1
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
2
|
Zhang Q, Lu C, Lu F, Liao Y, Cai J, Gao J. Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis. Front Endocrinol (Lausanne) 2024; 15:1365156. [PMID: 38686209 PMCID: PMC11056552 DOI: 10.3389/fendo.2024.1365156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxuan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Kuziel G, Moore BN, Haugstad GP, Xiong Y, Williams AE, Arendt LM. Alterations in the mammary gland and tumor microenvironment of formerly obese mice. BMC Cancer 2023; 23:1183. [PMID: 38041006 PMCID: PMC10693119 DOI: 10.1186/s12885-023-11688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Obesity is a risk factor for breast cancer, and women with obesity that develop breast cancer have a worsened prognosis. Within the mammary gland, obesity causes chronic, macrophage-driven inflammation and adipose tissue fibrosis. Weight loss is a recommended intervention to resolve obesity, but the impact of weight loss on the mammary gland microenvironment and in tumors has not been well identified. METHODS To examine the effects of weight loss following obesity, mice were fed a high-fat diet for 16 weeks to induce obesity, then switched to a low-fat diet for 6 weeks. We examined changes in immune cells, including fibrocytes, which are myeloid lineage cells that have attributes of both macrophages and myofibroblasts, and collagen deposition within the mammary glands of non-tumor-bearing mice and within the tumors of mice that were transplanted with estrogen receptor alpha positive TC2 tumor cells. RESULTS In formerly obese mice, we observed reduced numbers of crown-like structures and fibrocytes in mammary glands, while collagen deposition was not resolved with weight loss. Following transplant of TC2 tumor cells into the mammary glands of lean, obese, and formerly obese mice, diminished collagen deposition and cancer-associated fibroblasts were observed in tumors from formerly obese mice compared to obese mice. Within tumors of obese mice, increased myeloid-derived suppressor cells and diminished CD8+ T cells were identified, while the microenvironment of tumors of formerly obese mice were more similar to tumors from lean mice. When TC2 tumor cells were mixed with CD11b+CD34+ myeloid progenitor cells, which are the cells of origin for fibrocytes, and transplanted into mammary glands of lean and obese mice, collagen deposition within the tumors of both lean and obese was significantly greater than when tumor cells were mixed with CD11b+CD34- monocytes or total CD45+ immune cells. CONCLUSIONS Overall, these studies demonstrate that weight loss resolved some of the microenvironmental conditions within the mammary gland that may contribute to tumor progression. Additionally, fibrocytes may contribute to early collagen deposition in mammary tumors of obese mice leading to the growth of desmoplastic tumors.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Grace P Haugstad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yue Xiong
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Cancer Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, 2015 Linden Drive Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
4
|
Şahin TÖ, Yılmaz B, Yeşilyurt N, Cicia D, Szymanowska A, Amero P, Ağagündüz D, Capasso R. Recent insights into the nutritional immunomodulation of cancer-related microRNAs. Phytother Res 2023; 37:4375-4397. [PMID: 37434291 DOI: 10.1002/ptr.7937] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Cancer is the most common cause of death worldwide, following cardiovascular diseases. Cancer is a multifactorial disease and many reasons such as physical, chemical, biological, and lifestyle-related factors. Nutrition, which is one of the various factors that play a role in the prevention, development, and treatment of many types of cancer, affects the immune system, which is characterized by disproportionate pro-inflammatory signaling in cancer. Studies investigating the molecular mechanisms of this effect have shown that foods rich in bioactive compounds, such as green tea, olive oil, turmeric, and soybean play a significant role in positively changing the expression of miRNAs involved in the regulation of genes associated with oncogenic/tumor-suppressing pathways. In addition to these foods, some diet models may change the expression of specific cancer-related miRNAs in different ways. While Mediterranean diet has been associated with anticancer effects, a high-fat diet, and a methyl-restricted diet are considered to have negative effects. This review aims to discuss the effects of specific foods called "immune foods," diet models, and bioactive components on cancer by changing the expression of miRNAs in the prevention and treatment of cancer.
