1
|
Chen T, Wang J, Mao Z. Lipid Differences and Related Metabolism Present on the Hand Skin Surface of Different-Aged Asiatic Females-An Untargeted Metabolomics Study. Metabolites 2023; 13:metabo13040553. [PMID: 37110211 PMCID: PMC10142664 DOI: 10.3390/metabo13040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
This cross-sectional study aimed to investigate differences in skin surface lipids (SSL) and explore related metabolic pathways among females of different ages in Henan Province. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used to determine the lipid composition of the skin surface of 58 female volunteers who were divided into three age groups. Statistical analysis was performed using Progenesis QI, Ezinfo, and MetaboAnalyst. Multivariate and enrichment analysis were used to identify the different SSL among the groups. A total of 530 lipid entities were identified and classified into eight classes. Among these, 63 lipids were significantly different between the groups. Lower levels of glycerolipids (GLs) and sphingolipids (SPs) were observed in the middle-aged group, while higher levels of GLs were found in the elder group. GLs belonged to the largest and statistically significant enrichment of lipid metabolic pathways, and the lipid individuals enriched to the sphingoid bases metabolism were the most and statistically significant. These findings suggest that there are differences in hand SSL among females of different ages, which may be related to GLs and sphingoid bases metabolism.
Collapse
Affiliation(s)
- Tian Chen
- Division of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai 200336, China
| | - Juan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenxing Mao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Uranbileg B, Kurano M, Kano K, Sakai E, Arita J, Hasegawa K, Nishikawa T, Ishihara S, Yamashita H, Seto Y, Ikeda H, Aoki J, Yatomi Y. Sphingosine 1-phosphate lyase facilitates cancer progression through converting sphingolipids to glycerophospholipids. Clin Transl Med 2022; 12:e1056. [PMID: 36125914 PMCID: PMC9488530 DOI: 10.1002/ctm2.1056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In addition to potent agonist properties for sphingosine 1-phosphate (S1P) receptors, intracellularly, S1P is an intermediate in metabolic conversion pathway from sphingolipids to glycerolysophospholipids (glyceroLPLs). We hypothesized that this S1P metabolism and its products might possess some novel roles in the pathogenesis of cancer, where S1P lyase (SPL) is a key enzyme. METHODS The mRNA levels of sphingolipid-related and other cancer-related factors were measured in human hepatocellular carcinoma (HCC), colorectal cancer, and esophageal cancer patients' tumours and in their adjacent non-tumour tissues. Phospholipids (PL) and glyceroLPLs were measured by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In-vitro experiments were performed in Colon 26 cell line with modulation of the SPL and GPR55 expressions. Xenograft model was used for determination of the cancer progression and for pharmacological influence. RESULTS Besides high SPL levels in human HCC and colon cancer, SPL levels were specifically and positively linked with levels of glyceroLPLs, including lysophosphatidylinositol (LPI). Overexpression of SPL in Colon 26 cells resulted in elevated levels of LPI and lysophosphatidylglycerol (LPG), which are agonists of GPR55. SPL overexpression-enhanced cell proliferation was inhibited by GPR55 silencing. Conversely, inhibition of SPL led to the opposite outcome and reversed by adding LPI, LPG, and metabolites generated during S1P degradation, which is regulated by SPL. The xenograft model results suggested the contribution of SPL and glyceroLPLs to tumour progression depending on levels of SPL and GPR55. Moreover, the pharmacological inhibition of SPL prevented the progression of cancer. The underlying mechanisms for the SPL-mediated cancer progression are the activation of p38 and mitochondrial function through the LPI, LPG-GPR55 axis and the suppression of autophagy in a GPR55-independent manner. CONCLUSION A new metabolic pathway has been proposed here in HCC and colon cancer, SPL converts S1P to glyceroLPLs, mainly to LPI and LPG, and facilitates cancer development.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Arita
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nishikawa
- Surgical Oncology and Vascular Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Soichiro Ishihara
- Surgical Oncology and Vascular Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Hiroharu Yamashita
- Gastrointestinal Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan.,Division of Digestive Surgery, Department of Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuyuki Seto
- Gastrointestinal Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Arai A, Takeichi T, Wakamoto H, Sassa T, Ito Y, Murase Y, Ogi T, Akiyama M, Kihara A. Ceramide profiling of stratum corneum in Sjögren-Larsson syndrome. J Dermatol Sci 2022; 107:114-122. [PMID: 35973883 DOI: 10.1016/j.jdermsci.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 08/07/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sjögren-Larsson syndrome (SLS) is a neurocutaneous disorder whose causative gene is the fatty aldehyde dehydrogenase ALDH3A2 and of which ichthyosis is the major skin symptom. The stratum corneum contains a variety of ceramides, among which ω-O-acylceramides (acylceramides) and protein-bound ceramides are essential for skin permeability barrier formation. OBJECTIVES To determine the ceramide classes/species responsible for SLS pathogenesis and the enzymes that are impaired in SLS. METHODS Genomic DNA was collected from peripheral blood samples from an SLS patient and her parents, and whole-genome sequencing and Sanger sequencing were performed. Lipids were extracted from stratum corneum samples from the SLS patient and healthy volunteers and subjected to ceramide profiling via liquid chromatography coupled with tandem mass spectrometry. RESULTS A duplication (c.55_130dup) and a missense mutation (p.Lys447Glu) were found in the patient's ALDH3A2 gene. The patient had reduced levels of all acylceramide classes, with total acylceramide levels at 25 % of healthy controls. Reductions were also observed for several nonacylated ceramides: ceramides with phytosphingosine or 6-hydroxysphingosine in the long-chain base moiety were reduced to 24 % and 41 % of control levels, respectively, and ceramides with an α-hydroxy fatty acid as the fatty acid moiety were reduced to 29 %. The fatty acid moiety was shortened in many nonacylated ceramide classes. CONCLUSION These results suggest that reduced acylceramide levels are a primary cause of the ichthyosis symptoms of SLS, but reductions in other ceramide classes may also be involved.
Collapse
Affiliation(s)
- Ayami Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Wakamoto
- Department of Pediatrics, Ehime Rehabilitation Center for Children, Ehime, Japan
| | - Takayuki Sassa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasutoshi Ito
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Murase
- Department of Pediatrics, Ehime Rehabilitation Center for Children, Ehime, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|