1
|
Wu Y, Chen Y, Tian X, Shao G, Lin Q, Sun A. Ubiquitination regulates autophagy in cancer: simple modifications, promising targets. J Transl Med 2024; 22:985. [PMID: 39482684 PMCID: PMC11526641 DOI: 10.1186/s12967-024-05565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 11/03/2024] Open
Abstract
Autophagy is an important lysosomal degradation process that digests and recycles bio-molecules, protein or lipid aggregates, organelles, and invaded pathogens. Autophagy plays crucial roles in regulation of metabolic and oxidative stress and multiple pathological processes. In cancer, the role of autophagy is dual and paradoxical. Ubiquitination has been identified as a key regulator of autophagy that can influence various steps in the autophagic process, with autophagy-related proteins being targeted for ubiquitination, thus impacting cancer progression and the effectiveness of therapeutic interventions. This review will concentrate on mechanisms underlying autophagy, ubiquitination, and their interactions in cancer, as well as explore the use of drugs that target the ubiquitin-proteasome system (UPS) and ubiquitination process in autophagy as part of cancer therapy.
Collapse
Affiliation(s)
- Yihui Wu
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yifei Chen
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
2
|
van Zyl E, Stead JDH, Peneycad C, Yauk CL, McKay BC. Activating transcription factor 4 plays a major role in shaping the transcriptional response to isoginkgetin in HCT116 cells. Sci Rep 2024; 14:22938. [PMID: 39358540 PMCID: PMC11447041 DOI: 10.1038/s41598-024-74391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Activating transcription factor 4 (ATF4) plays a central role in the integrated stress response (ISR) and one overlapping branch of the unfolded protein response (UPR). We recently reported that the splicing inhibitor isoginkgetin (IGG) induced ATF4 protein along with several known ATF4-regulated transcripts in a response that resembled the ISR and UPR. However, the contribution of ATF4-dependent and -independent transcriptional responses to IGG exposure was not known. Here we used RNA-sequencing in HCT116 colon cancer cells and an isogenic subline lacking ATF4 to investigate the contribution of ATF4 to IGG-induced changes in gene expression. Approximately 85% of the IGG-responsive DEGs in HCT116 cells were also differentially expressed in response to the ER stressor thapsigargin (Tg) and these were enriched for genes associated with the UPR and ISR. Most of these were positively regulated by IGG with impaired responses in the ATF4-deficient cells. Nonetheless, there were DEGs that responded similarly in both cell lines. The ATF4-independent IGG-induced DEGs included several metal responsive transcripts encoding metallothionines and a zinc transporter. Taken together, the predominant IGG response was ATF4-dependent in these cells and resembled the UPR and ISR while a second less prominent response involved the ATF4-independent regulation of metal responsive mRNAs.
Collapse
Affiliation(s)
- Erin van Zyl
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - John D H Stead
- Department of Neuroscience, Carleton University, Ottawa, On, Canada
| | - Claire Peneycad
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Bruce C McKay
- Department of Biology, Carleton University, Ottawa, ON, Canada.
