a low-dose UVR killing in presence of pVHL. These findings reveal a function of VCP/p97 segregase in UVR-induced RNAPII degradation in mammalian cells, and suggest a role of CSB in coordinating VCP/p97-mediated extraction of ubiquitinated RNAPII and CSB itself from chromatin.
Collapse
|
14
|
Weems JC, Slaughter BD, Unruh JR, Boeing S, Hall SM, McLaird MB, Yasukawa T, Aso T, Svejstrup JQ, Conaway JW, Conaway RC. Cockayne syndrome B protein regulates recruitment of the Elongin A ubiquitin ligase to sites of DNA damage. J Biol Chem 2017; 292:6431-6437. [PMID: 28292928 PMCID: PMC5399097 DOI: 10.1074/jbc.c117.777946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/27/2017] [Indexed: 01/05/2023] Open
Abstract
Elongin A performs dual functions as the transcriptionally active subunit of RNA polymerase II (Pol II) elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that ubiquitylates Pol II in response to DNA damage. Assembly of the Elongin A ubiquitin ligase and its recruitment to sites of DNA damage is a tightly regulated process induced by DNA-damaging agents and α-amanitin, a drug that induces Pol II stalling. In this study, we demonstrate (i) that Elongin A and the ubiquitin ligase subunit CUL5 associate in cells with the Cockayne syndrome B (CSB) protein and (ii) that this interaction is also induced by DNA-damaging agents and α-amanitin. In addition, we present evidence that the CSB protein promotes stable recruitment of the Elongin A ubiquitin ligase to sites of DNA damage. Our findings are consistent with the model that the Elongin A ubiquitin ligase and the CSB protein function together in a common pathway in response to Pol II stalling and DNA damage.
Collapse
Affiliation(s)
- Juston C Weems
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Brian D Slaughter
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Jay R Unruh
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Stefan Boeing
- the Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom
| | - Shawn M Hall
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Merry B McLaird
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Takashi Yasukawa
- the Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Teijiro Aso
- the Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Jesper Q Svejstrup
- the Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom
| | - Joan W Conaway
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110,
- the Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, and
| | - Ronald C Conaway
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110,
- the Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, and
| |
Collapse
|
15
|
Gómez-Navarro N, Peiró-Chova L, Estruch F. Iwr1 facilitates RNA polymerase II dynamics during transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:803-811. [PMID: 28258010 DOI: 10.1016/j.bbagrm.2017.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 11/16/2022]
Abstract
Iwr1 is an RNA polymerase II (RNPII) interacting protein that directs nuclear import of the enzyme which has been previously assembled in the cytoplasm. Here we present genetic and molecular evidence that links Iwr1 with transcription. Our results indicate that Iwr1 interacts with RNPII during elongation and is involved in the disassembly of the enzyme from chromatin. This function is especially important in resolving problems posed by damage-arrested RNPII, as shown by the sensitivity of iwr1 mutants to genotoxic drugs and the Iwr1's genetic interactions with RNPII degradation pathway mutants. Moreover, absence of Iwr1 causes genome instability that is enhanced by defects in the DNA repair machinery.
Collapse
Affiliation(s)
- Natalia Gómez-Navarro
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Valencia 46100, Spain
| | - Lorena Peiró-Chova
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Valencia 46100, Spain
| | - Francisco Estruch
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Valencia 46100, Spain.
| |
Collapse
|
16
|
Zhu Q, Wani AA. Nucleotide Excision Repair: Finely Tuned Molecular Orchestra of Early Pre-incision Events. Photochem Photobiol 2016; 93:166-177. [PMID: 27696486 DOI: 10.1111/php.12647] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022]
Abstract
Nucleotide excision repair (NER) eliminates a broad variety of helix-distorting DNA lesions that can otherwise cause genomic instability. NER comprises two distinct subpathways: global genomic NER (GG-NER) operating throughout the genome, and transcription-coupled NER (TC-NER) preferentially removing DNA lesions from transcribing DNA strands of transcriptionally active genes. Several NER factors undergo post-translational modifications, including ubiquitination, occurring swiftly and reversibly at DNA lesion sites. Accumulating evidence indicates that ubiquitination not only orchestrates the spatio-temporal recruitment of key protein factors to DNA lesion sites but also the productive assembly of NER pre-incision complex. This review will be restricted to the latest conceptual understanding of ubiquitin-mediated regulation of initial damage sensors of NER, that is DDB, XPC, RNAPII and CSB. We project hypothetical NER models in which ubiquitin-specific segregase, valosin-containing protein (VCP)/p97, plays an essential role in timely extraction of the congregated DNA damage sensors to functionally facilitate the DNA lesion elimination from the genome.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, OH
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, OH.,Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH.,James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH
| |
Collapse
|
17
|
Steurer B, Marteijn JA. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II. J Mol Biol 2016; 429:3146-3155. [PMID: 27851891 DOI: 10.1016/j.jmb.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis.