Collapse
Affiliation(s)
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | | | - Donatella Cicia
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
5
|
Kuziel G, Moore BN, Haugstad GP, Xiong Y, Williams AE, Arendt LM. Alterations in the Mammary Gland and Tumor Microenvironment of Formerly Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545000. [PMID: 37398468 PMCID: PMC10312750 DOI: 10.1101/2023.06.14.545000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Obesity is a risk factor for breast cancer, and women with obesity that develop breast cancer have a worsened prognosis. Within the mammary gland, obesity causes chronic, macrophage-driven inflammation and adipose tissue fibrosis. To examine the impact of weight loss on the mammary microenvironment, mice were fed high-fat diet to induce obesity, then switched to a low-fat diet. In formerly obese mice, we observed reduced numbers of crown-like structures and fibrocytes in mammary glands, while collagen deposition was not resolved with weight loss. Following transplant of TC2 tumor cells into the mammary glands of lean, obese, and formerly obese mice, diminished collagen deposition and cancer-associated fibroblasts were observed in tumors from formerly obese mice compared to obese mice. When TC2 tumor cells were mixed with CD11b+CD34+ myeloid progenitor cells, collagen deposition within the tumors was significantly greater compared to when tumor cells were mixed with CD11b+CD34- monocytes, suggesting that fibrocytes contribute to early collagen deposition in mammary tumors of obese mice. Overall, these studies show that weight loss resolved some of the microenvironmental conditions within the mammary gland that may contribute to tumor progression.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison, Madison WI 53705, U.S.A
| | - Brittney N. Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Grace P. Haugstad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Yue Xiong
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Abbey E. Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Lisa M. Arendt
- Cancer Biology Program, University of Wisconsin-Madison, Madison WI 53705, U.S.A
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| |
Collapse
|
6
|
Kuziel G, Moore BN, Arendt LM. Obesity and Fibrosis: Setting the Stage for Breast Cancer. Cancers (Basel) 2023; 15:cancers15112929. [PMID: 37296891 DOI: 10.3390/cancers15112929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a rising health concern and is linked to a worsened breast cancer prognosis. Tumor desmoplasia, which is characterized by elevated numbers of cancer-associated fibroblasts and the deposition of fibrillar collagens within the stroma, may contribute to the aggressive clinical behavior of breast cancer in obesity. A major component of the breast is adipose tissue, and fibrotic changes in adipose tissue due to obesity may contribute to breast cancer development and the biology of the resulting tumors. Adipose tissue fibrosis is a consequence of obesity that has multiple sources. Adipocytes and adipose-derived stromal cells secrete extracellular matrix composed of collagen family members and matricellular proteins that are altered by obesity. Adipose tissue also becomes a site of chronic, macrophage-driven inflammation. Macrophages exist as a diverse population within obese adipose tissue and mediate the development of fibrosis through the secretion of growth factors and matricellular proteins and interactions with other stromal cells. While weight loss is recommended to resolve obesity, the long-term effects of weight loss on adipose tissue fibrosis and inflammation within breast tissue are less clear. Increased fibrosis within breast tissue may increase the risk for tumor development as well as promote characteristics associated with tumor aggressiveness.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Lisa M Arendt
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
7
|
Plaut S. Suggesting a mechanism for acupuncture as a global percutaneous needle fasciotomy that respects tensegrity principles for treating fibromyalgia. Front Med (Lausanne) 2023; 9:952159. [PMID: 36777160 PMCID: PMC9911817 DOI: 10.3389/fmed.2022.952159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Acupuncture is a minimally invasive therapeutic method that uses small caliber needles while inserting them through the skin into various areas of the body. Some empirical studies find evidence to support the use of acupuncture as a treatment for certain medical conditions, however, this peculiar practice is widely considered as the domain of alternative and non-evidence-based medicine. Several mechanisms have been suggested in an attempt to explain the therapeutic action of acupuncture, but the way in which acupuncture alleviates chronic non-cancer pain or psychosomatic and psychiatric disorders is not fully understood. A recent study suggested a theoretical model (coined "Fascial Armoring") with a cellular pathway to help explain the pathogenesis of myofascial pain/fibromyalgia syndrome and functional psychosomatic syndromes. It proposes that these syndromes are a spectrum of a single medical entity that involves myofibroblasts with contractile activity in fascia and aberrant extracellular matrix (ECM) remodeling, which may lead to widespread mechanical tension and compression. This can help explain diverse psycho-somatic manifestations of fibromyalgia-like syndromes. Fascia is a continuous interconnected tissue network that extends throughout the body and has qualities of bio-tensegrity. Previous studies show that a mechanical action by needling induces soft tissue changes and lowers the shear modulus and stiffness in myofascial tissue. This hypothesis and theory paper offers a new mechanism for acupuncture therapy as a global percutaneous needle fasciotomy that respects tensegrity principles (tensegrity-based needling), in light of the theoretical model of "Fascial Armoring." The translation of this model to other medical conditions carries potential to advance therapies. These days opioid overuse and over-prescription are ubiquitous, as well as chronic pain and suffering.
