1
|
Vodicka P, Vodenkova S, Danesova N, Vodickova L, Zobalova R, Tomasova K, Boukalova S, Berridge MV, Neuzil J. Mitochondrial DNA damage, repair, and replacement in cancer. Trends Cancer 2025; 11:62-73. [PMID: 39438191 DOI: 10.1016/j.trecan.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are vital organelles with their own DNA (mtDNA). mtDNA is circular and composed of heavy and light chains that are structurally more accessible than nuclear DNA (nDNA). While nDNA is typically diploid, the number of mtDNA copies per cell is higher and varies considerably during development and between tissues. Compared with nDNA, mtDNA is more prone to damage that is positively linked to many diseases, including cancer. Similar to nDNA, mtDNA undergoes repair processes, although these mechanisms are less well understood. In this review, we discuss the various forms of mtDNA damage and repair and their association with cancer initiation and progression. We also propose horizontal mitochondrial transfer as a novel mechanism for replacing damaged mtDNA.
Collapse
Affiliation(s)
- Pavel Vodicka
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic.
| | - Sona Vodenkova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic.
| | - Natalie Danesova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Kristyna Tomasova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Jiri Neuzil
- First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia.
| |
Collapse
|
2
|
Li YY, Jiang S, Pan TT, Wang Y, Zhang CY. A simple "mix-and-detection" method based on template-free amplification for sensitive measurement of human cellular FEN1. Talanta 2025; 281:126863. [PMID: 39260254 DOI: 10.1016/j.talanta.2024.126863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Flap endonuclease 1 (FEN1) is a structure-specific nuclease that can specially identify and cleave 5' flap of branched duplex DNA, and it plays a critical role in DNA metabolic pathways and human diseases. Herein, we propose a simple "mix-and-detection" strategy for sensitive measurement of human cellular FEN1 on basis of template-free amplification. We design a dumbbell probe with 5' flap as a substrate of FEN1 and a NH2-labeled 3' termini to prevent nonspecific amplification. When FEN1 is present, the 5' flap is cleaved to release a free 3'-OH termini, initiating Ribonuclease HII (RNase HII)-assisted terminal deoxynucleotidyl transferase (TdT)-induced amplification for the production of a significant fluorescence signal. Due to the high exactitude of TdT-mediated extension reaction and RNase HII-induced single ribonucleotide excise, this assay shows excellent specificity and high sensitivity with a detection limit of 5.64 × 10-6 U/μL. Importantly, it can detect intracellular FEN1 activity with single-cell sensitivity under isothermal condition in a "mix-and-detection" manner, screen the FEN1 inhibitors, and even discriminate tumor cells from normal cells, offering a new platform for disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Yue-Ying Li
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China; Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Ting-Ting Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
3
|
Tiwari A, Verma N, Shukla H, Mishra S, Kennedy K, Chatterjee T, Kuldeep J, Parwez S, Siddiqi MI, Ralph SA, Mishra S, Habib S. DNA N-glycosylases Ogg1 and EndoIII as components of base excision repair in Plasmodium falciparum organelles. Int J Parasitol 2024; 54:675-689. [PMID: 38964640 DOI: 10.1016/j.ijpara.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The integrity of genomes of the two crucial organelles of the malaria parasite - an apicoplast and mitochondrion in each cell - must be maintained by DNA repair mediated by proteins targeted to these compartments. We explored the localisation and function of Plasmodium falciparum base excision repair (BER) DNA N-glycosylase homologs PfEndoIII and PfOgg1. These N-glycosylases would putatively recognise DNA lesions prior to the action of apurinic/apyrimidinic (AP)-endonucleases. Both Ape1 and Apn1 endonucleases have earlier been shown to function solely in the parasite mitochondrion. Immunofluorescence localisation showed that PfEndoIII was exclusively mitochondrial. PfOgg1 was not seen clearly in mitochondria when expressed as a PfOgg1leader-GFP fusion, although chromatin immunoprecipitation assays showed that it could interact with both mitochondrial and apicoplast DNA. Recombinant PfEndoIII functioned as a DNA N-glycosylase as well as an AP-lyase on thymine glycol (Tg) lesions. We further studied the importance of Ogg1 in the malaria life cycle using reverse genetic approaches in Plasmodium berghei. Targeted disruption of PbOgg1 resulted in loss of 8-oxo-G specific DNA glycosylase/lyase activity. PbOgg1 knockout did not affect blood, mosquito or liver stage development but caused reduced blood stage infection after inoculation of sporozoites in mice. A significant reduction in erythrocyte infectivity by PbOgg1 knockout hepatic merozoites was also observed, thus showing that PbOgg1 ensures smooth transition from liver to blood stage infection. Our results strengthen the view that the Plasmodium mitochondrial genome is an important site for DNA repair by the BER pathway.
Collapse
Affiliation(s)
- Anupama Tiwari
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Neetu Verma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Himadri Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivani Mishra
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kit Kennedy
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Tribeni Chatterjee
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jitendra Kuldeep
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shahid Parwez
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M I Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Stuart A Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Quiñones JL, Tang M, Fang Q, Sobol RW, Demple B. C-terminal residues of DNA polymerase β and E3 ligase required for ubiquitin-linked proteolysis of oxidative DNA-protein crosslinks. DNA Repair (Amst) 2024; 143:103756. [PMID: 39243487 DOI: 10.1016/j.dnarep.2024.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Free radicals produce in DNA a large variety of base and deoxyribose lesions that are corrected by the base excision DNA repair (BER) system. However, the C1'-oxidized abasic residue 2-deoxyribonolactone (dL) traps DNA repair lyases in covalent DNA-protein crosslinks (DPC), including the core BER enzyme DNA polymerase beta (Polβ). Polβ-DPC are rapidly processed in mammalian cells by proteasome-dependent digestion. Blocking the proteasome causes oxidative Polβ-DPC to accumulate in a ubiquitylated form, and this accumulation is toxic to human cells. In the current study, we investigated the mechanism of Polβ-DPC processing in cells exposed to the dL-inducing oxidant 1,10-copper-ortho-phenanthroline. Alanine substitution of either or both of two Polβ C-terminal residues, lysine-206 and lysine-244, enhanced the accumulation of mutant Polβ-DPC relative to the wild-type protein, and removal of the mutant DPC was diminished. Substitution of the N-terminal lysines 41, 61, and 81 did not affect Polβ-DPC processing. For Polβ with the C-terminal lysine substitutions, the amount of ubiquitin in the stabilized DPC was lowered by ∼40 % relative to wild-type Polβ. Suppression of the HECT domain-containing E3 ubiquitin ligase TRIP12 augmented the formation of oxidative Polβ-DPC and prevented Polβ-DPC removal in oxidant-treated cells. Consistent with the toxicity of accumulated oxidative Polβ-DPC, TRIP12 knockdown increased oxidant-mediated cytotoxicity. Thus, ubiquitylation of lysine-206 and lysine-244 by TRIP12 is necessary for digestion of Polβ-DPC by the proteasome as the rapid first steps of DPC repair to prevent their cytotoxic accumulation. Understanding how DPC formed with Polβ or other AP lyases are repaired in vivo is an important step in revealing how cells cope with the toxic potential of such adducts.
Collapse
Affiliation(s)
- Jason L Quiñones
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Basic Science Tower 8-140, Stony Brook, New York 11794, USA
| | - Meiyi Tang
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Basic Science Tower 8-140, Stony Brook, New York 11794, USA
| | - Qingming Fang
- Mitchell Cancer Institute & Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W Sobol
- Mitchell Cancer Institute & Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Basic Science Tower 8-140, Stony Brook, New York 11794, USA; Department of Radiation Oncology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA.
| |
Collapse
|
5
|
Bakman AS, Boichenko SS, Kuznetsova AA, Ishchenko AA, Saparbaev M, Kuznetsov NA. Coordination between human DNA polymerase β and apurinic/apyrimidinic endonuclease 1 in the course of DNA repair. Biochimie 2024; 216:126-136. [PMID: 37806619 DOI: 10.1016/j.biochi.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Coordination of enzymatic activities in the course of base excision repair (BER) is essential to ensure complete repair of damaged bases. Two major mechanisms underlying the coordination of BER are known today: the "passing the baton" model and a model of preassembled stable multiprotein repair complexes called "repairosomes." In this work, we aimed to elucidate the coordination between human apurinic/apyrimidinic (AP) endonuclease APE1 and DNA polymerase Polβ in BER through studying an impact of APE1 on Polβ-catalyzed nucleotide incorporation into different model substrates that mimic different single-strand break (SSB) intermediates arising along the BER pathway. It was found that APE1's impact on separate stages of Polβ's catalysis depends on the nature of a DNA substrate. In this complex, APE1 removed 3' blocking groups and corrected Polβ-catalyzed DNA synthesis in a coordinated manner. Our findings support the hypothesis that Polβ not only can displace APE1 from damaged DNA within the "passing the baton" model but also performs the gap-filling reaction in the ternary complex with APE1 according to the "repairosome" model. Taken together, our results provide new insights into coordination between APE1 and Polβ during the BER process.