Collapse
Affiliation(s)
- Barbara Steurer
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
18
|
Domanska A, Kaminska J. Role of Rsp5 ubiquitin ligase in biogenesis of rRNA, mRNA and tRNA in yeast. RNA Biol 2016; 12:1265-74. [PMID: 26403176 DOI: 10.1080/15476286.2015.1094604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Rsp5 ubiquitin ligase is required for ubiquitination of a wide variety of proteins involved in essential processes. Rsp5 was shown to be involved in regulation of lipid biosynthesis, intracellular trafficking of proteins, response to various stresses, and many other processes. In this article, we provide a comprehensive review of the nuclear and cytoplasmic functions of Rsp5 with a focus on biogenesis of different RNAs. We also briefly describe the participation of Rsp5 in the regulation of the RNA polymerase II complex, and its potential role in the regulation of other RNA polymerases. Moreover, we emphasize the function of Rsp5 in the coordination of the different steps of rRNA, mRNA and tRNA metabolism in the context of protein biosynthesis. Finally, we highlight the involvement of Rsp5 in controlling diverse cellular mechanisms at multiple levels and in adaptation of the cell to changing growth conditions.
Collapse
Affiliation(s)
- Anna Domanska
- a Institute of Biochemistry and Biophysics, Polish Academy of Sciences ; Warsaw , Poland
| | - Joanna Kaminska
- a Institute of Biochemistry and Biophysics, Polish Academy of Sciences ; Warsaw , Poland
| |
Collapse
|
19
|
Weems JC, Slaughter BD, Unruh JR, Hall SM, McLaird MB, Gilmore JM, Washburn MP, Florens L, Yasukawa T, Aso T, Conaway JW, Conaway RC. Assembly of the Elongin A Ubiquitin Ligase Is Regulated by Genotoxic and Other Stresses. J Biol Chem 2015; 290:15030-41. [PMID: 25878247 DOI: 10.1074/jbc.m114.632794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Indexed: 11/06/2022] Open
Abstract
Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription.
Collapse
Affiliation(s)
- Juston C Weems
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Brian D Slaughter
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Jay R Unruh
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Shawn M Hall
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Merry B McLaird
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Joshua M Gilmore
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Michael P Washburn
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110, the Departments of Pathology and Laboratory Medicine and
| | - Laurence Florens
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Takashi Yasukawa
- the Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Teijiro Aso
- the Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Joan W Conaway
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110, Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, and
| | - Ronald C Conaway
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110, Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, and
| |
Collapse
|
20
|
Zhu M, Chen Y, Ding XS, Webb SL, Zhou T, Nelson RS, Fan Z. Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection. THE NEW PHYTOLOGIST 2014; 203:1291-1304. [PMID: 24954157 PMCID: PMC4143955 DOI: 10.1111/nph.12890] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/08/2014] [Indexed: 05/18/2023]
Abstract
The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| | - Yuting Chen
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| | - Xin Shun Ding
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc.2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Stephen L Webb
- Department of Computing Services, The Samuel Roberts Noble Foundation Inc.2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Tao Zhou
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| | - Richard S Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc.2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Zaifeng Fan
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| |
Collapse
|
21
|
Wilson MD, Harreman M, Taschner M, Reid J, Walker J, Erdjument-Bromage H, Tempst P, Svejstrup JQ. Proteasome-mediated processing of Def1, a critical step in the cellular response to transcription stress. Cell 2013; 154:983-995. [PMID: 23993092 PMCID: PMC3778974 DOI: 10.1016/j.cell.2013.07.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/30/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022]
Abstract
DNA damage triggers polyubiquitylation and degradation of the largest subunit of RNA polymerase II (RNAPII), a "mechanism of last resort" employed during transcription stress. In yeast, this process is dependent on Def1 through a previously unresolved mechanism. Here, we report that Def1 becomes activated through ubiquitylation- and proteasome-dependent processing. Def1 processing results in the removal of a domain promoting cytoplasmic localization, resulting in nuclear accumulation of the clipped protein. Nuclear Def1 then binds RNAPII, utilizing a ubiquitin-binding domain to recruit the Elongin-Cullin E3 ligase complex via a ubiquitin-homology domain in the Ela1 protein. This facilitates polyubiquitylation of Rpb1, triggering its proteasome-mediated degradation. Together, these results outline the multistep mechanism of Rpb1 polyubiquitylation triggered by transcription stress and uncover the key role played by Def1 as a facilitator of Elongin-Cullin ubiquitin ligase function.