Collapse
Affiliation(s)
- Shiloh Plaut
- *Correspondence: Shiloh Plaut, , ; orcid.org/0000-0001-5823-3390
| |
Collapse
|
8
|
Hillers-Ziemer LE, Kuziel G, Williams AE, Moore BN, Arendt LM. Breast cancer microenvironment and obesity: challenges for therapy. Cancer Metastasis Rev 2022; 41:627-647. [PMID: 35435599 PMCID: PMC9470689 DOI: 10.1007/s10555-022-10031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Women with obesity who develop breast cancer have a worsened prognosis with diminished survival rates and increased rates of metastasis. Obesity is also associated with decreased breast cancer response to endocrine and chemotherapeutic treatments. Studies utilizing multiple in vivo models of obesity as well as human breast tumors have enhanced our understanding of how obesity alters the breast tumor microenvironment. Changes in the complement and function of adipocytes, adipose-derived stromal cells, immune cells, and endothelial cells and remodeling of the extracellular matrix all contribute to the rapid growth of breast tumors in the context of obesity. Interactions of these cells enhance secretion of cytokines and adipokines as well as local levels of estrogen within the breast tumor microenvironment that promote resistance to multiple therapies. In this review, we will discuss our current understanding of the impact of obesity on the breast tumor microenvironment, how obesity-induced changes in cellular interactions promote resistance to breast cancer treatments, and areas for development of treatment interventions for breast cancer patients with obesity.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Genevra Kuziel
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr. Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
9
|
Plaut S. Scoping review and interpretation of myofascial pain/fibromyalgia syndrome: An attempt to assemble a medical puzzle. PLoS One 2022; 17:e0263087. [PMID: 35171940 PMCID: PMC8849503 DOI: 10.1371/journal.pone.0263087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myofascial Pain Syndrome (MPS) is a common, overlooked, and underdiagnosed condition and has significant burden. MPS is often dismissed by clinicians while patients remain in pain for years. MPS can evolve into fibromyalgia, however, effective treatments for both are lacking due to absence of a clear mechanism. Many studies focus on central sensitization. Therefore, the purpose of this scoping review is to systematically search cross-disciplinary empirical studies of MPS, focusing on mechanical aspects, and suggest an organic mechanism explaining how it might evolve into fibromyalgia. Hopefully, it will advance our understanding of this disease. METHODS Systematically searched multiple phrases in MEDLINE, EMBASE, COCHRANE, PEDro, and medRxiv, majority with no time limit. Inclusion/exclusion based on title and abstract, then full text inspection. Additional literature added on relevant side topics. Review follows PRISMA-ScR guidelines. PROSPERO yet to adapt registration for scoping reviews. FINDINGS 799 records included. Fascia can adapt to various states by reversibly changing biomechanical and physical properties. Trigger points, tension, and pain are a hallmark of MPS. Myofibroblasts play a role in sustained myofascial tension. Tension can propagate in fascia, possibly supporting a tensegrity framework. Movement and mechanical interventions treat and prevent MPS, while living sedentarily predisposes to MPS and recurrence. CONCLUSIONS MPS can be seen as a pathological state of imbalance in a natural process; manifesting from the inherent properties of the fascia, triggered by a disrupted biomechanical interplay. MPS might evolve into fibromyalgia through deranged myofibroblasts in connective tissue ("fascial armoring"). Movement is an underemployed requisite in modern lifestyle. Lifestyle is linked to pain and suffering. The mechanism of needling is suggested to be more mechanical than currently thought. A "global percutaneous needle fasciotomy" that respects tensegrity principles may treat MPS/fibromyalgia more effectively. "Functional-somatic syndromes" can be seen as one entity (myofibroblast-generated-tensegrity-tension), sharing a common rheuma-psycho-neurological mechanism.
Collapse
Affiliation(s)
- Shiloh Plaut
- School of Medicine, St. George’s University of London, London, United Kingdom
| |
Collapse
|
10
|
Banerjee A, Mukherjee S, Maji BK. Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview. Toxicol Rep 2021; 8:938-961. [PMID: 34026558 PMCID: PMC8120859 DOI: 10.1016/j.toxrep.2021.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Flavor enhancing high lipid diet acts as silent killer. Monosodium glutamate mixed with high lipid diet alters redox-status. Monosodium glutamate mixed with high lipid diet induces systemic anomalies.