Collapse
Affiliation(s)
- Artemiy S Bakman
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentyeva, Novosibirsk, 630090, Russia
| | - Stanislav S Boichenko
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentyeva, Novosibirsk, 630090, Russia
| | - Alexander A Ishchenko
- Group «Mechanisms of DNA Repair and Carcinogenesis», Gustave Roussy Cancer Campus, CNRS UMR9019, Université Paris-Saclay, 94805, Villejuif, France
| | - Murat Saparbaev
- Group «Mechanisms of DNA Repair and Carcinogenesis», Gustave Roussy Cancer Campus, CNRS UMR9019, Université Paris-Saclay, 94805, Villejuif, France
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentyeva, Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia.
| |
Collapse
|
6
|
Sallmyr A, Bhandari SK, Naila T, Tomkinson AE. Mammalian DNA ligases; roles in maintaining genome integrity. J Mol Biol 2024; 436:168276. [PMID: 37714297 PMCID: PMC10843057 DOI: 10.1016/j.jmb.2023.168276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.
Collapse
Affiliation(s)
- Annahita Sallmyr
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Seema Khattri Bhandari
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Tasmin Naila
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States.
| |
Collapse
|
7
|
Caston RA, Fortini P, Chen K, Bauer J, Dogliotti E, Yin YW, Demple B. Maintenance of Flap Endonucleases for Long-Patch Base Excision DNA Repair in Mouse Muscle and Neuronal Cells Differentiated In Vitro. Int J Mol Sci 2023; 24:12715. [PMID: 37628896 PMCID: PMC10454756 DOI: 10.3390/ijms241612715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
After cellular differentiation, nuclear DNA is no longer replicated, and many of the associated proteins are downregulated accordingly. These include the structure-specific endonucleases Fen1 and DNA2, which are implicated in repairing mitochondrial DNA (mtDNA). Two more such endonucleases, named MGME1 and ExoG, have been discovered in mitochondria. This category of nuclease is required for so-called "long-patch" (multinucleotide) base excision DNA repair (BER), which is necessary to process certain oxidative lesions, prompting the question of how differentiation affects the availability and use of these enzymes in mitochondria. In this study, we demonstrate that Fen1 and DNA2 are indeed strongly downregulated after differentiation of neuronal precursors (Cath.a-differentiated cells) or mouse myotubes, while the expression levels of MGME1 and ExoG showed minimal changes. The total flap excision activity in mitochondrial extracts of these cells was moderately decreased upon differentiation, with MGME1 as the predominant flap endonuclease and ExoG playing a lesser role. Unexpectedly, both differentiated cell types appeared to accumulate less oxidative or alkylation damage in mtDNA than did their proliferating progenitors. Finally, the overall rate of mtDNA repair was not significantly different between proliferating and differentiated cells. Taken together, these results indicate that neuronal cells maintain mtDNA repair upon differentiation, evidently relying on mitochondria-specific enzymes for long-patch BER.
Collapse
Affiliation(s)
- Rachel A. Caston
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Paola Fortini
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (P.F.)
| | - Kevin Chen
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jack Bauer
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (P.F.)
| | - Y. Whitney Yin
- Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Radiation Oncology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Ma Y, Yang Y, Xin J, He L, Hu Z, Gao T, Pan F, Guo Z. RNA G-Quadruplex within the 5'-UTR of FEN1 Regulates mRNA Stability under Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020276. [PMID: 36829835 PMCID: PMC9952066 DOI: 10.3390/antiox12020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Reactive oxygen species (ROS) are a group of highly oxidative molecules that induce DNA damage, affecting DNA damage response (DDR) and gene expression. It is now recognized that DNA base excision repair (BER) is one of the important pathways responsible for sensing oxidative stress to eliminate DNA damage, in which FEN1 plays an important role in this process. However, the regulation of FEN1 under oxidative stress is still unclear. Here, we identified a novel RNA G-quadruplex (rG4) sequence in the 5'untranslated region (5'UTR) of FEN1 mRNA. Under oxidative stress, the G bases in the G4-forming sequence can be oxidized by ROS, resulting in structural disruption of the G-quadruplex. ROS or TMPyP4, a G4-structural ligand, disrupted the formation of G4 structure and affected the expression of FEN1. Furthermore, pull-down experiments identified a novel FEN1 rG4-binding protein, heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), and cellular studies have shown that hnRNPA1 plays an important role in regulating FEN1 expression. This work demonstrates that rG4 acts as a ROS sensor in the 5'UTR of FEN1 mRNA. Taken together, these results suggest a novel role for rG4 in translational control under oxidative stress.
Collapse
Affiliation(s)
- Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yang Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingyu Xin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (F.P.); (Z.G.)
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (F.P.); (Z.G.)
| |
Collapse
|
9
|
Liao L, Yao J, Yuan R, Xiang Y, Jiang B. Lighting-up aptamer transcriptional amplification for highly sensitive and label-free FEN1 detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121760. [PMID: 36030671 DOI: 10.1016/j.saa.2022.121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Specific and sensitive detection of flap endonuclease 1 (FEN1), an enzyme biomarker involved in DNA replications and several metabolic pathways, is of high values for the diagnosis of various cancers. In this work, a fluorescence strategy based on transcriptional amplification of lighting-up aptamers for label-free, low background and sensitive monitoring of FEN1 is developed. FEN1 cleaves the 5' flap of the DNA complex probe with double flaps to form a notched dsDNA, which is ligated by T4 DNA ligase to yield fully complementary dsDNA. Subsequently, T7 RNA polymerase binds the promoter region to initiate cyclic transcriptional generation of many RNA aptamers that associate with the malachite green dye to yield highly amplified fluorescence for detecting FEN1 with detection limit as low as 0.22 pM in a selective way. In addition, the method can achieve diluted serum monitoring of low concentrations of FEN1, exhibiting its potential for the diagnosis of early-stage cancers.
Collapse
Affiliation(s)
- Lei Liao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Jianglong Yao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
10
|
Szymanski MR, Karlowicz A, Herrmann GK, Cen Y, Yin YW. Human EXOG Possesses Strong AP Hydrolysis Activity: Implication on Mitochondrial DNA Base Excision Repair. J Am Chem Soc 2022; 144:23543-23550. [PMID: 36516439 PMCID: PMC10920074 DOI: 10.1021/jacs.2c10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most oxidative damage on mitochondrial DNA is corrected by the base excision repair (BER) pathway. However, the enzyme that catalyzes the rate-limiting reaction─deoxyribose phosphate (dRP) removal─in the multienzymatic reaction pathway has not been completely determined in mitochondria. Also unclear is how a logical order of enzymatic reactions is ensured. Here, we present structural and enzymatic studies showing that human mitochondrial EXOG (hEXOG) exhibits strong 5'-dRP removal ability. We show that, unlike the canonical dRP lyases that act on a single substrate, hEXOG functions on a variety of abasic sites, including 5'-dRP, its oxidized product deoxyribonolactone (dL), and the stable synthetic analogue tetrahydrofuran (THF). We determined crystal structures of hEXOG complexed with a THF-containing DNA and with a partial gapped DNA to 2.9 and 2.1 Å resolutions, respectively. The structures illustrate that hEXOG uses a controlled 5'-exonuclease activity to cleave the third phosphodiester bond away from the 5'-abasic site. This study provides a structural basis for hEXOG's broad spectrum of substrates. Further, we show that hEXOG can set the order of BER reactions by generating an ideal substrate for the subsequent reaction in BER and inhibit off-pathway reactions.
Collapse
Affiliation(s)
- Michal R Szymanski
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Anna Karlowicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | | | - Yana Cen
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | | |
Collapse
|
11
|
Dahal S, Siddiqua H, Sharma S, Babu RK, Rathore D, Sharma S, Raghavan SC. Unleashing a novel function of Endonuclease G in mitochondrial genome instability. eLife 2022; 11:e69916. [PMID: 36394256 PMCID: PMC9711528 DOI: 10.7554/elife.69916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. '9 bp deletion' (8271-8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with '9 bp deletion' when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described 'elimination of paternal mitochondria during fertilisation.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Humaira Siddiqua
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Ravi K Babu
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Diksha Rathore
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| |
Collapse
|
12
|
Mitochondrial DNA Repair in Neurodegenerative Diseases and Ageing. Int J Mol Sci 2022; 23:ijms231911391. [PMID: 36232693 PMCID: PMC9569545 DOI: 10.3390/ijms231911391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the only organelles, along with the nucleus, that have their own DNA. Mitochondrial DNA (mtDNA) is a double-stranded circular molecule of ~16.5 kbp that can exist in multiple copies within the organelle. Both strands are translated and encode for 22 tRNAs, 2 rRNAs, and 13 proteins. mtDNA molecules are anchored to the inner mitochondrial membrane and, in association with proteins, form a structure called nucleoid, which exerts a structural and protective function. Indeed, mitochondria have evolved mechanisms necessary to protect their DNA from chemical and physical lesions such as DNA repair pathways similar to those present in the nucleus. However, there are mitochondria-specific mechanisms such as rapid mtDNA turnover, fission, fusion, and mitophagy. Nevertheless, mtDNA mutations may be abundant in somatic tissue due mainly to the proximity of the mtDNA to the oxidative phosphorylation (OXPHOS) system and, consequently, to the reactive oxygen species (ROS) formed during ATP production. In this review, we summarise the most common types of mtDNA lesions and mitochondria repair mechanisms. The second part of the review focuses on the physiological role of mtDNA damage in ageing and the effect of mtDNA mutations in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Considering the central role of mitochondria in maintaining cellular homeostasis, the analysis of mitochondrial function is a central point for developing personalised medicine.