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Choudhary S, Nehul S, Singh A, Panda PK, Kumar P, Sharma GK, Tomar S. Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against SARS-COV-2 targeting main protease and papain-like protease. IUBMB Life 2024; 76:228-241. [PMID: 38059400 DOI: 10.1002/iub.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS-CoV-2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi-organ failure. Thus, drug molecules targeting the SARS-CoV-2 virus-specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain-like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct-acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti-inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half-maximal inhibitory concentrations (IC50) values ranging from 1.42 to 32.7 μM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti-SARS-CoV-2 activity in cell-based assays, with half-maximum effective concentration (EC50) values of 21.73 and 31.19 μM, respectively. The anti-inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID-19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type-I interferon response (IFN-α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS-CoV-2-specific enzymes and also host immune pathways involved in virus-mediated inflammation.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Prasan Kumar Panda
- Department of Internal Medicine (Division of Infectious diseases), All India Institute of Medical Sciences (AIIMS), Rishikesh, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gaurav Kumar Sharma
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
4
|
Wang H, Liang Y, Zhang T, Yu X, Song X, Chen Y, Mao Q, Xia W, Chen B, Xu L, Dong G, Jiang F. C-IGF1R encoded by cIGF1R acts as a molecular switch to restrict mitophagy of drug-tolerant persister tumour cells in non-small cell lung cancer. Cell Death Differ 2023; 30:2365-2381. [PMID: 37689814 PMCID: PMC10657401 DOI: 10.1038/s41418-023-01222-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
The clinical efficacy of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs) is limited by the emergence of drug resistance. We hypothesise that restoring dysregulated circular RNAs under initial treatment with EGFR-TKIs may enhance their effectiveness. Through high-throughput screening, we identify that combining circular RNA IGF1R (cIGF1R) with EGFR-TKIs significantly synergises to suppress tumour regrowth following drug withdrawal. Mechanistically, cIGF1R interacts with RNA helicase A (RHA) to depress insulin-like growth factor 1 receptor (IGF1R) mRNA splicing, negatively regulating the parent IGF1R signalling pathway. This regulation is similar to that of IGF1R inhibitor, which induces drug-tolerant persister (DTP) state with activated mitophagy. The cIGF1R also encodes a peptide C-IGF1R that reduces Parkin-mediated ubiquitination of voltage-dependent anion channel 1 (VDAC1) to restrict mitophagy, acting as a molecular switch that promotes the transition of DTP to apoptosis. Our study shows that combining cIGF1R with EGFR-TKIs efficiently reduces the emergence of DTP.
Collapse
Affiliation(s)
- Hui Wang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yingkuan Liang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Te Zhang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Collaborative Innovation Centre for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Xinnian Yu
- Department of Oncology, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Xuming Song
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yuzhong Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Qixing Mao
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Bing Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Gaochao Dong
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.
| | - Feng Jiang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.
| |
Collapse
|
5
|
Yao J, Tang S, Shi C, Lin Y, Ge L, Chen Q, Ou B, Liu D, Miao Y, Xie Q, Tang X, Fei J, Yang G, Tian J, Zeng X. Isoginkgetin, a potential CDK6 inhibitor, suppresses SLC2A1/GLUT1 enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy 2023; 19:1221-1238. [PMID: 36048765 PMCID: PMC10012924 DOI: 10.1080/15548627.2022.2119353] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022] Open
Abstract
Isoginkgetin (ISO), a natural biflavonoid, exhibited cytotoxic activity against several types of cancer cells. However, its effects on hepatocellular carcinoma (HCC) cells and mechanism remain unclear. Here, we revealed that ISO effectively inhibited HCC cell proliferation and migration in vitro. LC3-II expression and autophagosomes were increased under ISO treatment. In addition, ISO-induced cell death was attenuated by treatment with chloroquine or knockdown of autophagy-related genes (ATG5 or ULK1). ISO significantly suppressed SLC2A1/GLUT1 (solute carrier family 2 member 1) expression and glucose uptake, leading to activation of the AMPK-ULK1 axis in HepG2 cells. Overexpression of SLC2A1/GLUT1 abrogated ISO-induced autophagy. Combining molecular docking with thermal shift analysis, we confirmed that ISO directly bound to the N terminus of CDK6 (cyclin-dependent kinase 6) and promoted its degradation. Overexpression of CDK6 abrogated ISO-induced inhibition of SLC2A1/GLUT1 transcription and induction of autophagy. Furthermore, ISO treatment significantly decreased the H3K27ac, H4K8ac and H3K4me1 levels on the SLC2A1/GLUT1 enhancer in HepG2 cells. Finally, ISO suppressed the hepatocarcinogenesis in the HepG2 xenograft mice and the diethylnitrosamine+carbon tetrachloride (DEN+CCl4)-induced primary HCC mice and we confirmed SLC2A1/GLUT1 and CDK6 as promising oncogenes in HCC by analysis of TCGA data and human HCC tissues. Our results provide a new molecular mechanism by which ISO treatment or CDK6 deletion promotes autophagy; that is, ISO targeting the N terminus of CDK6 for degradation inhibits the expression of SLC2A1/GLUT1 by decreasing the enhancer activity of SLC2A1/GLUT1, resulting in decreased glucose levels and inducing the AMPK-ULK1 pathway.