In this fast-food era, people depend on ready-made foods and engage in minimal physical activities that ultimately change their food habits. Majorities of such foods have harmful effects on human health due to higher percentages of saturated fatty acids, trans-fatty acids, and hydrogenated fats in the form of high lipid diet (HLD). Moreover, food manufacturers add monosodium glutamate (MSG) to enhance the taste and palatability of the HLD. Both MSG and HLD induce the generation of reactive oxygen species (ROS) and thereby alter the redox-homeostasis to cause systemic damage. However, MSG mixed HLD (MH) consumption leads to dyslipidemia, silently develops non-alcoholic fatty liver disease followed by metabolic alterations and systemic anomalies, even malignancies, via modulating different signaling pathways. This comprehensive review formulates health care strategies to create global awareness about the harmful impact of MH on the human body and recommends the daily consumption of more natural foods rich in antioxidants instead of toxic ingredients to counterbalance the MH-induced systemic anomalies.
Collapse
|
11
|
Lin H, Chaudhury M, Sharma N, Bhattacharyya S, Elolimy AA, Yeruva L, Ronis MJJ, Mercer KE. MicroRNA profiles were altered in neonatal piglet mammary glands following postnatal infant formula feeding. J Nutr Biochem 2020; 83:108397. [PMID: 32645610 DOI: 10.1016/j.jnutbio.2020.108397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Abstract
Postnatal dietary modulation of microRNAs (miRNAs) and effects on miRNA-mRNA interactions in tissues remain unknown. This study aimed to investigate whether dietary factors (formula vs. breastfeeding) affect mammary miRNA expression and to determine if these changes are concurrent with developmental alterations of the mammary gland in neonatal piglets. Female Yorkshire/Duroc piglets were fed sow's milk or cow's milk- or soy-based infant formula (from postnatal day 2 to day 21; n=6/group). Differentially expressed miRNAs were determined using mammary miRNA profiling, followed by miRNA and mRNA expressions characterized by quantitative reverse-transcription polymerase chain reaction. Milk and soy formulas reduced expressions of miR-1, -128, -133a, -193b, -206 and -27a; miRNA down-regulation altered mRNA expressions of genes (e.g., Ccnd1, Tgfb3, Igf1r and Tbx3) that were consistent with enhanced cell proliferation and suppressed apoptotic processes in the developing mammary gland. Interestingly, down-regulation of miR-1, -128 and -27a also correlated with increased mRNA genes such as Hmgcs and Hmgcr encoding cholesterol synthesis in the mammary glands in response to lower circulating cholesterol levels. Infant formula feeding affected mammary miRNA profiles in neonatal piglets, concurrent with increased expression of cell proliferation and cholesterol synthesis genes, suggesting early nutritional modulation of miRNAs may contribute to regulation of proliferative status and cholesterol homeostasis of developing mammary glands during infancy.
Collapse
Affiliation(s)
- Haixia Lin
- Arkansas Children's Nutrition Center, Little Rock, AR; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR.