Collapse
|
13
|
Karlowicz A, Dubiel AB, Czerwinska J, Bledea A, Purzycki P, Grzelewska M, McAuley RJ, Szczesny RJ, Brzuska G, Krol E, Szczesny B, Szymanski MR. In vitro reconstitution reveals a key role of human mitochondrial EXOG in RNA primer processing. Nucleic Acids Res 2022; 50:7991-8007. [PMID: 35819194 PMCID: PMC9371904 DOI: 10.1093/nar/gkac581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022] Open
Abstract
The removal of RNA primers is essential for mitochondrial DNA (mtDNA) replication. Several nucleases have been implicated in RNA primer removal in human mitochondria, however, no conclusive mechanism has been elucidated. Here, we reconstituted minimal in vitro system capable of processing RNA primers into ligatable DNA ends. We show that human 5'-3' exonuclease, EXOG, plays a fundamental role in removal of the RNA primer. EXOG cleaves short and long RNA-containing flaps but also in cooperation with RNase H1, processes non-flap RNA-containing intermediates. Our data indicate that the enzymatic activity of both enzymes is necessary to process non-flap RNA-containing intermediates and that regardless of the pathway, EXOG-mediated RNA cleavage is necessary prior to ligation by DNA Ligase III. We also show that upregulation of EXOG levels in mitochondria increases ligation efficiency of RNA-containing substrates and discover physical interactions, both in vitro and in cellulo, between RNase H1 and EXOG, Pol γA, Pol γB and Lig III but not FEN1, which we demonstrate to be absent from mitochondria of human lung epithelial cells. Together, using human mtDNA replication enzymes, we reconstitute for the first time RNA primer removal reaction and propose a novel model for RNA primer processing in human mitochondria.
Collapse
Affiliation(s)
- Anna Karlowicz
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Andrzej B Dubiel
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Jolanta Czerwinska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland.,Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Adela Bledea
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Purzycki
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Marta Grzelewska
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Ryan J McAuley
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Gabriela Brzuska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Ewelina Krol
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Bartosz Szczesny
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Michal R Szymanski
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
14
|
Roy A, Kandettu A, Ray S, Chakrabarty S. Mitochondrial DNA replication and repair defects: Clinical phenotypes and therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148554. [PMID: 35341749 DOI: 10.1016/j.bbabio.2022.148554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome - mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.
Collapse
Affiliation(s)
- Abhipsa Roy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
15
|
Meessen S, Najjar G, Azoitei A, Iben S, Bolenz C, Günes C. A Comparative Assessment of Replication Stress Markers in the Context of Telomerase. Cancers (Basel) 2022; 14:cancers14092205. [PMID: 35565334 PMCID: PMC9103842 DOI: 10.3390/cancers14092205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Genetic alterations such as oncogenic- or aneuploidy-inducing mutations can induce replication stress as a tumor protection mechansim. Previous data indicated that telomerase may ameliorate the cellular responses that induce replication stress. However, the mechanisms how this may occur are still unclear. In order to address this question, the accurate evaluation of replication stress in the presence and absence of telomerase is crucial. Therefore, we used telomerase negative normal human fibroblasts, as well as their telomerase positive counterparts to compare the suitability of three protein markers (pRPA2, γ-H2AX and 53BP1), which were previously reported to accumulate in response to harmful conditions leading to replication stress in cells. In summary, we find that pRPA2 is the most consistent and reliable marker for the detection of replication stress. Further, we demonstrated that the inhibition of the DNA-damage activated ATM and ATR kinases by specific small compounds impaired the accumulation of pRPA2 foci in the absence of telomerase. These data suggest that telomerase rescues the cells from replication stress upon supression of DNA damage induction by modulating the ATM and ATR signaling pathways, and may therefore support tumor formation of genetically unstable cells. Abstract Aberrant replication stress (RS) is a source of genome instability and has serious implications for cell survival and tumourigenesis. Therefore, the detection of RS and the identification of the underlying molecular mechanisms are crucial for the understanding of tumourigenesis. Currently, three protein markers—p33-phosphorylated replication protein A2 (pRPA2), γ-phosphorylated H2AX (γ-H2AX), and Tumor Protein P53 Binding Protein 1 (53BP1)—are frequently used to detect RS. However, to our knowledge, there is no report that compares their suitability for the detection of different sources of RS. Therefore, in this study, we evaluate the suitability of pRPA2, γ-H2AX, and 53BP1 for the detection of RS caused by different sources of RS. In addition, we examine their suitability as markers of the telomerase-mediated alleviation of RS. For these purposes, we use here telomerase-negative human fibroblasts (BJ) and their telomerase-immortalized counterparts (BJ-hTERT). Replication stress was induced by the ectopic expression of the oncogenic RAS mutant RASG12V (OI-RS), by the knockdown of ploidy-control genes ORP3 or MAD2 (AI-RS), and by treatment with hydrogen peroxide (ROS-induced RS). The level of RS was determined by immunofluorescence staining for pRPA2, γ-H2AX, and 53BP1. Evaluation of the staining results revealed that pRPA2- and γ-H2AX provide a significant and reliable assessment of OI-RS and AI-RS compared to 53BP1. On the other hand, 53BP1 and pRPA2 proved to be superior to γ-H2AX for the evaluation of ROS-induced RS. Moreover, the data showed that among the tested markers, pRPA2 is best suited to evaluate the telomerase-mediated suppression of all three types of RS. In summary, the data indicate that the choice of marker is important for the evaluation of RS activated through different conditions.
Collapse
Affiliation(s)
- Sabine Meessen
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (S.M.); (G.N.); (A.A.); (C.B.)
| | - Gregoire Najjar
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (S.M.); (G.N.); (A.A.); (C.B.)
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (S.M.); (G.N.); (A.A.); (C.B.)
| | - Sebastian Iben
- Department of Dermatology, Ulm University Hospital, 89081 Ulm, Germany;
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (S.M.); (G.N.); (A.A.); (C.B.)
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (S.M.); (G.N.); (A.A.); (C.B.)
- Correspondence: ; Tel.: +49-(0)731-500-58019; Fax: +49-(0)731-500-58093
| |
Collapse
|
16
|
Al-Kawaz A, Miligy IM, Toss MS, Mohammed OJ, Green AR, Madhusudan S, Rakha EA. The prognostic significance of Flap Endonuclease 1 (FEN1) in breast ductal carcinoma in situ. Breast Cancer Res Treat 2021; 188:53-63. [PMID: 34117958 PMCID: PMC8233293 DOI: 10.1007/s10549-021-06271-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Background Impaired DNA repair mechanism is one of the cancer hallmarks. Flap Endonuclease 1 (FEN1) is essential for genomic integrity. FEN1 has key roles during base excision repair (BER) and replication. We hypothesised a role for FEN1 in breast cancer pathogenesis. This study aims to assess the role of FEN1 in breast ductal carcinoma in situ (DCIS). Methods Expression of FEN1 protein was evaluated in a large (n = 1015) well-characterised cohort of DCIS, comprising pure (n = 776) and mixed (DCIS coexists with invasive breast cancer (IBC); n = 239) using immunohistochemistry (IHC). Results FEN1 high expression in DCIS was associated with aggressive and high-risk features including higher nuclear grade, larger tumour size, comedo type necrosis, hormonal receptors negativity, higher proliferation index and triple-negative phenotype. DCIS coexisting with invasive BC showed higher FEN1 nuclear expression compared to normal breast tissue and pure DCIS but revealed significantly lower expression when compared to the invasive component. However, FEN1 protein expression in DCIS was not an independent predictor of local recurrence-free interval. Conclusion High FEN1 expression is linked to features of aggressive tumour behaviour and may play a role in the direct progression of DCIS to invasive disease. Further studies are warranted to evaluate its mechanistic roles in DCIS progression and prognosis. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06271-y.
Collapse
Affiliation(s)
- Abdulbaqi Al-Kawaz
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Pathology, College of Dentistry, Al Mustansiriya University, Baghdad, Iraq
| | - Islam M Miligy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Srinivasan Madhusudan
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Oncology, Nottingham University Hospitals, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK. .,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
17
|
Rong Z, Tu P, Xu P, Sun Y, Yu F, Tu N, Guo L, Yang Y. The Mitochondrial Response to DNA Damage. Front Cell Dev Biol 2021; 9:669379. [PMID: 34055802 PMCID: PMC8149749 DOI: 10.3389/fcell.2021.669379] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are double membrane organelles in eukaryotic cells that provide energy by generating adenosine triphosphate (ATP) through oxidative phosphorylation. They are crucial to many aspects of cellular metabolism. Mitochondria contain their own DNA that encodes for essential proteins involved in the execution of normal mitochondrial functions. Compared with nuclear DNA, the mitochondrial DNA (mtDNA) is more prone to be affected by DNA damaging agents, and accumulated DNA damages may cause mitochondrial dysfunction and drive the pathogenesis of a variety of human diseases, including neurodegenerative disorders and cancer. Therefore, understanding better how mtDNA damages are repaired will facilitate developing therapeutic strategies. In this review, we focus on our current understanding of the mtDNA repair system. We also discuss other mitochondrial events promoted by excessive DNA damages and inefficient DNA repair, such as mitochondrial fusion, fission, and mitophagy, which serve as quality control events for clearing damaged mtDNA.