Collapse
Affiliation(s)
- Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Shuming Tang
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chenyan Shi
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yunzhi Lin
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of pathology(Longhua Branch), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qinghua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Baoru Ou
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Dongyu Liu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yuyang Miao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qiujie Xie
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM and Guangdong Innovative Chinese Medicine and Natural Medicine Engineering Technology Research Center, Research Institute of Tsinghua University, Shenzhen, Guangdong, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Triratapiban C, Lueangaramkul V, Phecharat N, Pantanam A, Lekcharoensuk P, Theerawatanasirikul S. First study on in vitro antiviral and virucidal effects of flavonoids against feline infectious peritonitis virus at the early stage of infection. Vet World 2023; 16:618-630. [PMID: 37041840 PMCID: PMC10082729 DOI: 10.14202/vetworld.2023.618-630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 03/28/2023] Open
Abstract
Background and Aim: Feline infectious peritonitis (FIP), one of the most important infectious diseases in cats is caused by FIP virus (FIPV), a mutated variant of feline coronavirus. Feline infectious peritonitis has a negative impact on feline health, with extremely high mortality in clinical FIP-infected cats, particularly young cats. There are no approved drugs for FIP treatment, and therapeutic possibilities for FIP treatment are limited. This study aimed to utilize nature-derived bioactive flavonoids with antiviral properties to inhibit FIPV infection in Crandell–Rees feline kidney (CRFK) cells.
Materials and Methods: The cytotoxicity of 16 flavonoids was evaluated on CRFK cells using a colorimetric method (MTS) assay. Viral kinetics of FIPV at 50 tissue culture infectious dose (TCID50)/well was determined during the first 24-h post-infection (HPI). Antiviral activity was evaluated based on the replication steps of the virus life cycle, including pre-compound, attachment, penetration, post-viral entry, and virucidal assays. The antiviral efficacy of flavonoids against FIPV was determined based on positive FIPV-infected cells with the immunoperoxidase monolayer assay and viral load quantification using reverse transcription-quantitative polymerase chain reaction.
Results: Two flavonoids, namely, isoginkgetin and luteolin, inhibited FIPV replication during post-viral entry in a dose-dependent manner, with 50% maximal effective concentrations = 4.77 ± 0.09 and 36.28 ± 0.03 μM, respectively. Based on viral kinetics, both flavonoids could inhibit FIPV replication at the early stage of infection at 0–6-HPI for isoginkgetin and 2–6-HPI for luteolin using a time-of-addition assay. Isoginkgetin exerted a direct virucidal effect that reduced the viral titers by 2 and 1.89 log10 TCID50/mL at 60 and 120 min, respectively.
Conclusion: Isoginkgetin interfered with FIPV replication during both post-viral infection and virucidal experiments on CRFK cells, whereas luteolin inhibited the virus after infection. These results demonstrate the potential of herbal medicine for treating FIP.
Keywords: antiviral, feline coronavirus, feline infectious peritonitis virus, flavonoids, infectious disease.
Collapse
Affiliation(s)
- Chanittha Triratapiban
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Varanya Lueangaramkul
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nantawan Phecharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Achiraya Pantanam
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Corresponding author: Sirin Theerawatanasirikul, e-mail: Co-authors: CT: , VL: , NP: , AP: , PL:
| |
Collapse
|
7
|
Role of NF-κB Signaling in the Interplay between Multiple Myeloma and Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24031823. [PMID: 36768145 PMCID: PMC9916119 DOI: 10.3390/ijms24031823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Nuclear factor-κB (NF-κB) transcription factors play a key role in the pathogenesis of multiple myeloma (MM). The survival, proliferation and chemoresistance of malignant plasma cells largely rely on the activation of canonical and noncanonical NF-κB pathways. They are triggered by cancer-associated mutations or by the autocrine and paracrine production of cytokines and growth factors as well as direct interaction with cellular and noncellular components of bone marrow microenvironment (BM). In this context, NF-κB also significantly affects the activity of noncancerous cells, including mesenchymal stromal cells (MSCs), which have a critical role in disease progression. Indeed, NF-κB transcription factors are involved in inflammatory signaling that alters the functional properties of these cells to support cancer evolution. Moreover, they act as regulators and/or effectors of pathways involved in the interplay between MSCs and MM cells. The aim of this review is to analyze the role of NF-κB in this hematologic cancer, focusing on NF-κB-dependent mechanisms in tumor cells, MSCs and myeloma-mesenchymal stromal cell crosstalk.