Collapse
Affiliation(s)
- Marcus D Wilson
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Michelle Harreman
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Michael Taschner
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - James Reid
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Jane Walker
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Hediye Erdjument-Bromage
- Molecular Biology Programme, Memorial Sloan-Kettering Cancer Center, York Avenue 1275, New York, NY 10021, USA
| | - Paul Tempst
- Molecular Biology Programme, Memorial Sloan-Kettering Cancer Center, York Avenue 1275, New York, NY 10021, USA
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK.
| |
Collapse
|
22
|
Karpov DS, Spasskaya DS, Tutyaeva VV, Mironov AS, Karpov VL. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes. FEBS Lett 2013; 587:3108-14. [DOI: 10.1016/j.febslet.2013.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/19/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
|
23
|
Wilson MD, Harreman M, Svejstrup JQ. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:151-7. [PMID: 22960598 DOI: 10.1016/j.bbagrm.2012.08.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 01/22/2023]
Abstract
During its journey across a gene, RNA polymerase II has to contend with a number of obstacles to its progression, including nucleosomes, DNA-binding proteins, DNA damage, and sequences that are intrinsically difficult to transcribe. Not surprisingly, a large number of elongation factors have evolved to ensure that transcription stalling or arrest does not occur. If, however, the polymerase cannot be restarted, it becomes poly-ubiquitylated and degraded by the proteasome. This process is highly regulated, ensuring that only RNAPII molecules that cannot otherwise be salvaged are degraded. In this review, we describe the mechanisms and factors responsible for the last resort mechanism of transcriptional elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Marcus D Wilson
- Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, South Mimms, UK
| | | | | |
Collapse
|
24
|
Hobson D, Wei W, Steinmetz L, Svejstrup J. RNA polymerase II collision interrupts convergent transcription. Mol Cell 2012; 48:365-74. [PMID: 23041286 PMCID: PMC3504299 DOI: 10.1016/j.molcel.2012.08.027] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 01/22/2023]
Abstract
Antisense noncoding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical and genetic approaches in yeast to show that polymerases transcribing opposite DNA strands cannot bypass each other. RNAPII stops but does not dissociate upon head-to-head collision in vitro, suggesting that opposing polymerases represent insurmountable obstacles for each other. Head-to-head collision in vivo also results in RNAPII stopping, and removal of collided RNAPII from the DNA template can be achieved via ubiquitylation-directed proteolysis. Indeed, in cells lacking efficient RNAPII polyubiquitylation, the half-life of collided polymerases increases, so that they can be detected between convergent genes. These results provide insight into fundamental mechanisms of gene traffic control and point to an unexplored effect of antisense transcription on gene regulation via polymerase collision.
Collapse
MESH Headings
- Blotting, Northern
- Chromatin Immunoprecipitation
- DNA, Antisense/chemistry
- DNA, Antisense/genetics
- DNA, Antisense/metabolism
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- Gene Expression Regulation, Fungal
- Models, Genetic
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Tertiary
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Time Factors
- Transcription, Genetic
- Ubiquitination
Collapse
Affiliation(s)
- David J. Hobson
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, London EN6 3LD, UK
| | - Wu Wei
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Stanford Genome Technology Center, 855 South California Avenue, Palo Alto, CA 94304, USA
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Stanford Genome Technology Center, 855 South California Avenue, Palo Alto, CA 94304, USA
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, London EN6 3LD, UK
| |
Collapse
|
25
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
26
|
Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation. Cell Signal 2011; 24:410-421. [PMID: 22033037 DOI: 10.1016/j.cellsig.2011.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Rivaling or cooperating with other post-translational modifications, ubiquitination plays central roles in regulating numerous cellular processes. Not surprisingly, gain- or loss-of-function mutations in several components of the ubiquitin system are causally linked to human pathologies including cancer. The covalent attachment of ubiquitin to target proteins occurs in sequential steps and involves ubiquitin ligases (E3s) which are the most abundant enzymes of the ubiquitin system. Although often associated with proteasomal degradation, ubiquitination is also involved in regulatory events in a proteasome-independent manner. Moreover, ubiquitination is reversible and specific proteases, termed deubiquitinases (DUBs), remove ubiquitin from protein substrates. While we now appreciate the importance of ubiquitin signaling in coordinating a plethora of physio-pathological processes, the molecular mechanisms are not fully understood. This review summarizes current findings on the critical functions exerted by E3s and DUBs in transcriptional control, particularly chromatin remodeling and transcription initiation/elongation.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - Helen Yu
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada.
| |
Collapse
|
27
|
RNA polymerase II degradation in response to rapamycin is not mediated through ubiquitylation. Biochem Biophys Res Commun 2011; 413:248-53. [PMID: 21884683 DOI: 10.1016/j.bbrc.2011.08.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 11/24/2022]
Abstract
In Saccharomyces cerevisiae, the immunosuppressor rapamycin engenders the degradation of excessive RNA polymerase II leading to growth arrest but the regulation of this process is not known yet. Here, we show that this mechanism is dependent on the peptidyl prolyl cis/trans isomerase Rrd1. Strikingly this degradation is independent of RNA polymerase II polyubiquitylation and does not require the elongation factor Elc1. Our data reveal that there are at least two alternative pathways to degrade RNA polymerase II that depend on different type of stresses.