Collapse
Affiliation(s)
- Ziye Rong
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Peipei Tu
- Department of Microbiology and Bioengineering, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Peiqi Xu
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yan Sun
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Fangfang Yu
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Na Tu
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Lixia Guo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Yanan Yang
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Sullivan ED, Longley MJ, Copeland WC. Polymerase γ efficiently replicates through many natural template barriers but stalls at the HSP1 quadruplex. J Biol Chem 2021; 295:17802-17815. [PMID: 33454015 DOI: 10.1074/jbc.ra120.015390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Faithful replication of the mitochondrial genome is carried out by a set of key nuclear-encoded proteins. DNA polymerase γ is a core component of the mtDNA replisome and the only replicative DNA polymerase localized to mitochondria. The asynchronous mechanism of mtDNA replication predicts that the replication machinery encounters dsDNA and unique physical barriers such as structured genes, G-quadruplexes, and other obstacles. In vitro experiments here provide evidence that the polymerase γ heterotrimer is well-adapted to efficiently synthesize DNA, despite the presence of many naturally occurring roadblocks. However, we identified a specific G-quadruplex-forming sequence at the heavy-strand promoter (HSP1) that has the potential to cause significant stalling of mtDNA replication. Furthermore, this structured region of DNA corresponds to the break site for a large (3,895 bp) deletion observed in mitochondrial disease patients. The presence of this deletion in humans correlates with UV exposure, and we have found that efficiency of polymerase γ DNA synthesis is reduced after this quadruplex is exposed to UV in vitro.
Collapse
Affiliation(s)
- Eric D Sullivan
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Matthew J Longley
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - William C Copeland
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
19
|
Xu L, Shen JM, Qu JL, Song N, Che XF, Hou KZ, Shi J, Zhao L, Shi S, Liu YP, Qu XJ, Teng YE. FEN1 is a prognostic biomarker for ER+ breast cancer and associated with tamoxifen resistance through the ERα/cyclin D1/Rb axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:258. [PMID: 33708885 PMCID: PMC7940940 DOI: 10.21037/atm-20-3068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Tamoxifen is an important choice in endocrine therapy for patients with oestrogen receptor-positive (ER+) breast cancer, and disease progression-associated resistance to tamoxifen therapy is still challenging. Flap endonuclease-1 (FEN1) is used as a prognostic biomarker and is considered to participate in proliferation, migration, and drug resistance in multiple cancers, especially breast cancer, but the prognostic function of FEN1 in ER+ breast cancer, and whether FEN1 is related to tamoxifen resistance or not, remain to be explored. Methods On-line database Kaplan-Meier (KM) plotter, GEO datasets, and immunohistochemistry were used to analyse the prognostic value of FEN1 in ER+ breast cancer from mRNA and protein levels. Cell viability assay and colony formation assays showed the response of tamoxifen in MCF-7 and T47D cells. Microarray data with FEN1 siRNA versus control group in MCF-7 cells were analysed by Gene Set Enrichment Analysis (GSEA). The protein levels downstream of FEN1 were detected by western blot assay. Results ER+ breast cancer patients who received tamoxifen for adjuvant endocrine therapy with poor prognosis showed a high expression of FEN1. MCF-7 and T47D appeared resistant to tamoxifen after FEN1 over-expression and increased sensitivity to tamoxifen after FEN1 knockdown. Importantly, FEN1 over-expression could activate tamoxifen resistance through the ERα/cyclin D1/Rb axis. Conclusions As a biomarker of tamoxifen effectiveness, FEN1 participates in tamoxifen resistance through ERα/cyclin D1/Rb axis. In the future, reversing tamoxifen resistance by knocking-down FEN1 or by way of action as a small molecular inhibitor of FEN1 warrants further investigation.
Collapse
Affiliation(s)
- Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Ji-Ming Shen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Jing-Lei Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Xiao-Fang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Ke-Zuo Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Jing Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Lei Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Yun-Peng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Xiu-Juan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Yue-E Teng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Boldinova EO, Belousova EA, Gagarinskaya DI, Maltseva EA, Khodyreva SN, Lavrik OI, Makarova AV. Strand Displacement Activity of PrimPol. Int J Mol Sci 2020; 21:ijms21239027. [PMID: 33261049 PMCID: PMC7729601 DOI: 10.3390/ijms21239027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Human PrimPol is a unique enzyme possessing DNA/RNA primase and DNA polymerase activities. In this work, we demonstrated that PrimPol efficiently fills a 5-nt gap and possesses the conditional strand displacement activity stimulated by Mn2+ ions and accessory replicative proteins RPA and PolDIP2. The DNA displacement activity of PrimPol was found to be more efficient than the RNA displacement activity and FEN1 processed the 5′-DNA flaps generated by PrimPol in vitro.
Collapse
Affiliation(s)
- Elizaveta O. Boldinova
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (E.O.B.); (D.I.G.)
| | - Ekaterina A. Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Diana I. Gagarinskaya
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (E.O.B.); (D.I.G.)
| | - Ekaterina A. Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Alena V. Makarova
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (E.O.B.); (D.I.G.)
- Correspondence:
| |
Collapse
|
21
|
Cao X, Sun Y, Lu P, Zhao M. Fluorescence imaging of intracellular nucleases-A review. Anal Chim Acta 2020; 1137:225-237. [PMID: 33153605 DOI: 10.1016/j.aca.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Nucleases play crucial roles in maintaining genomic integrity. Visualization of intracellular distribution and translocation of nucleases are of great importance for understanding the in-vivo physiological functions of these enzymes and their roles in DNA repair and other cellular signaling pathways. Here we review the recently developed approaches for fluorescence imaging of nucleases in various eukaryotic cells. We mainly focused on the immunofluorescence techniques, the genetically encoded fluorescent probes and the chemically synthesized fluorescent DNA-substrate probes that enabled in-situ visualization of the subcellular localization of nucleases and their interactions with other protein/DNA molecules within cells. The targeted nucleases included important endonucleases, 3' exonucleases and 5' exonucleases that were involved in the DNA damage repair pathways and the intracellular DNA degradation. The advantages and limitations of the available tools were summarized and discussed.
Collapse
Affiliation(s)
- Xiangjian Cao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng Lu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Ji M, Mei X, Jing X, Xu X, Chen X, Pan W. The cooperative complex of Argonaute-2 and microRNA-146a regulates hepatitis B virus replication through flap endonuclease 1. Life Sci 2020; 257:118089. [PMID: 32659369 DOI: 10.1016/j.lfs.2020.118089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
AIM Hepatitis B virus (HBV) is a major cause of a variety of liver diseases. Existing antiviral drugs cannot eradicate HBV from our body, and the main reason is unclear on the molecular mechanism of HBV replication. Flap endonuclease 1 (FEN1) can repair relaxed circular DNA (HBV rcDNA) to covalently closed circular DNA (HBV cccDNA) that promotes HBV DNA replication, while its specific regulatory detail remains unclear. In addition, miR-146a is close related to regulation in HBV replication. This study aims to explore whether miR-146a regulates HBV cccDNA formation through FEN1. MAIN METHODS We investigated the expression of miR-146a, FEN1 and HBV copies in HBV stable replication cell line HepG2.2.15 and its parent cell line HepG2 transfected miR-146a and FEN1 plasmid by qRT-PCR and western blot, to identify the cooperation of Argonaute-2 (Ago2) and miR-146a by Ago2 siRNA and Ago2 RNA Binding Protein Immunoprecipitation (RIP). KEY FINDINGS Compared with the control group, we found that the expression of miR-146a was significantly up-regulated in HepG2.2.15, and the expression of FEN1 and HBV copies were also significantly up-regulated. On contrary, the expression of target gene of miR-146a, interleukin-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated factor-6 (TRAF6), was significantly decreased in HepG2.2.15. With the use of Ago2 siRNA and then Ago2 RIP, we found that Ago2 performed as a carrier for miR-146a to promote HBV replication. SIGNIFICANCE The results suggest a novel miR-146a → FEN1 → HBV DNA regulatory axis in HBV replication life. Ago2 cooperates with miR-146a to regulate the transcription and expression level of FEN1 protein through the downstream target gene IRAK1/TRAF6, and to promote HBV replication.
Collapse
Affiliation(s)
- Min Ji
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong 637000, China; Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China; People's Hospital of Jianyang, Chengdu, Sichuan 641400, China
| | - Xiaoping Mei
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China
| | - Xueming Jing
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China
| | - Xu Xu
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong 637000, China
| | - Xing Chen
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China
| | - Wanlong Pan
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
23
|
Huang Z, Chen Y, Zhang Y. Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways. J Biosci 2020. [DOI: 10.1007/s12038-020-00055-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. The Similarities between Human Mitochondria and Bacteria in the Context of Structure, Genome, and Base Excision Repair System. Molecules 2020; 25:E2857. [PMID: 32575813 PMCID: PMC7356350 DOI: 10.3390/molecules25122857] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria emerged from bacterial ancestors during endosymbiosis and are crucial for cellular processes such as energy production and homeostasis, stress responses, cell survival, and more. They are the site of aerobic respiration and adenosine triphosphate (ATP) production in eukaryotes. However, oxidative phosphorylation (OXPHOS) is also the source of reactive oxygen species (ROS), which are both important and dangerous for the cell. Human mitochondria contain mitochondrial DNA (mtDNA), and its integrity may be endangered by the action of ROS. Fortunately, human mitochondria have repair mechanisms that allow protecting mtDNA and repairing lesions that may contribute to the occurrence of mutations. Mutagenesis of the mitochondrial genome may manifest in the form of pathological states such as mitochondrial, neurodegenerative, and/or cardiovascular diseases, premature aging, and cancer. The review describes the mitochondrial structure, genome, and the main mitochondrial repair mechanism (base excision repair (BER)) of oxidative lesions in the context of common features between human mitochondria and bacteria. The authors present a holistic view of the similarities of mitochondria and bacteria to show that bacteria may be an interesting experimental model for studying mitochondrial diseases, especially those where the mechanism of DNA repair is impaired.