Collapse
|
8
|
El-Seadawy HM, Abo El-Seoud KA, El-Aasr M, Tawfik HO, Eldehna WM, Ragab AE. Evaluation of Zamia floridana A. DC. Leaves and Its Isolated Secondary Metabolites as Natural Anti-Toxoplasma and Anti-Cancer Agents Using In Vitro and In Silico Studies. Metabolites 2022; 13:metabo13010010. [PMID: 36676935 PMCID: PMC9866161 DOI: 10.3390/metabo13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Toxoplasmosis and cancer are life-threatening diseases with worldwide distribution. However, currently used chemosynthetic treatments are not devoid of their own intrinsic problems. Natural metabolites are gaining attention due to their lower side effects. In this study, we investigated for the first time Zamia floridana leaves extract and its different fractions for their toxoplasmocidal activity, using Virulent RH Toxoplasma gondii, and cytotoxic activity against MCF-7 and HCT-116 cancer cell lines using MTT assay. The n-butanol fraction was the most potent fraction against T. gondii with an EC50 of 7.16 ± 0.4 µg/mL compared to cotrimoxazole (4.18 ± 0.3 µg/mL). In addition, the n-BuOH fraction showed a significant cytotoxicity against MCF-7 and HCT-116 with IC50 of 12.33 ± 1.1 and 17.88 ± 1.4 µg/mL, respectively, compared to doxorubicin (4.17 ± 0.2 and 5.23 ± 0.3 µg/mL, respectively), with higher safety index against normal cell line (WISH). Therefore, the n-BuOH fraction was investigated for its phytochemicals using extensive chromatographic techniques, which led to the isolation of six compounds that were fully characterized using different spectroscopic techniques. Three biflavonoids (1, 2 and 4) in addition to two phenolic acid derivatives (3 and 5) and a flavonoid glycoside (6) were isolated. Compounds (1, 3, 5 and 6) were reported for the first time from Z. floridana. In silico docking studies for toxoplasmocidal and cytotoxic effects of these compounds revealed that compounds (1, 2, 4 and 6) have promising inhibition potential of either thymidylate synthase-dihydrofolate reductase (TS-DHFR) or cyclin dependent kinase 2 (CDK2) target proteins. This study is considered the first report of chemical and biological investigation of Z. floridana leaves.
Collapse
Affiliation(s)
- Hosam M. El-Seadawy
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | | | - Mona El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Haytham O. Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City 11829, Egypt
- Correspondence: (W.M.E.); (A.E.R.)
| | - Amany E. Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence: (W.M.E.); (A.E.R.)
| |
Collapse
|
9
|
Isoginkgetin-A Natural Compound to Control U87MG Glioblastoma Cell Growth and Migration Activating Apoptosis and Autophagy. Molecules 2022; 27:molecules27238335. [PMID: 36500428 PMCID: PMC9740329 DOI: 10.3390/molecules27238335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Isoginkgetin (Iso) is a natural bioflavonoid isolated from the leaves of Ginkgo biloba, this natural substance exhibits many healing properties, among which the antitumor effect stands out. Here we tested the effect of Iso on the growth of U87MG glioblastoma cells. Growth curves and MTT toxicity assays showed time and dose-dependent growth inhibition of U87MG after treatment with Iso (15/25 µM) for 1, 2, and 3 days. The cell growth block of U87MG was further investigated with the colony formation test, which showed that iso treatment for 24 h reduced colony formation. The present study also aimed to evaluate the effect of Iso on U87MG glioblastoma cell migration. The FACS analysis, on the other hand, showed that treatment with Iso 15 µM determines a blockage of the cell cycle in the S1 phase. Further investigation shows that Iso treatment of U87MG altered the protein pathways of homeostasis including autophagy and apoptosis. The present study demonstrated, for the first time, that Iso could represent an excellent adjuvant drug for the treatment of glioblastoma by simultaneously activating multiple mechanisms that control the growth and migration of neoplastic cells.