Collapse
|
28
|
Verma R, Oania R, Fang R, Smith GT, Deshaies RJ. Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Mol Cell 2011; 41:82-92. [PMID: 21211725 PMCID: PMC3063307 DOI: 10.1016/j.molcel.2010.12.017] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/09/2010] [Accepted: 12/10/2010] [Indexed: 12/13/2022]
Abstract
Cdc48/p97 is an essential ATPase whose role in targeting substrates to the ubiquitin-proteasome system (UPS) remains unclear. Existing models posit that Cdc48 acts upstream of UPS receptors. To address this hypothesis, we examined the association of ubiquitin (Ub) conjugates with 26S proteasomes. Unexpectedly, proteasomes isolated from cdc48 mutants contain high levels of Ub conjugates, and mass spectrometry identified numerous nonproteasomal proteins, including Rpb1, the largest subunit of RNA Pol II. UV-induced turnover of Rpb1 depends upon Cdc48-Ufd1-Npl4, Ubx4, and the uncharacterized adaptor Ubx5. Ubiquitinated Rpb1, proteasomes, and Cdc48 accumulate on chromatin in UV-treated wild-type cells, and the former two accumulate to higher levels in mutant cells, suggesting that degradation of Rpb1 is facilitated by Cdc48 at sites of stalled transcription. These data reveal an intimate coupling of function between proteasomes and Cdc48 that we suggest is necessary to sustain processive degradation of unstable subunits of some macromolecular protein complexes.
Collapse
Affiliation(s)
- Rati Verma
- California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | |
Collapse
|
29
|
Yamasaki T, Ohama T. Involvement of Elongin C in the spread of repressive histone modifications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:51-61. [PMID: 21175889 DOI: 10.1111/j.1365-313x.2010.04400.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In our previous work, we induced RNA interference (RNAi) against the spectinomycin resistance-conferring aadA transgene by transcribing a long inverted repeat in Chlamydomonas reinhardtii. However, after long-term culture, the level of transcripts of the inverted repeat was markedly decreased. In this study, we performed random insertional mutagenesis of the RNAi strain to identify the genes that contribute to the transcriptional silencing of the silencer construct. We succeeded in isolating several mutants showing derepression of transcription of the inverted repeat. One of these tag mutant strains, 148-10H, had a deletion of the Elongin C gene (ELC), which is a component of some E3 ubiquitin ligase complexes. In the mutant, the level of monomethyl histone H3 on lysine 9 (H3K9me1) was reduced to less than half of the parental strain, and a large portion of deacetylated H3 marks were removed from the promoter region of the silencer construct, while these repressive histone modifications and levels of methyl-CpG levels were retained in the inverted repeat region. The most probable interpretation of the above-mentioned phenomenon is that ELC is essential for stepwise extension of heterochromatin formation that is nucleated in the inverted region over the promoter region.
Collapse
Affiliation(s)
- Tomohito Yamasaki
- School of Environmental Science and Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi 782-8502, Japan
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi 782-8502, Japan
| |
Collapse
|
30
|
Abstract
Until recently, it was generally assumed that essentially all regulation of transcription takes place via regions adjacent to the coding region of a gene--namely promoters and enhancers--and that, after recruitment to the promoter, the polymerase simply behaves like a machine, quickly "reading the gene." However, over the past decade a revolution in this thinking has occurred, culminating in the idea that transcript elongation is extremely complex and highly regulated and, moreover, that this process significantly affects both the organization and integrity of the genome. This review addresses basic aspects of transcript elongation by RNA polymerase II (RNAPII) and how it relates to other DNA-related processes.