Collapse
Affiliation(s)
| | | | | | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.B.); (M.S.); (J.K.-B.)
| |
Collapse
|
25
|
Zheng L, Meng Y, Campbell JL, Shen B. Multiple roles of DNA2 nuclease/helicase in DNA metabolism, genome stability and human diseases. Nucleic Acids Res 2020; 48:16-35. [PMID: 31754720 PMCID: PMC6943134 DOI: 10.1093/nar/gkz1101] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
DNA2 nuclease/helicase is a structure-specific nuclease, 5'-to-3' helicase, and DNA-dependent ATPase. It is involved in multiple DNA metabolic pathways, including Okazaki fragment maturation, replication of 'difficult-to-replicate' DNA regions, end resection, stalled replication fork processing, and mitochondrial genome maintenance. The participation of DNA2 in these different pathways is regulated by its interactions with distinct groups of DNA replication and repair proteins and by post-translational modifications. These regulatory mechanisms induce its recruitment to specific DNA replication or repair complexes, such as DNA replication and end resection machinery, and stimulate its efficient cleavage of various structures, for example, to remove RNA primers or to produce 3' overhangs at telomeres or double-strand breaks. Through these versatile activities at replication forks and DNA damage sites, DNA2 functions as both a tumor suppressor and promoter. In normal cells, it suppresses tumorigenesis by maintaining the genomic integrity. Thus, DNA2 mutations or functional deficiency may lead to cancer initiation. However, DNA2 may also function as a tumor promoter, supporting cancer cell survival by counteracting replication stress. Therefore, it may serve as an ideal target to sensitize advanced DNA2-overexpressing cancers to current chemo- and radiotherapy regimens.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Judith L Campbell
- Divisions of Chemistry and Chemical Engineering and Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
26
|
Brieba LG. Structure-Function Analysis Reveals the Singularity of Plant Mitochondrial DNA Replication Components: A Mosaic and Redundant System. PLANTS 2019; 8:plants8120533. [PMID: 31766564 PMCID: PMC6963530 DOI: 10.3390/plants8120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Luis Gabriel Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato C.P. 36821, Mexico
| |
Collapse
|
27
|
The roles of fission yeast exonuclease 5 in nuclear and mitochondrial genome stability. DNA Repair (Amst) 2019; 83:102720. [PMID: 31563844 DOI: 10.1016/j.dnarep.2019.102720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/04/2019] [Accepted: 09/19/2019] [Indexed: 11/22/2022]
Abstract
The Exo5 family consists of bi-directional, single-stranded DNA-specific exonucleases that contain an iron-sulfur cluster as a structural motif and have multiple roles in DNA metabolism. S. cerevisiae Exo5 is essential for mitochondrial genome maintenance, while the human ortholog is important for nuclear genome stability and DNA repair. Here, we identify the Exo5 ortholog in Schizosaccharomyes pombe (spExo5). The activity of spExo5 is highly similar to that of the human enzyme. When the single-stranded DNA is coated with single-stranded DNA binding protein RPA, spExo5 become a 5'-specific exonuclease. Exo5Δ mutants are sensitive to various DNA damaging agents, particularly interstrand crosslinking agents. An epistasis analysis places exo5+ in the Fanconi pathway for interstrand crosslink repair. Exo5+ is in a redundant pathway with rad2+, which encodes the flap endonuclease FEN1, for mitochondrial genome maintenance. Deletion of both genes lead to severe depletion of the mitochondrial genome, and defects in respiration, indicating that either spExo5 or spFEN1 is necessary for mitochondrial DNA metabolism.
Collapse
|
28
|
Scheffler K, Bjørås KØ, Bjørås M. Diverse functions of DNA glycosylases processing oxidative base lesions in brain. DNA Repair (Amst) 2019; 81:102665. [PMID: 31327582 DOI: 10.1016/j.dnarep.2019.102665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous and exogenous oxidative agents continuously damage genomic DNA, with the brain being particularly vulnerable. Thus, preserving genomic integrity is key for brain health and neuronal function. Accumulation of DNA damage is one of the causative factors of ageing and increases the risk of a wide range of neurological disorders. Base excision repair is the major pathway for removal of oxidized bases in the genome and initiated by DNA glycosylases. Emerging evidence suggest that DNA glycosylases have non-canonical functions important for genome regulation. Understanding canonical and non-canonical functions of DNA glycosylases processing oxidative base lesions modulating brain function will be crucial for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katja Scheffler
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway
| | - Karine Øian Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, N-0424 Oslo, Norway.
| |
Collapse
|
29
|
Role of Mitochondrial DNA Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD). Int J Mol Sci 2019; 20:ijms20102374. [PMID: 31091656 PMCID: PMC6566654 DOI: 10.3390/ijms20102374] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex eye disease that affects millions of people worldwide and is the main reason for legal blindness and vision loss in the elderly in developed countries. Although the cause of AMD pathogenesis is not known, oxidative stress-related damage to retinal pigment epithelium (RPE) is considered an early event in AMD induction. However, the precise cause of such damage and of the induction of oxidative stress, including related oxidative effects occurring in RPE and the onset and progression of AMD, are not well understood. Many results point to mitochondria as a source of elevated levels of reactive oxygen species (ROS) in AMD. This ROS increase can be associated with aging and effects induced by other AMD risk factors and is correlated with damage to mitochondrial DNA. Therefore, mitochondrial DNA (mtDNA) damage can be an essential element of AMD pathogenesis. This is supported by many studies that show a greater susceptibility of mtDNA than nuclear DNA to DNA-damaging agents in AMD. Therefore, the mitochondrial DNA damage reaction (mtDDR) is important in AMD prevention and in slowing down its progression as is ROS-targeting AMD therapy. However, we know far less about mtDNA than its nuclear counterparts. Further research should measure DNA damage in order to compare it in mitochondria and the nucleus, as current methods have serious disadvantages.
Collapse
|
30
|
Abstract
The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.
Collapse
Affiliation(s)
- Rebeca R Alencar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Caio M P F Batalha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
31
|
Zhao L. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes 2019; 45:311-341. [PMID: 31627882 DOI: 10.1016/bs.enz.2019.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria play a central role in bioenergetics, and fulfill a plethora of functions in cell signaling, programmed cell death, and biosynthesis of key protein cofactors. Mitochondria harbor their own genomic DNA, which encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. Mitochondrial DNA (mtDNA) is essential for cellular and organismal functions, and defects in mitochondrial genome maintenance have been implicated in common human diseases and mitochondrial disorders. mtDNA repair and degradation are known pathways to cope with mtDNA damage; however, molecular factors involved in this process have remained unclear. Such knowledge is fundamental to the understanding of mitochondrial genomic maintenance and pathology, because mtDNA degradation may contribute to the etiology of mtDNA depletion syndromes and to the activation of the innate immune response by fragmented mtDNA. This article reviews the current literature regarding the importance of mitochondrial DNA degradation in mtDNA maintenance and stress response, and the recent progress in uncovering molecular factors involved in mtDNA degradation. These factors include key components of the mtDNA replication machinery, such as DNA polymerase γ, helicase Twinkle, and exonuclease MGME1, as well as a major DNA-packaging protein, mitochondrial transcription factor A (TFAM).
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
32
|
Al-Behadili A, Uhler JP, Berglund AK, Peter B, Doimo M, Reyes A, Wanrooij S, Zeviani M, Falkenberg M. A two-nuclease pathway involving RNase H1 is required for primer removal at human mitochondrial OriL. Nucleic Acids Res 2018; 46:9471-9483. [PMID: 30102370 PMCID: PMC6182146 DOI: 10.1093/nar/gky708] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 11/12/2022] Open
Abstract
The role of Ribonuclease H1 (RNase H1) during primer removal and ligation at the mitochondrial origin of light-strand DNA synthesis (OriL) is a key, yet poorly understood, step in mitochondrial DNA maintenance. Here, we reconstitute the replication cycle of L-strand synthesis in vitro using recombinant mitochondrial proteins and model OriL substrates. The process begins with initiation of DNA replication at OriL and ends with primer removal and ligation. We find that RNase H1 partially removes the primer, leaving behind the last one to three ribonucleotides. These 5'-end ribonucleotides disturb ligation, a conclusion which is supported by analysis of RNase H1-deficient patient cells. A second nuclease is therefore required to remove the last ribonucleotides and we demonstrate that Flap endonuclease 1 (FEN1) can execute this function in vitro. Removal of RNA primers at OriL thus depends on a two-nuclease model, which in addition to RNase H1 requires FEN1 or a FEN1-like activity. These findings define the role of RNase H1 at OriL and help to explain the pathogenic consequences of disease causing mutations in RNase H1.