| | | | - Neha Sharma
- Arkansas Children's Nutrition Center, Little Rock, AR
| | - Sudeepa Bhattacharyya
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ahmed A Elolimy
- Arkansas Children's Nutrition Center, Little Rock, AR; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR; Arkansas Children's Research Institute, Little Rock, AR
| | - Martin J J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, Little Rock, AR; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
12
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
13
|
Hillers-Ziemer LE, Arendt LM. Weighing the Risk: effects of Obesity on the Mammary Gland and Breast Cancer Risk. J Mammary Gland Biol Neoplasia 2020; 25:115-131. [PMID: 32519090 PMCID: PMC7933979 DOI: 10.1007/s10911-020-09452-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is a preventable risk factor for breast cancer following menopause. Regardless of menopausal status, obese women who develop breast cancer have a worsened prognosis. Breast tissue is comprised of mammary epithelial cells organized into ducts and lobules and surrounded by adipose-rich connective tissue. Studies utilizing multiple in vivo models of obesity as well as human breast tissue have contributed to our understanding of how obesity alters mammary tissue. Localized changes in mammary epithelial cell populations, elevated secretion of adipokines and angiogenic mediators, inflammation within mammary adipose tissue, and remodeling of the extracellular matrix may result in an environment conducive to breast cancer growth. Despite these significant alterations caused by obesity within breast tissue, studies have suggested that some, but not all, obesity-induced changes may be mitigated with weight loss. Here, we review our current understanding regarding the impact of obesity on the breast microenvironment, how obesity-induced changes may contribute to breast tumor progression, and the impact of weight loss on the breast microenvironment.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
14
|
Sammarco A, Finesso G, Zanetti R, Ferro S, Rasotto R, Caliari D, Goldschmidt MH, Orvieto E, Castagnaro M, Cavicchioli L, Zappulli V. Biphasic Feline Mammary Carcinomas Including Carcinoma and Malignant Myoepithelioma. Vet Pathol 2020; 57:377-387. [PMID: 32100640 DOI: 10.1177/0300985820908792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Feline mammary tumors are usually malignant and aggressive carcinomas. Most cases are simple monophasic carcinomas (1 epithelial population), and additional phenotyping is usually not needed. In this study, we describe 10 malignant mammary tumors from 9 female cats that had unusual histomorphology: they appeared biphasic, with 2 distinct cell populations. Initially, they were morphologically diagnosed as either carcinosarcoma (1/10) or malignant pleomorphic tumor (9/10) of the mammary gland, as the latter did not match any previously described histological subtype. Immunohistochemistry (IHC) was performed for pancytokeratin, cytokeratins 8 and 18, cytokeratin 14, cytokeratins 5 and 6, vimentin, p63, calponin, alpha-smooth muscle actin, Ki-67, ERBB2, estrogen receptor alpha, and progesterone receptor. In 7 of 10 cases, the biphasic nature was confirmed and, on the basis of the IHC results, they were classified as carcinoma and malignant myoepithelioma (4/10), ductal carcinoma (1/10), and carcinosarcoma (2/10). The other 3 of 10 cases were monophasic based on IHC. In the cases of carcinoma and malignant myoepithelioma, the malignant myoepithelial cells were 100% positive for vimentin (4/4) and variably positive for p63, calponin, and cytokeratins (4/4). These findings show that, although rare, biphasic mammary carcinomas do occur in cats. In dogs and humans, tumors composed of malignant epithelial and myoepithelial cells have a less aggressive behavior than certain simple carcinomas, and therefore, their identification might also be clinically significant in the cat.
Collapse
Affiliation(s)
- Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Padua, Italy
| | - Giovanni Finesso
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Padua, Italy
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rossella Zanetti
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Padua, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Padua, Italy
| | | | | | - Michael H Goldschmidt
- Laboratory of Pathology and Toxicology, Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Enrico Orvieto
- Pathology Department ULSS5 Polesana, Viale Tre Martiri, Rovigo, Italy
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Padua, Italy
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Padua, Italy
| |
Collapse
|
15
|
Bandini E, Rossi T, Gallerani G, Fabbri F. Adipocytes and microRNAs Crosstalk: A Key Tile in the Mosaic of Breast Cancer Microenvironment. Cancers (Basel) 2019; 11:cancers11101451. [PMID: 31569710 PMCID: PMC6826993 DOI: 10.3390/cancers11101451] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) is a disease characterized by a high grade of heterogeneity. Consequently, despite the great achievements obtained in the last decades, most of the current therapeutic regimens still fail. The identification of new molecular mechanisms that will increase the knowledge of all steps of tumor initiation and growth is mandatory in finding new clinical strategies. The BC microenvironment, consisting of endothelial cells, fibroblasts, immune cells and adipocytes, plays an essential role in regulating BC development, and recently it has gained great attention in the scientific community. In particular, adipose tissue is emerging as an important target to investigate among mammary gland components. The mechanisms underlying BC progression driven by adipocytes are predominantly unexplored, especially that involving the switch from normal adipocytes to the so-called cancer-associated adipocytes (CAAs). MicroRNAs (miRNAs), a class of gene expression modulators, have emerged as the regulators of key oncogenes and tumor suppressor genes that affect multiple pathways of the tumor microenvironment and adipose tissue. This review concerns a presentation of the role of adipocytes in breast tissue, and describes the most recent discoveries about the interplay between adipocytes and miRNAs, which collaborate in the arrangement of a pro-inflammatory and cancerous microenvironment, laying the foundations for new concepts in the prevention and treatment of BC.