Collapse
Affiliation(s)
- Luke A Selth
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | |
Collapse
|
31
|
Ding B, LeJeune D, Li S. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. J Biol Chem 2009; 285:5317-26. [PMID: 20042611 DOI: 10.1074/jbc.m109.082818] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In eukaryotic cells, transcription coupled nucleotide excision repair (TCR) is believed to be initiated by RNA polymerase II (Pol II) stalled at a lesion in the transcribed strand of a gene. Rad26, the yeast homolog of the human Cockayne syndrome group B (CSB) protein, plays an important role in TCR. Spt4, a transcription elongation factor that forms a complex with Spt5, has been shown to suppress TCR in rad26Delta cells. Here we present evidence that Spt4 indirectly suppresses Rad26-independent TCR by protecting Spt5 from degradation and stabilizing the interaction of Spt5 with Pol II. We further found that the C-terminal repeat (CTR) domain of Spt5, which is dispensable for cell viability and is not involved in interactions with Spt4 and Pol II, plays an important role in the suppression. The Spt5 CTR is phosphorylated by the Bur kinase. Inactivation of the Bur kinase partially alleviates TCR in rad26Delta cells. We propose that the Spt5 CTR suppresses Rad26-independent TCR by serving as a platform for assembly of a multiple protein suppressor complex that is associated with Pol II. Phosphorylation of the Spt5 CTR by the Bur kinase may facilitate the assembly of the suppressor complex.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
32
|
Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc Natl Acad Sci U S A 2009; 106:20705-10. [PMID: 19920177 DOI: 10.1073/pnas.0907052106] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The proteasome degrades proteins modified by polyubiquitylation, so correctly controlled ubiquitylation is crucial to avoid unscheduled proteolysis of essential proteins. The mechanism regulating proteolysis of RNAPII has been controversial since two distinct ubiquitin ligases (E3s), Rsp5 (and its human homologue NEDD4) and Elongin-Cullin complex, have both been shown to be required for its DNA-damage-induced polyubiquitylation. Here we show that these E3s work sequentially in a two-step mechanism. First, Rsp5 adds mono-ubiquitin, or sometimes a ubiquitin chain linked via ubiquitin lysine 63 that does not trigger proteolysis. When produced, the K63 chain can be trimmed to mono-ubiquitylation by an Rsp5-associated ubiquitin protease, Ubp2. Based on this mono-ubiquitin moiety on RNAPII, an Elc1/Cul3 complex then produces a ubiquitin chain linked via lysine 48, which can trigger proteolysis. Likewise, for correct polyubiquitylation of human RNAPII, NEDD4 cooperates with the ElonginA/B/C-Cullin 5 complex. These data indicate that RNAPII polyubiquitylation requires cooperation between distinct, sequentially acting ubiquitin ligases, and raise the intriguing possibility that other members of the large and functionally diverse family of NEDD4-like ubiquitin ligases also require the assistance of a second E3 when targeting proteins for degradation.
Collapse
|
33
|
Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 2: transcriptional regulation. J Cell Mol Med 2009; 13:3019-31. [PMID: 19522844 PMCID: PMC4516462 DOI: 10.1111/j.1582-4934.2009.00825.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA repair is an indispensable part of a cell’s defence system against the devastating effects of DNA-damaging conditions. The regulation of this function is a really demanding situation, particularly when the stressing factors persist for a long time. In such cases, the depletion of existing DNA repair proteins has to be compensated by the induction of the analogous gene products. In addition, the arrest of transcription, which is another result of many DNA-damaging agents, needs to be overcome through regulation of transcription-specific DNA repair pathways. The involvement of the ubiquitin-proteasome system (UPS) in cancer- and chemotherapy-related DNA-damage repair relevant to the above transcriptional modification mechanisms are illustrated in this review. Furthermore, the contribution of UPS to the regulation of localization and accessibility of DNA repair proteins to chromatin, in response to cellular stress is discussed.
Collapse
|
34
|
Chen X, Ding B, LeJeune D, Ruggiero C, Li S. Rpb1 sumoylation in response to UV radiation or transcriptional impairment in yeast. PLoS One 2009; 4:e5267. [PMID: 19384408 PMCID: PMC2668072 DOI: 10.1371/journal.pone.0005267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 03/24/2009] [Indexed: 11/18/2022] Open
Abstract
Covalent modifications of proteins by ubiquitin and the Small Ubiquitin-like MOdifier (SUMO) have been revealed to be involved in a plethora of cellular processes, including transcription, DNA repair and DNA damage responses. It has been well known that in response to DNA damage that blocks transcription elongation, Rpb1, the largest subunit of RNA polymerase II (Pol II), is ubiquitylated and subsequently degraded in mammalian and yeast cells. However, it is still an enigma regarding how Pol II responds to damaged DNA and conveys signal(s) for DNA damage-related cellular processes. We found that Rpb1 is also sumoylated in yeast cells upon UV radiation or impairment of transcription elongation, and this modification is independent of DNA damage checkpoint activation. Ubc9, an E2 SUMO conjugase, and Siz1, an E3 SUMO ligase, play important roles in Rpb1 sumoylation. K1487, which is located in the acidic linker region between the C-terminal domain and the globular domain of Rpb1, is the major sumoylation site. Rpb1 sumoylation is not affected by its ubiquitylation, and vice versa, indicating that the two processes do not crosstalk. Abolishment of Rpb1 sumoylation at K1487 does not affect transcription elongation or transcription coupled repair (TCR) of UV-induced DNA damage. However, deficiency in TCR enhances UV-induced Rpb1 sumoylation, presumably due to the persistence of transcription-blocking DNA lesions in the transcribed strand of a gene. Remarkably, abolishment of Rpb1 sumoylation at K1487 causes enhanced and prolonged UV-induced phosphorylation of Rad53, especially in TCR-deficient cells, suggesting that the sumoylation plays a role in restraining the DNA damage checkpoint response caused by transcription-blocking lesions. Our results demonstrate a novel covalent modification of Rpb1 in response to UV induced DNA damage or transcriptional impairment, and unravel an important link between the modification and the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Xuefeng Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Baojin Ding
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Danielle LeJeune
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Christine Ruggiero
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
35
|
Oliva J, Dedes J, Li J, French SW, Bardag-Gorce F. Epigenetics of proteasome inhibition in the liver of rats fed ethanol chronically. World J Gastroenterol 2009; 15:705-12. [PMID: 19222094 PMCID: PMC2653439 DOI: 10.3748/wjg.15.705] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effects of ethanol-induced proteasome inhibition, and the effects of proteasome inhibition in the regulation of epigenetic mechanisms.