Collapse
Affiliation(s)
- Ali Al-Behadili
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Jay P Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Anna-Karin Berglund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Mara Doimo
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Aurelio Reyes
- MRC-Mitochondrial Biology Unit, University of Cambridge, MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, University of Cambridge, MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| |
Collapse
|
33
|
Chimienti G, Picca A, Sirago G, Fracasso F, Calvani R, Bernabei R, Russo F, Carter CS, Leeuwenburgh C, Pesce V, Marzetti E, Lezza AMS. Increased TFAM binding to mtDNA damage hot spots is associated with mtDNA loss in aged rat heart. Free Radic Biol Med 2018; 124:447-453. [PMID: 29969715 PMCID: PMC6319621 DOI: 10.1016/j.freeradbiomed.2018.06.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
The well-known age-related mitochondrial dysfunction deeply affects heart because of the tissue's large dependence on mitochondrial ATP provision. Our study revealed in aged rat heart a significant 25% decrease in mtDNA relative content, a significant 29% increase in the 4.8 Kb mtDNA deletion relative content, and a significant inverse correlation between such contents as well as a significant 38% decrease in TFAM protein amount. The TFAM-binding activity to specific mtDNA regions increased at those encompassing the mtDNA replication origins, D-loop and Ori-L. The same mtDNA regions were screened for different kinds of oxidative damage, namely Single Strand Breaks (SSBs), Double Strand Breaks (DSBs), abasic sites (AP sites) and oxidized bases as 7,8-dihydro-8-oxoguanine (8oxoG). A marked increase in the relative content of mtDNA strand damage (SSBs, DSBs and AP sites) was found in the D-loop and Ori-L regions in the aged animals, unveiling for the first time in vivo an age-related, non-stochastic accumulation of oxidative lesions in these two regions that appear as hot spots of mtDNA damage. The use of Formamidopyrimidine glycosylase (Fpg) demonstrated also a significant age-related accumulation of oxidized purines particularly in the D-loop and Ori-L regions. The detected increased binding of TFAM to the mtDNA damage hot spots in aged heart suggests a link between TFAM binding to mtDNA and loss of mitochondrial genome likely through hindrance of repair processes.
Collapse
Affiliation(s)
- Guglielmina Chimienti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Anna Picca
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Giuseppe Sirago
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Roberto Bernabei
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases - I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Italy
| | - Christy S Carter
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
34
|
Dahal S, Dubey S, Raghavan SC. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria. Cell Mol Life Sci 2018; 75:1641-1655. [PMID: 29116362 PMCID: PMC11105789 DOI: 10.1007/s00018-017-2702-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Mitochondrial DNA is frequently exposed to oxidative damage, as compared to nuclear DNA. Previously, we have shown that while microhomology-mediated end joining can account for DNA deletions in mitochondria, classical nonhomologous DNA end joining, the predominant double-strand break (DSB) repair pathway in nucleus, is undetectable. In the present study, we investigated the presence of homologous recombination (HR) in mitochondria to maintain its genomic integrity. Biochemical studies revealed that HR-mediated repair of DSBs is more efficient in the mitochondria of testes as compared to that of brain, kidney and spleen. Interestingly, a significant increase in the efficiency of HR was observed when a DSB was introduced. Analyses of the clones suggest that most of the recombinants were generated through reciprocal exchange, while ~ 30% of recombinants were due to gene conversion in testicular extracts. Colocalization and immunoblotting studies showed the presence of RAD51 and MRN complex proteins in the mitochondria and immunodepletion of MRE11, RAD51 or NIBRIN suppressed the HR-mediated repair. Thus, our results reveal importance of homologous recombination in the maintenance of mitochondrial genome stability.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shubham Dubey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
35
|
Peeva V, Blei D, Trombly G, Corsi S, Szukszto MJ, Rebelo-Guiomar P, Gammage PA, Kudin AP, Becker C, Altmüller J, Minczuk M, Zsurka G, Kunz WS. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun 2018; 9:1727. [PMID: 29712893 PMCID: PMC5928156 DOI: 10.1038/s41467-018-04131-w] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/04/2018] [Indexed: 02/02/2023] Open
Abstract
Emerging gene therapy approaches that aim to eliminate pathogenic mutations of mitochondrial DNA (mtDNA) rely on efficient degradation of linearized mtDNA, but the enzymatic machinery performing this task is presently unknown. Here, we show that, in cellular models of restriction endonuclease-induced mtDNA double-strand breaks, linear mtDNA is eliminated within hours by exonucleolytic activities. Inactivation of the mitochondrial 5'-3'exonuclease MGME1, elimination of the 3'-5'exonuclease activity of the mitochondrial DNA polymerase POLG by introducing the p.D274A mutation, or knockdown of the mitochondrial DNA helicase TWNK leads to severe impediment of mtDNA degradation. We do not observe similar effects when inactivating other known mitochondrial nucleases (EXOG, APEX2, ENDOG, FEN1, DNA2, MRE11, or RBBP8). Our data suggest that rapid degradation of linearized mtDNA is performed by the same machinery that is responsible for mtDNA replication, thus proposing novel roles for the participating enzymes POLG, TWNK, and MGME1.
Collapse
Affiliation(s)
- Viktoriya Peeva
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | - Daniel Blei
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | - Genevieve Trombly
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | - Sarah Corsi
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany ,0000 0001 0462 7212grid.1006.7Present Address: Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Maciej J. Szukszto
- 0000000121885934grid.5335.0MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY UK
| | - Pedro Rebelo-Guiomar
- 0000000121885934grid.5335.0MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY UK ,0000 0001 1503 7226grid.5808.5Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, 4200-135 Portugal
| | - Payam A. Gammage
- 0000000121885934grid.5335.0MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY UK
| | - Alexei P. Kudin
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | - Christian Becker
- 0000 0000 8580 3777grid.6190.eCologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Weyertal 115b, Cologne, D-50931 Germany
| | - Janine Altmüller
- 0000 0000 8580 3777grid.6190.eCologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Weyertal 115b, Cologne, D-50931 Germany ,0000 0000 8580 3777grid.6190.eInstitute of Human Genetics, University of Cologne, Kerpener Str. 34, Cologne, D-50931 Germany
| | - Michal Minczuk
- 0000000121885934grid.5335.0MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY UK
| | - Gábor Zsurka
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Epileptology and Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, Bonn, D-53105 Germany
| | - Wolfram S. Kunz
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Epileptology and Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, Bonn, D-53105 Germany
| |
Collapse
|
36
|
Wauchope OR, Mitchener MM, Beavers WN, Galligan JJ, Camarillo JM, Sanders WD, Kingsley PJ, Shim HN, Blackwell T, Luong T, deCaestecker M, Fessel JP, Marnett LJ. Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA. Nucleic Acids Res 2018; 46:3458-3467. [PMID: 29438559 PMCID: PMC5909422 DOI: 10.1093/nar/gky089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are formed in mitochondria during electron transport and energy generation. Elevated levels of ROS lead to increased amounts of mitochondrial DNA (mtDNA) damage. We report that levels of M1dG, a major endogenous peroxidation-derived DNA adduct, are 50-100-fold higher in mtDNA than in nuclear DNA in several different human cell lines. Treatment of cells with agents that either increase or decrease mitochondrial superoxide levels leads to increased or decreased levels of M1dG in mtDNA, respectively. Sequence analysis of adducted mtDNA suggests that M1dG residues are randomly distributed throughout the mitochondrial genome. Basal levels of M1dG in mtDNA from pulmonary microvascular endothelial cells (PMVECs) from transgenic bone morphogenetic protein receptor 2 mutant mice (BMPR2R899X) (four adducts per 106 dG) are twice as high as adduct levels in wild-type cells. A similar increase was observed in mtDNA from heterozygous null (BMPR2+/-) compared to wild-type PMVECs. Pulmonary arterial hypertension is observed in the presence of BMPR2 signaling disruptions, which are also associated with mitochondrial dysfunction and oxidant injury to endothelial tissue. Persistence of M1dG adducts in mtDNA could have implications for mutagenesis and mitochondrial gene expression, thereby contributing to the role of mitochondrial dysfunction in diseases.