Collapse
Affiliation(s)
- Erika Bandini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Tania Rossi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Giulia Gallerani
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| |
Collapse
|
16
|
Wu SM, Li TH, Yun H, Ai HW, Zhang KH. miR-140-3p Knockdown Suppresses Cell Proliferation and Fibrogenesis in Hepatic Stellate Cells via PTEN-Mediated AKT/mTOR Signaling. Yonsei Med J 2019; 60:561-569. [PMID: 31124340 PMCID: PMC6536388 DOI: 10.3349/ymj.2019.60.6.561] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/07/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Liver fibrosis is a major cause of morbidity and mortality and the outcome of various chronic liver diseases. Activation of hepatic stellate cells (HSCs) is the key event in liver fibrosis. Studies have confirmed that miR-140-3p plays a potential regulatory effect on HSC activation. However, whether miR-140-3p mediates the liver fibrosis remains unknown. MATERIALS AND METHODS Expression of miR-140-3p was detected by real-time quantitative PCR (qPCR). Cell proliferation was measured by MTT, while cell apoptosis rate was determined via flow cytometry. Western blot assay was used to detect the expression of cleaved PARP. The fibrogenic effect was evaluated by expression of α-smooth muscle actin and desmin. Functional experiments were performed in transforming growth factor β1 (TGF-β1)-induced HSC-T6 cells with transfection of anti-miR-140-3p and/or siPTEN. Target binding between miR-140-3p and PTEN was predicted by the TargetScan database and identified using luciferase reporter assay and RNA immunoprecipitation. RESULTS TGF-β1 induced the activation of HSC-T6 cells, and miR-140-3p expression varied according to HSC-T6 cell activation status. Knockdown of miR-140-3p reduced cell proliferation and the expressions of α-SMA and desmin, as well as increased apoptosis, in TGF-β1-induced HSC-T6 cells, which could be blocked by PTEN silencing. Additionally, inactivation of the AKT/mTOR signaling pathway stimulated by miR-140-3p knockdown was abolished when silencing PTEN expression. PTEN was negatively regulated by miR-140-3p via direct binding in HSC-T6 cells. CONCLUSION miR-140-3p is an important mediator in HSC-T6 cell activation, and miR-140-3p knockdown suppresses cell proliferation and fibrogenesis in TGF-β1-induced HSC-T6 cells, indicating that miR-140-3p may be a potential novel molecular target for liver fibrosis.
Collapse
Affiliation(s)
- Shi Min Wu
- Wuhan Center for Clinical Laboratory, Wuhan Forth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Hong Li
- Department of Ophthalmology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Yun
- Wuhan Center for Clinical Laboratory, Wuhan Forth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wu Ai
- Department of Clinical Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Hui Zhang
- Wuhan Center for Clinical Laboratory, Wuhan Forth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Sapudom J, Kalbitzer L, Wu X, Martin S, Kroy K, Pompe T. Fibril bending stiffness of 3D collagen matrices instructs spreading and clustering of invasive and non-invasive breast cancer cells. Biomaterials 2018; 193:47-57. [PMID: 30554026 DOI: 10.1016/j.biomaterials.2018.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 12/12/2022]
Abstract
Extracellular matrix stiffening of breast tissues has been clinically correlated with malignant transformation and poor prognosis. An increase of collagen fibril diameter and lysyl-oxidase mediated crosslinking has been observed in advanced tumor stages. Many current reports suggest that the local mechanical properties of single fibrillar components dominantly regulate cancer cell behavior. Here, we demonstrate by an independent control of fibril diameter and intrafibrillar crosslinking of three-dimensional (3D) collagen matrices that fibril bending stiffness instructs cell behavior of invasive and non-invasive breast cancer cells. Two types of collagen matrices with fibril diameter of either 650 nm or 800 nm at a similar pore size of 10 μm were reconstituted and further modified with the zero-length crosslinker 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide (EDC) at concentrations of 0, 20, 100 and 500 mM. This approach yields two sets of collagen matrices with overlapping variation of matrix elasticity. With these matrices we could prove the common assumption that matrix elasticity of collagen networks is bending dominated with a linear dependence on fibril bending stiffness. We derive that the measured variation of matrix elasticity is directly correlated to the variation of fibril bending stiffness, being independently controlled either by fibril diameter or by intrafibrillar crosslinking. We use these defined matrices to demonstrate that the adjustment of fibril bending stiffness allows to instruct the behavior of two different breast cancer cell lines, invasive MDA-MB-231 (human breast carcinoma) and non-invasive MCF-7 cells (human breast adenocarcinoma). Invasiveness and spreading of invasive MDA-MB-231 cells as well as clustering of non-invasive MCF-7 cells is thereby investigated over a broad parameter range. Our results demonstrate and quantify the direct dependence of cancer cell phenotypes on the matrix mechanical properties on the scale of single fibrils.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany; Department of Dermatology, Venerology and Allergology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Liv Kalbitzer
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| | - Xiancheng Wu
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| | - Steve Martin
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| | - Klaus Kroy
- Institute for Theoretical Physics, Leipzig University, Leipzig, 04009, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany.