METHODS: Rats were fed ethanol for 1 mo using the Tsukamoto-French model and were compared to rats given the proteasome inhibitor PS-341 (Bortezomib, Velcade™) by intraperitoneal injection. Microarray analysis and real time PCR were performed and proteasome activity assays and Western blot analysis were performed using isolated nuclei.
RESULTS: Chronic ethanol feeding caused a significant inhibition of the ubiquitin proteasome pathway in the nucleus, which led to changes in the turnover of transcriptional factors, histone-modifying enzymes, and, therefore, affected epigenetic mechanisms. Chronic ethanol feeding was related to an increase in histone acetylation, and it is hypothesized that the proteasome proteolytic activity regulated histone modifications by controlling the stability of histone modifying enzymes, and, therefore, regulated the chromatin structure, allowing easy access to chromatin by RNA polymerase, and, thus, proper gene expression. Proteasome inhibition by PS-341 increased histone acetylation similar to chronic ethanol feeding. In addition, proteasome inhibition caused dramatic changes in hepatic remethylation reactions as there was a significant decrease in the enzymes responsible for the regeneration of S-adenosylmethionine, and, in particular, a significant decrease in the betaine-homocysteine methyltransferase enzyme. This suggested that hypomethylation was associated with proteasome inhibition, as indicated by the decrease in histone methylation.
CONCLUSION: The role of proteasome inhibition in regulating epigenetic mechanisms, and its link to liver injury in alcoholic liver disease, is thus a promising approach to study liver injury due to chronic ethanol consumption.
Collapse
|
36
|
Tran N, Qu PP, Simpson DA, Lindsey-Boltz L, Guan X, Schmitt CP, Ibrahim JG, Kaufmann WK. In silico construction of a protein interaction landscape for nucleotide excision repair. Cell Biochem Biophys 2009; 53:101-14. [PMID: 19156361 DOI: 10.1007/s12013-009-9042-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To obtain a systems-level perspective on the topological and functional relationships among proteins contributing to nucleotide excision repair (NER) in Saccharomyces cerevisiae, we built two models to analyze protein-protein physical interactions. A recursive computational model based on set theory systematically computed overlaps among protein interaction neighborhoods. A statistical model scored computation results to detect significant overlaps which exposed protein modules and hubs concurrently. We used these protein entities to guide the construction of a multi-resolution landscape which showed relationships among NER, transcription, DNA replication, chromatin remodeling, and cell cycle regulation. Literature curation was used to support the biological significance of identified modules and hubs. The NER landscape revealed a hierarchical topology and a recurrent pattern of kernel modules coupling a variety of proteins in structures that provide diverse functions. Our analysis offers a computational framework that can be applied to construct landscapes for other biological processes.
Collapse
Affiliation(s)
- Nancy Tran
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
LeJeune D, Chen X, Ruggiero C, Berryhill S, Ding B, Li S. Yeast Elc1 plays an important role in global genomic repair but not in transcription coupled repair. DNA Repair (Amst) 2009; 8:40-50. [DOI: 10.1016/j.dnarep.2008.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 11/16/2022]
|
38
|
Momcilovic M, Iram SH, Liu Y, Carlson M. Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase. J Biol Chem 2008; 283:19521-9. [PMID: 18474591 DOI: 10.1074/jbc.m803624200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The SNF1/AMP-activated protein kinase (AMPK) family is required for adaptation to metabolic stress and energy homeostasis. The gamma subunit of AMPK binds AMP and ATP, and mutations that affect binding cause human disease. We have here addressed the role of the Snf4 (gamma) subunit in regulating SNF1 protein kinase in response to glucose availability in Saccharomyces cerevisiae. Previous studies of mutant cells lacking Snf4 suggested that Snf4 counteracts autoinhibition by the C-terminal sequence of the Snf1 catalytic subunit but is dispensable for glucose regulation, and AMP does not activate SNF1 in vitro. We first introduced substitutions at sites that, in AMPK, contribute to nucleotide binding and regulation. Mutations at several sites relieved glucose inhibition of SNF1, as judged by catalytic activity, phosphorylation of the activation-loop Thr-210, and growth assays, although analogs of the severe human mutations R531G/Q had little effect. We further showed that alterations of Snf4 residues that interact with the glycogen-binding domain (GBD) of the beta subunit strongly relieved glucose inhibition. Finally, substitutions in the GBD of the Gal83 beta subunit that are predicted to disrupt interactions with Snf4 and also complete deletion of the GBD similarly relieved glucose inhibition of SNF1. Analysis of mutant cells lacking glycogen synthase showed that regulation of SNF1 is normal in the absence of glycogen. These findings reveal novel roles for Snf4 and the GBD in regulation of SNF1.