Collapse
Affiliation(s)
- Orrette R Wauchope
- A.B. Hancock, Jr., Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michelle M Mitchener
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William N Beavers
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James J Galligan
- A.B. Hancock, Jr., Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeannie M Camarillo
- A.B. Hancock, Jr., Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William D Sanders
- A.B. Hancock, Jr., Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Philip J Kingsley
- A.B. Hancock, Jr., Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ha-Na Shim
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thomas Blackwell
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thong Luong
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark deCaestecker
- Departments of Cell and Developmental Biology, Surgery and Medicine, USA
| | - Joshua P Fessel
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lawrence J Marnett
- A.B. Hancock, Jr., Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
37
|
Abstract
Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca(2+) handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA-protein complexes, called "mitochondrial nucleoids," along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA.
| |
Collapse
|
38
|
Silva J, Aivio S, Knobel PA, Bailey LJ, Casali A, Vinaixa M, Garcia-Cao I, Coyaud É, Jourdain AA, Pérez-Ferreros P, Rojas AM, Antolin-Fontes A, Samino-Gené S, Raught B, González-Reyes A, Ribas de Pouplana L, Doherty AJ, Yanes O, Stracker TH. EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation. Nat Cell Biol 2018; 20:162-174. [PMID: 29335528 DOI: 10.1038/s41556-017-0016-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
Abstract
Mitochondria are subcellular organelles that are critical for meeting the bioenergetic and biosynthetic needs of the cell. Mitochondrial function relies on genes and RNA species encoded both in the nucleus and mitochondria, and on their coordinated translation, import and respiratory complex assembly. Here, we characterize EXD2 (exonuclease 3'-5' domain-containing 2), a nuclear-encoded gene, and show that it is targeted to the mitochondria and prevents the aberrant association of messenger RNAs with the mitochondrial ribosome. Loss of EXD2 results in defective mitochondrial translation, impaired respiration, reduced ATP production, increased reactive oxygen species and widespread metabolic abnormalities. Depletion of the Drosophila melanogaster EXD2 orthologue (CG6744) causes developmental delays and premature female germline stem cell attrition, reduced fecundity and a dramatic extension of lifespan that is reversed with an antioxidant diet. Our results define a conserved role for EXD2 in mitochondrial translation that influences development and ageing.
Collapse
Affiliation(s)
- Joana Silva
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Suvi Aivio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department for Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Andreu Casali
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria Vinaixa
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Isabel Garcia-Cao
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alexis A Jourdain
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pablo Pérez-Ferreros
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,EMBL Australia, University of New South Wales, Lowy Cancer Research Center, Single Molecule Science Node, Sydney and Arc Center of Excellence in Advance Molecular Imaging, Sydney, New South Wales, Australia
| | - Ana M Rojas
- Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville (IBIS/CSIC/US/JA), Campus Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Albert Antolin-Fontes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sara Samino-Gené
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Oscar Yanes
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
39
|
Prasad R, Çağlayan M, Dai DP, Nadalutti CA, Zhao ML, Gassman NR, Janoshazi AK, Stefanick DF, Horton JK, Krasich R, Longley MJ, Copeland WC, Griffith JD, Wilson SH. DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair (Amst) 2017; 60:77-88. [PMID: 29100041 PMCID: PMC5919216 DOI: 10.1016/j.dnarep.2017.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial genome integrity is fundamental to mammalian cell viability. Since mitochondrial DNA is constantly under attack from oxygen radicals released during ATP production, DNA repair is vital in removing oxidatively generated lesions in mitochondrial DNA, but the presence of a strong base excision repair system has not been demonstrated. Here, we addressed the presence of such a system in mammalian mitochondria involving the primary base lesion repair enzyme DNA polymerase (pol) β. Pol β was localized to mammalian mitochondria by electron microscopic-immunogold staining, immunofluorescence co-localization and biochemical experiments. Extracts from purified mitochondria exhibited base excision repair activity that was dependent on pol β. Mitochondria from pol β-deficient mouse fibroblasts had compromised DNA repair and showed elevated levels of superoxide radicals after hydrogen peroxide treatment. Mitochondria in pol β-deficient fibroblasts displayed altered morphology by electron microscopy. These results indicate that mammalian mitochondria contain an efficient base lesion repair system mediated in part by pol β and thus pol β plays a role in preserving mitochondrial genome stability.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Melike Çağlayan
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Da-Peng Dai
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Cristina A Nadalutti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ming-Lang Zhao
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Natalie R Gassman
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA; University of South Alabama Mitchell Cancer Institute, 1660 Springhill Ave, Mobile, AL 36604, USA
| | - Agnes K Janoshazi
- Signal Transduction Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Rachel Krasich
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
40
|
Çaglayan M, Prasad R, Krasich R, Longley MJ, Kadoda K, Tsuda M, Sasanuma H, Takeda S, Tano K, Copeland WC, Wilson SH. Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts. Nucleic Acids Res 2017; 45:10079-10088. [PMID: 28973450 PMCID: PMC5622373 DOI: 10.1093/nar/gkx654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/15/2017] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial aprataxin (APTX) protects the mitochondrial genome from the consequence of ligase failure by removing the abortive ligation product, i.e. the 5′-adenylate (5′-AMP) group, during DNA replication and repair. In the absence of APTX activity, blocked base excision repair (BER) intermediates containing the 5′-AMP or 5′-adenylated-deoxyribose phosphate (5′-AMP-dRP) lesions may accumulate. In the current study, we examined DNA polymerase (pol) γ and pol β as possible complementing enzymes in the case of APTX deficiency. The activities of pol β lyase and FEN1 nucleotide excision were able to remove the 5′-AMP-dRP group in mitochondrial extracts from APTX−/− cells. However, the lyase activity of purified pol γ was weak against the 5′-AMP-dRP block in a model BER substrate, and this activity was not able to complement APTX deficiency in mitochondrial extracts from APTX−/−Pol β−/− cells. FEN1 also failed to provide excision of the 5′-adenylated BER intermediate in mitochondrial extracts. These results illustrate the potential role of pol β in complementing APTX deficiency in mitochondria.
Collapse
Affiliation(s)
- Melike Çaglayan
- Genome Integrity and Structural Biology Laboratory, DNA Repair and Nucleic Acid Enzymology Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, DNA Repair and Nucleic Acid Enzymology Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Rachel Krasich
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Kei Kadoda
- Division of Radiation Life Science, Research Reactor Institute, Kyoto University, Asashiro-Nishi, Kumatori, Osaka 590-0494 Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Keizo Tano
- Division of Radiation Life Science, Research Reactor Institute, Kyoto University, Asashiro-Nishi, Kumatori, Osaka 590-0494 Japan
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, DNA Repair and Nucleic Acid Enzymology Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
41
|
Baruch-Torres N, Brieba LG. Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases. Nucleic Acids Res 2017; 45:10751-10763. [PMID: 28977655 PMCID: PMC5737093 DOI: 10.1093/nar/gkx744] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/14/2017] [Indexed: 02/01/2023] Open
Abstract
Genomes acquire lesions that can block the replication fork and some lesions must be bypassed to allow survival. The nuclear genome of flowering plants encodes two family-A DNA polymerases (DNAPs), the result of a duplication event, that are the sole DNAPs in plant organelles. These DNAPs, dubbed Plant Organellar Polymerases (POPs), resemble the Klenow fragment of bacterial DNAP I and are not related to metazoan and fungal mitochondrial DNAPs. Herein we report that replicative POPs from the plant model Arabidopsis thaliana (AtPolI) efficiently bypass one the most insidious DNA lesions, an apurinic/apyrimidinic (AP) site. AtPolIs accomplish lesion bypass with high catalytic efficiency during nucleotide insertion and extension. Lesion bypass depends on two unique polymerization domain insertions evolutionarily unrelated to the insertions responsible for lesion bypass by DNAP θ, an analogous lesion bypass polymerase. AtPolIs exhibit an insertion fidelity that ranks between the fidelity of replicative and lesion bypass DNAPs, moderate 3′-5′ exonuclease activity and strong strand-displacement. AtPolIs are the first known example of a family-A DNAP evolved to function in both DNA replication and lesion bypass. The lesion bypass capabilities of POPs may be required to prevent replication fork collapse in plant organelles.
Collapse
Affiliation(s)
- Noe Baruch-Torres
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato Guanajuato, México
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato Guanajuato, México
| |
Collapse
|
42
|
Vasileiou PVS, Mourouzis I, Pantos C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int J Mol Sci 2017; 18:E1821. [PMID: 28829360 PMCID: PMC5578207 DOI: 10.3390/ijms18081821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Mitochondria have emerged as key players regarding cellular homeostasis not only due to their contribution regarding energy production through oxidative phosphorylation, but also due to their involvement in signaling, ion regulation, and programmed cell death. Indeed, current knowledge supports the notion that mitochondrial dysfunction is a hallmark in the pathogenesis of various diseases. Mitochondrial biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial. Unfortunately, both intrinsic and environmental genotoxic insults constantly threaten the integrity of nuclear as well as mitochondrial DNA. Despite the extensive research that has been made regarding nuclear genome instability, the importance of mitochondrial genome integrity has only recently begun to be elucidated. The specific architecture and repair mechanisms of mitochondrial DNA, as well as the dynamic behavior that mitochondria exert regarding fusion, fission, and autophagy participate in mitochondrial genome stability, and therefore, cell homeostasis.
Collapse
Affiliation(s)
- Panagiotis V S Vasileiou
- Department of Basic Medical Sciences, Laboratory of Histology & Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| | - Iordanis Mourouzis
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| |
Collapse
|
43
|
Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci Rep 2017; 7:8202. [PMID: 28811610 PMCID: PMC5557920 DOI: 10.1038/s41598-017-08392-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023] Open
Abstract
Recently, biological roles of extracellular vesicles (which include among others exosomes, microvesicles and apoptotic bodies) have attracted substantial attention in various fields of biomedicine. Here we investigated the impact of sustained exposure of cells to the fluoroquinolone antibiotic ciprofloxacin on the released extracellular vesicles. Ciprofloxacin is widely used in humans against bacterial infections as well as in cell cultures against Mycoplasma contamination. However, ciprofloxacin is an inducer of oxidative stress and mitochondrial dysfunction of mammalian cells. Unexpectedly, here we found that ciprofloxacin induced the release of both DNA (mitochondrial and chromosomal sequences) and DNA-binding proteins on the exofacial surfaces of small extracellular vesicles referred to in this paper as exosomes. Furthermore, a label-free optical biosensor analysis revealed DNA-dependent binding of exosomes to fibronectin. DNA release on the surface of exosomes was not affected any further by cellular activation or apoptosis induction. Our results reveal for the first time that prolonged low-dose ciprofloxacin exposure leads to the release of DNA associated with the external surface of exosomes.