| |
Collapse
|
18
|
Cheng AA, Li W, Hernandez LL. Effect of high-fat diet feeding and associated transcriptome changes in the peak lactation mammary gland in C57BL/6 dams. Physiol Genomics 2018; 50:1059-1070. [DOI: 10.1152/physiolgenomics.00052.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maternal consumption of a high-fat diet (HFD) during pregnancy has established adverse effects on the developing neonate. In this study, we aimed to investigate the effect of an HFD on the murine mammary gland during midlactation. Female C57BL/6J mice were placed on either a low-fat diet (LFD/10% fat) or HFD (60% fat) from 3 wk of age through peak lactation (lactation day 11/L11). After 4 wk of consuming either the LFD or HFD, female mice were bred. There were no significant differences in milk yield between treatment groups, which was measured from L1 to L9. On L10, mice were subjected to an overnight fast and then euthanized on the morning of L11. Total RNA was isolated from inguinal mammary glands for whole transcriptome sequencing. We found 628 genes that were differentially expressed between the treatment groups. Notably, HFD feeding resulted in expression alterations of genes involved in collagen and cytoplasmic components. Additionally, genes related to inflammatory and immune responses were also impacted. Differential expression in gene transcript isoforms between the treatment groups was detected in three genes related to mammary duct development. This study sheds light as to how an HFD may affect the mammary gland transcriptome during midlactation.
Collapse
Affiliation(s)
- A. A. Cheng
- Department of Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| | - W. Li
- United States Department of Agriculture Dairy Forage, Madison, Wisconsin
| | - L. L. Hernandez
- Department of Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
19
|
Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, Xu K. Inflammatory Links Between High Fat Diets and Diseases. Front Immunol 2018; 9:2649. [PMID: 30483273 PMCID: PMC6243058 DOI: 10.3389/fimmu.2018.02649] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, chronic overnutrition, such as consumption of a high-fat diet (HFD), has been increasingly viewed as a significant modifiable risk factor for diseases such as diabetes and certain types of cancer. However, the mechanisms by which HFDs exert adverse effects on human health remains poorly understood. Here, this paper will review the recent scientific literature about HFD-induced inflammation and subsequent development of diseases and cancer, with an emphasis on mechanisms involved. Given the expanding global epidemic of excessive HFD intake, understanding the impacts of a HFD on these medical conditions, gaining great insights into possible underlying mechanisms, and developing effective therapeutic strategies are of great importance.
Collapse
Affiliation(s)
- Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Liming Zeng
- Science College of Jiangxi Agricultural University, Nanchang, China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| |
Collapse
|
20
|
Hillers LE, D'Amato JV, Chamberlin T, Paderta G, Arendt LM. Obesity-Activated Adipose-Derived Stromal Cells Promote Breast Cancer Growth and Invasion. Neoplasia 2018; 20:1161-1174. [PMID: 30317122 PMCID: PMC6187054 DOI: 10.1016/j.neo.2018.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 01/07/2023] Open
Abstract
Obese women diagnosed with breast cancer have an increased risk for metastasis, and the underlying mechanisms are not well established. Within the mammary gland, adipose-derived stromal cells (ASCs) are heterogeneous cells with the capacity to differentiate into multiple mesenchymal lineages. To study the effects of obesity on ASCs, mice were fed a control diet (CD) or high-fat diet (HFD) to induce obesity, and ASCs were isolated from the mammary glands of lean and obese mice. We observed that obesity increased ASCs proliferation, decreased differentiation potential, and upregulated expression of α-smooth muscle actin, a marker of activated fibroblasts, compared to ASCs from lean mice. To determine how ASCs from obese mice impacted tumor growth, we mixed ASCs isolated from CD- or HFD-fed mice with mammary tumor cells and injected them into the mammary glands of lean mice. Tumor cells mixed with ASCs from obese mice grew significantly larger tumors and had increased invasion into surrounding adipose tissue than tumor cells mixed with control ASCs. ASCs from obese mice demonstrated enhanced tumor cell invasion in culture, a phenotype associated with increased expression of insulin-like growth factor-1 (IGF-1) and abrogated by IGF-1 neutralizing antibodies. Weight loss induced in obese mice significantly decreased expression of IGF-1 from ASCs and reduced the ability of the ASCs to induce an invasive phenotype. Together, these results suggest that obesity enhances local invasion of breast cancer cells through increased expression of IGF-1 by mammary ASCs, and weight loss may reverse this tumor-promoting phenotype.