Collapse
Affiliation(s)
- Milica Momcilovic
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
39
|
Ding B, Ruggiero C, Chen X, Li S. Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast. DNA Repair (Amst) 2007; 6:1661-9. [PMID: 17644494 PMCID: PMC2096704 DOI: 10.1016/j.dnarep.2007.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/08/2007] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. A specialized NER pathway, called transcription coupled NER (TC-NER), refers to preferential repair in the transcribed strand of an actively transcribed gene. To be distinguished from TCR-NER, the genome-wide NER process is termed as global genomic NER (GG-NER). In Saccharomyces cerevisiae, GG-NER is dependent on Rad7, whereas TC-NER is mediated by Rad26, the homolog of the human Cockayne syndrome group B protein, and by Rpb9, a non-essential subunit of RNA polymerase II. Tfb5, the tenth subunit of the transcription/repair factor TFIIH, is implicated in one group of the human syndrome trichothiodystrophy. Here, we show that Tfb5 plays different roles in different NER pathways in yeast. No repair takes place in the non-transcribed strand of a gene in tfb5 cells, or in both strands of a gene in rad26 rpb9 tfb5 cells, indicating that Tfb5 is essential for GG-NER. However, residual repair occurs in the transcribed strand of a gene in tfb5 cells, suggesting that Tfb5 is important, but not absolutely required for TC-NER. Interestingly, substantial repair occurs in the transcribed strand of a gene in rad7 tfb5 and rad7 rpb9 tfb5 cells, indicating that, in the absence of GG-NER, Tfb5 is largely dispensable for Rad26 mediated TC-NER. Furthermore, we show that no repair takes place in the transcribed strand of a gene in rad7 rad26 tfb5 cells, suggesting that Tfb5 is required for Rpb9 mediated TC-NER. Taken together, our results indicate that Tfb5 is partially dispensable for Rad26 mediated TC-NER, especially in GG-NER deficient cells. However, this TFIIH subunit is required for other NER pathways.
Collapse
Affiliation(s)
| | | | | | - Shisheng Li
- *Corresponding Author [225-578-9102(Phone)/225-578-9895(FAX)/ ]
| |
Collapse
|
40
|
Li S, Ding B, LeJeune D, Ruggiero C, Chen X, Smerdon MJ. The roles of Rad16 and Rad26 in repairing repressed and actively transcribed genes in yeast. DNA Repair (Amst) 2007; 6:1596-606. [PMID: 17611170 PMCID: PMC2095784 DOI: 10.1016/j.dnarep.2007.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 11/17/2022]
Abstract
Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. Rad26, a member of the Swi2/Snf2 superfamily of proteins, has been shown to be involved in a specialized NER process called transcription coupled NER. Rad16, another member of the same protein superfamily, has been shown to be required for genome-wide NER. Here we show that Rad16 and Rad26 play different roles in repairing repressed and actively transcribed genes in yeast. Rad16 is partially dispensable, and Rad26 plays a significant role in repairing certain regions of the repressed GAL1-10, PHO5 and ADH2 genes, especially in the core DNA of well-positioned nucleosomes. Simultaneous elimination of Rad16 and Rad26 results in no detectable repair in these regions of the repressed genes. Transcriptional induction of the GAL1-10 genes abolishes the role of Rad26, but does not affect the role of Rad16 in repairing the nontranscribed strand of the genes. Interestingly, when the transcription activator Gal4 is eliminated from the cells, Rad16 becomes partially dispensable and Rad26 plays a significant role in repairing both strands of the GAL1-10 genes even under inducing conditions. Our results suggest that Rad16 and Rad26 play different and, to some extent, complementary roles in repairing both strands of repressed genes, although the relative contributions of the two proteins can be different from gene to gene, and from region to region of a gene. However, Rad16 is solely responsible for repairing the nontranscribed strand of actively transcribed genes.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Chen X, Ruggiero C, Li S. Yeast Rpb9 plays an important role in ubiquitylation and degradation of Rpb1 in response to UV-induced DNA damage. Mol Cell Biol 2007; 27:4617-25. [PMID: 17452455 PMCID: PMC1951484 DOI: 10.1128/mcb.00404-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/09/2007] [Accepted: 04/11/2007] [Indexed: 01/28/2023] Open
Abstract
Rpb9, a nonessential subunit of RNA polymerase II (Pol II), has multiple transcription-related functions in Saccharomyces cerevisiae, including transcription elongation and transcription-coupled repair (TCR). Here we show that, in response to UV radiation, Rpb9 also functions in promoting ubiquitylation and degradation of Rpb1, the largest subunit of Pol II. This function of Rpb9 is not affected by any pathways of nucleotide excision repair, including TCR mediated by Rpb9 itself and by Rad26. Rpb9 is composed of three distinct domains: the N-terminal Zn1, the C-terminal Zn2, and the central linker. The Zn2 domain, which is dispensable for transcription elongation and TCR functions, is essential for Rpb9 to promote Rpb1 degradation, whereas the Zn1 and linker domains, which are essential for transcription elongation and TCR functions, play a subsidiary role in Rpb1 degradation. Coimmunoprecipitation analysis suggests that almost the full length of Rpb9 is required for a strong interaction with the core Pol II: deletion of the Zn2 domain causes dramatically weakened interaction, whereas deletion of Zn1 and the linker resulted in undetectable interaction. Furthermore, we show that Rpb1, rather than the whole Pol II complex, is degraded in response to UV radiation and that the degradation is primarily mediated by the 26S proteasome.