Collapse
|
44
|
DNA Polymerase Beta Participates in Mitochondrial DNA Repair. Mol Cell Biol 2017; 37:MCB.00237-17. [PMID: 28559431 DOI: 10.1128/mcb.00237-17] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments, mitochondrion-specific protein partners were identified, with the interactors functioning mainly in DNA maintenance and mitochondrial import. Of particular interest was the identification of the proteins TWINKLE, SSBP1, and TFAM, all of which are mitochondrion-specific DNA effectors and are known to function in the nucleoid. Polβ directly interacted functionally with the mitochondrial helicase TWINKLE. Human kidney cells with Polβ knockout (KO) had higher endogenous mitochondrial DNA (mtDNA) damage. Mitochondrial extracts derived from heterozygous Polβ mouse tissue and KO cells had lower nucleotide incorporation activity. Mouse-derived Polβ null fibroblasts had severely affected metabolic parameters. Indeed, gene knockout of Polβ caused mitochondrial dysfunction, including reduced membrane potential and mitochondrial content. We show that Polβ is a mitochondrial polymerase involved in mtDNA maintenance and is required for mitochondrial homeostasis.
Collapse
|
45
|
Activation of Dun1 in response to nuclear DNA instability accounts for the increase in mitochondrial point mutations in Rad27/FEN1 deficient S. cerevisiae. PLoS One 2017; 12:e0180153. [PMID: 28678842 PMCID: PMC5497989 DOI: 10.1371/journal.pone.0180153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/09/2017] [Indexed: 11/25/2022] Open
Abstract
Rad27/FEN1 nuclease that plays important roles in the maintenance of DNA stability in the nucleus has recently been shown to reside in mitochondria. Accordingly, it has been established that Rad27 deficiency causes increased mutagenesis, but decreased microsatellite instability and homologous recombination in mitochondria. Our current analysis of mutations leading to erythromycin resistance indicates that only some of them arise in mitochondrial DNA and that the GC→AT transition is a hallmark of the mitochondrial mutagenesis in rad27 null background. We also show that the mitochondrial mutator phenotype resulting from Rad27 deficiency entirely depends on the DNA damage checkpoint kinase Dun1. DUN1 inactivation suppresses the mitochondrial mutator phenotype caused by Rad27 deficiency and this suppression is eliminated at least in part by subsequent deletion of SML1 encoding a repressor of ribonucleotide reductase. We conclude that Rad27 deficiency causes a mitochondrial mutator phenotype via activation of DNA damage checkpoint kinase Dun1 and that a Dun1-mediated increase of dNTP pools contributes to this phenomenon. These results point to the nuclear DNA instability as the source of mitochondrial mutagenesis. Consistently, we show that mitochondrial mutations occurring more frequently in yeast devoid of Rrm3, a DNA helicase involved in rDNA replication, are also dependent on Dun1. In addition, we have established that overproduction of Exo1, which suppresses DNA damage sensitivity and replication stress in nuclei of Rad27 deficient cells, but does not enter mitochondria, suppresses the mitochondrial mutagenesis. Exo1 overproduction restores also a great part of allelic recombination and microsatellite instability in mitochondria of Rad27 deficient cells. In contrast, the overproduction of Exo1 does not influence mitochondrial direct-repeat mediated deletions in rad27 null background, pointing to this homologous recombination pathway as the direct target of Rad27 activity in mitochondria.
Collapse
|
46
|
Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med 2017; 107:216-227. [PMID: 27915046 PMCID: PMC5449269 DOI: 10.1016/j.freeradbiomed.2016.11.050] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/25/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
The electron transport chain is the primary pathway by which a cell generates energy in the form of ATP. Byproducts of this process produce reactive oxygen species that can cause damage to mitochondrial DNA. If not properly repaired, the accumulation of DNA damage can lead to mitochondrial dysfunction linked to several human disorders including neurodegenerative diseases and cancer. Mitochondria are able to combat oxidative DNA damage via repair mechanisms that are analogous to those found in the nucleus. Of the repair pathways currently reported in the mitochondria, the base excision repair pathway is the most comprehensively described. Proteins that are involved with the maintenance of mtDNA are encoded by nuclear genes and translocate to the mitochondria making signaling between the nucleus and mitochondria imperative. In this review, we discuss the current understanding of mitochondrial DNA repair mechanisms and also highlight the sensors and signaling pathways that mediate crosstalk between the nucleus and mitochondria in the event of mitochondrial stress.
Collapse
Affiliation(s)
- Mohammad Saki
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States
| | - Aishwarya Prakash
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States.
| |
Collapse
|
47
|
Caston RA, Demple B. Risky repair: DNA-protein crosslinks formed by mitochondrial base excision DNA repair enzymes acting on free radical lesions. Free Radic Biol Med 2017; 107:146-150. [PMID: 27867099 PMCID: PMC5815828 DOI: 10.1016/j.freeradbiomed.2016.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 01/06/2023]
Abstract
Oxygen is both necessary and dangerous for aerobic cell function. ATP is most efficiently made by the electron transport chain, which requires oxygen as an electron acceptor. However, the presence of oxygen, and to some extent the respiratory chain itself, poses a danger to cellular components. Mitochondria, the sites of oxidative phosphorylation, have defense and repair pathways to cope with oxidative damage. For mitochondrial DNA, an essential pathway is base excision repair, which acts on a variety of small lesions. There are instances, however, in which attempted DNA repair results in more damage, such as the formation of a DNA-protein crosslink trapping the repair enzyme on the DNA. That is the case for mitochondrial DNA polymerase γ acting on abasic sites oxidized at the 1-carbon of 2-deoxyribose. Such DNA-protein crosslinks presumably must be removed in order to restore function. In nuclear DNA, ubiquitylation of the crosslinked protein and digestion by the proteasome are essential first processing steps. How and whether such mechanisms operate on DNA-protein crosslinks in mitochondria remains to be seen.
Collapse
Affiliation(s)
- Rachel Audrey Caston
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
48
|
Crouch JD, Brosh RM. Mechanistic and biological considerations of oxidatively damaged DNA for helicase-dependent pathways of nucleic acid metabolism. Free Radic Biol Med 2017; 107:245-257. [PMID: 27884703 PMCID: PMC5440220 DOI: 10.1016/j.freeradbiomed.2016.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022]
Abstract
Cells are under constant assault from reactive oxygen species that occur endogenously or arise from environmental agents. An important consequence of such stress is the generation of oxidatively damaged DNA, which is represented by a wide range of non-helix distorting and helix-distorting bulkier lesions that potentially affect a number of pathways including replication and transcription; consequently DNA damage tolerance and repair pathways are elicited to help cells cope with the lesions. The cellular consequences and metabolism of oxidatively damaged DNA can be quite complex with a number of DNA metabolic proteins and pathways involved. Many of the responses to oxidative stress involve a specialized class of enzymes known as helicases, the topic of this review. Helicases are molecular motors that convert the energy of nucleoside triphosphate hydrolysis to unwinding of structured polynucleic acids. Helicases by their very nature play fundamentally important roles in DNA metabolism and are implicated in processes that suppress chromosomal instability, genetic disease, cancer, and aging. We will discuss the roles of helicases in response to nuclear and mitochondrial oxidative stress and how this important class of enzymes help cells cope with oxidatively generated DNA damage through their functions in the replication stress response, DNA repair, and transcriptional regulation.
Collapse
Affiliation(s)
- Jack D Crouch
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
49
|
Mitochondrial DNA replication: a PrimPol perspective. Biochem Soc Trans 2017; 45:513-529. [PMID: 28408491 PMCID: PMC5390496 DOI: 10.1042/bst20160162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
PrimPol, (primase-polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process.
Collapse
|
50
|
Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, Garreau-Balandier I, Vernet P, Falkenberg M, Farge G. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One 2017; 12:e0176795. [PMID: 28453550 PMCID: PMC5409072 DOI: 10.1371/journal.pone.0176795] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) can undergo double-strand breaks (DSBs), caused by defective replication, or by various endogenous or exogenous sources, such as reactive oxygen species, chemotherapeutic agents or ionizing radiations. MtDNA encodes for proteins involved in ATP production, and maintenance of genome integrity following DSBs is thus of crucial importance. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown. In this study, we investigated the consequences of the production of mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSB repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content. We demonstrate that none of the known mitochondrial nucleases are involved in the mtDNA degradation and that the DNA loss is not due to autophagy, mitophagy or apoptosis. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs.
Collapse
Affiliation(s)
- Amandine Moretton
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Frédéric Morel
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Bertil Macao
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30, Gothenburg, Sweden
| | - Philippe Lachaume
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Layal Ishak
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Mathilde Lefebvre
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Isabelle Garreau-Balandier
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Patrick Vernet
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Maria Falkenberg
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30, Gothenburg, Sweden
| | - Géraldine Farge
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|