Collapse
Affiliation(s)
- Lauren E Hillers
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706
| | - Joseph V D'Amato
- Department of Comparative Biosciences, School of Veterinary Medicine, University Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706
| | - Tamara Chamberlin
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706
| | - Gretchen Paderta
- Department of Comparative Biosciences, School of Veterinary Medicine, University Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706; Department of Comparative Biosciences, School of Veterinary Medicine, University Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706.
| |
Collapse
|
21
|
Wolfson B, Lo PK, Yao Y, Li L, Wang H, Zhou Q. Impact of miR-140 Deficiency on Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2018; 62:e1800189. [PMID: 29701903 PMCID: PMC6280970 DOI: 10.1002/mnfr.201800189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/23/2018] [Indexed: 12/13/2022]
Abstract
SCOPE We have previously shown that loss of miR-140 has a pro-fibrotic effect in the mammary gland. This study aims to investigate whether miR-140 loss and obesity act synergistically to promote non-alcoholic fatty liver disease (NAFLD), and to identify the underlying mechanisms. METHODS AND RESULTS Liver tissues were isolated from lean-fat-diet and high-fat-diet fed wild-type and miR-140 knockout mice. Using molecular staining and immunohistochemistry techniques, increased development of NAFLD and fibrotic indicators in miR-140 knockout mice were identified. Utilizing an in vitro model system, miR-140 was demonstrated to target TLR-4, and miR-140 overexpression was shown to be sufficient to inhibit palmitic acid signaling through the TLR-4/NFκB pathway. CONCLUSION These findings demonstrate that loss of miR-140 results in increased expression of TLR-4, sensitizing cells to palmitic acid signaling and in increased inflammatory activity through the TLR4/NFκB pathway. This signaling axis promotes NAFLD development in a high-fat diet context and indicates the potential utility of miR-140 rescue as a therapeutic strategy in NAFLD.
Collapse
Affiliation(s)
- Benjamin Wolfson
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Pang-Kuo Lo
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Yuan Yao
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21202, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21202, USA
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| |
Collapse
|
22
|
Khadge S, Thiele GM, Sharp JG, McGuire TR, Klassen LW, Black PN, DiRusso CC, Talmadge JE. Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation. J Mammary Gland Biol Neoplasia 2018; 23:43-58. [PMID: 29574638 DOI: 10.1007/s10911-018-9391-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 01/07/2023] Open
Abstract
Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.
Collapse
Affiliation(s)
- Saraswoti Khadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - John Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynell W Klassen
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Paul N Black
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Concetta C DiRusso
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
23
|
Abstract
Obesity, which has become a major global epidemic, is associated with numerous comorbidities and nearly every chronic condition. Mitochondria play a central role in this disorder, as they control cell metabolism, regulating important processes, such as ATP production, lipid β-oxidation, oxidative stress, and inflammation. MicroRNAs (miRs) have been shown to regulate many biological processes associated with obesity, comprising adipocyte differentiation, insulin action, and fat metabolism. In addition, recent studies have confirmed that miRs are important regulators of mitochondrial function by either directly modulating mitochondrial proteins or targeting mitochondrial regulators, thereby modulating metabolic process in the context of obesity. In this review, we describe the different roles of mitochondria in obesity, specifically in adipose tissue, and those miRs that are involved in mitochondrial dysfunction in this disease.
Collapse
Affiliation(s)
- Mora Murri
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University , Maastricht , The Netherlands
| | - Hamid El Azzouzi
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University , Maastricht , The Netherlands
| |
Collapse
|
24
|
Sapudom J, Pompe T. Biomimetic tumor microenvironments based on collagen matrices. Biomater Sci 2018; 6:2009-2024. [DOI: 10.1039/c8bm00303c] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides an overview of the current approaches to engineer defined 3D matrices for the investigation of tumor cell behaviorin vitro, with a focus on collagen-based fibrillar systems.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| | - Tilo Pompe
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| |
Collapse
|