Collapse
Affiliation(s)
- Xuefeng Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
42
|
Ribar B, Prakash L, Prakash S. ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells. Mol Cell Biol 2007; 27:3211-6. [PMID: 17296727 PMCID: PMC1899920 DOI: 10.1128/mcb.00091-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of yeast and human cells with DNA-damaging agents elicits lysine 48-linked polyubiquitylation of Rpb1, the largest subunit of RNA polymerase II (Pol II), which targets Pol II for proteasomal degradation. However, the ubiquitin ligase (E3) responsible for Pol II polyubiquitylation has not been identified in humans or the yeast Saccharomyces cerevisiae. Here we show that elongin A (Ela1) and cullin 3 (Cul3) are required for Pol II polyubiquitylation and degradation in yeast cells, and on the basis of these and other observations, we propose that an E3 comprised of elongin C (Elc1), Ela1, Cul3, and the RING finger protein Roc1 (Rbx1) mediates this process in yeast cells. This study provides, in addition to the identification of the E3 required for Pol II polyubiquitylation and degradation in yeast cells, the first evidence for a specific function in yeast for a member of the elongin C/BC-box protein/cullin family of ligases. Also, these observations raise the distinct possibility that the elongin C-containing ubiquitin ligase, the von Hippel-Lindau tumor suppressor complex, promotes Pol II polyubiquitylation and degradation in human cells.
Collapse
Affiliation(s)
- Balazs Ribar
- University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1061, USA
| | | | | |
Collapse
|
43
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
44
|
Ding Q, Cecarini V, Keller JN. Interplay between protein synthesis and degradation in the CNS: physiological and pathological implications. Trends Neurosci 2007; 30:31-6. [PMID: 17126920 DOI: 10.1016/j.tins.2006.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/28/2006] [Accepted: 11/16/2006] [Indexed: 01/23/2023]
Abstract
Compromise of the ubiquitin-proteasome system (UPS) is a potential basis for multiple physiological abnormalities and pathologies in the CNS. This could be because reduced protein turnover leads to bulk intracellular protein accumulation. However, conditions associated with compromised UPS function are also associated with impairments in protein synthesis, and impairment of UPS function is sufficient to inhibit protein synthesis. These data suggest that the toxicity of UPS inhibition need not depend on gross intracellular protein accumulation, and indicate the potential for crosstalk between the UPS and protein-synthesis pathways. In this review, we discuss evidence for interplay between the UPS and protein-synthesis machinery, and outline the implications of this crosstalk for physiological and pathological processes in the CNS.
Collapse
Affiliation(s)
- Qunxing Ding
- Department of Anatomy and Neurobiology, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | |
Collapse
|
45
|
Li S, Ding B, Chen R, Ruggiero C, Chen X. Evidence that the transcription elongation function of Rpb9 is involved in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:9430-41. [PMID: 17030604 PMCID: PMC1698543 DOI: 10.1128/mcb.01656-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/25/2006] [Accepted: 10/02/2006] [Indexed: 11/20/2022] Open
Abstract
Rpb9, a small nonessential subunit of RNA polymerase II, has been shown to have multiple transcription-related functions in Saccharomyces cerevisiae. These functions include promoting transcription elongation and mediating a subpathway of transcription-coupled repair (TCR) that is independent of Rad26, the homologue of human Cockayne syndrome complementation group B protein. Rpb9 is composed of three distinct domains: the N-terminal Zn1, the C-terminal Zn2, and the central linker. Here we show that the Zn1 and linker domains are essential, whereas the Zn2 domain is almost dispensable, for both transcription elongation and TCR functions. Impairment of transcription elongation, which does not dramatically compromise Rad26-mediated TCR, completely abolishes Rpb9-mediated TCR. Furthermore, Rpb9 appears to be dispensable for TCR if its transcription elongation function is compensated for by removing a transcription repression/elongation factor. Our data suggest that the transcription elongation function of Rpb9 is involved in TCR.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | |
Collapse
|