Collapse
|
10
|
Fregoso-López D, Miranda LD. Visible-Light Mediated Radical Alkylation of Flavones: A Modular Access to Nonsymmetrical 3,3″-Biflavones. Org Lett 2022; 24:8615-8620. [DOI: 10.1021/acs.orglett.2c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Daniela Fregoso-López
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Luis D. Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
11
|
Ding K, Jiang W, Jia H, Lei M. Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib. Biomolecules 2022; 12:1647. [PMID: 36358997 PMCID: PMC9687375 DOI: 10.3390/biom12111647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/02/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell tumor originating from a post-mitotic lymphoid B-cell lineage. Bortezomib(BTZ), a first-generation protease inhibitor, has increased overall survival, progression-free survival, and remission rates in patients with MM since its clinical approval in 2003. However, the use of BTZ is challenged by the malignant features of MM and drug resistance. Polyphenols, classified into flavonoid and non-flavonoid polyphenols, have potential health-promoting activities, including anti-cancer. Previous preclinical studies have demonstrated the anti-MM potential of some dietary polyphenols. Therefore, these dietary polyphenols have the potential to be alternative therapies in anti-MM treatment regimens. This systematic review examines the synergistic effects of flavonoids and non-flavonoid polyphenols on the anti-MM impacts of BTZ. Preclinical studies on flavonoids and non-flavonoid polyphenols-BTZ synergism in MM were collected from PubMed, Web of Science, and Embase published between 2008 and 2020. 19 valid preclinical studies (Published from 2008 to 2020) were included in this systematic review. These studies demonstrated that eight flavonoids (icariin, icariside II, (-)-epigallocatechin-3-gallate, scutellarein, wogonin, morin, formononetin, daidzin), one plant extract rich in flavonoids (Punica granatum juice) and four non-flavonoid polyphenols (silibinin, resveratrol, curcumin, caffeic acid) synergistically enhanced the anti-MM effect of BTZ. These synergistic effects are mediated through the regulation of cellular signaling pathways associated with proliferation, apoptosis, and drug resistance. Given the above, flavonoids and non-flavonoid polyphenols can benefit MM patients by overcoming the challenges faced in BTZ treatment. Despite the positive nature of this preclinical evidence, some additional investigations are still needed before proceeding with clinical studies. For this purpose, we conclude by providing some suggestions for future research directions.
Collapse
|
12
|
Wu X, Huang J, Tang J, Sun Y, Zhao G, Yan C, Liu Z, Yi W, Xu S, Yu X. Isoginkgetin, a bioactive constituent from Ginkgo Biloba, protects against obesity-induced cardiomyopathy via enhancing Nrf2/ARE signaling. Redox Biol 2022; 57:102485. [PMID: 36162256 PMCID: PMC9516449 DOI: 10.1016/j.redox.2022.102485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity-induced metabolic cardiomyopathy (MC), characterized by lipotoxicity and excessive oxidative stress, emerges as the leading cause of heart failure in the obese patients. Yet, its therapy remains very limited. Here, we demonstrated that isoginkgetin (IGK), a bioactive biflavonoid isolated from medicinal herb Ginkgo Biloba, protected against obesity-induced cardiac diastolic dysfunction and adverse remodeling. Transcriptomics profiling revealed that IGK activated Nrf2 signaling in the heart tissues of the obese mice. Consistent with this observation, IGK treatment increased the nuclear translocation of Nrf2, which in turn trigger the activation of its downstream target genes (e. g. HO-1 and NQO1). In addition, IGK significantly rejuvenated mitochondrial defects in obese heart tissues as evidenced by enhancing mitochondrial respiratory capacity and resisting the collapse of mitochondrial potential and oxidative stress both in vitro and in vivo. Mechanistically, IGK stabilized Nrf2 protein via inhibiting the proteasomal degradation, independent of transcription regulation. Moreover, molecular docking and dynamics simulation assessment demonstrated a good binding mode between IGK and Nrf2/Keap1. Of note, the protective effects conferred by IGK against obesity-induced mitochondrial defects and cardiac dysfunction was compromised by Nrf2 gene silencing both in vitro and in vivo, consolidating a pivotal role of Nrf2 in IGK-elicited myocardial protection against MC. Thus, the present study identifies IGK as a promising drug candidate to alleviate obesity-induced oxidative stress and cardiomyocyte damage through Nrf2 activation, highlighting the therapeutic potential of IGK in ameliorating obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China.
| | - Jianrong Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junyuan Tang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuling Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
| | - Cuishi Yan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230037, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230037, China.
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
13
|
RNA-dependent RNA polymerase (RdRp) natural antiviral inhibitors: a review. Med Chem Res 2022; 31:2089-2102. [PMID: 36193545 PMCID: PMC9520115 DOI: 10.1007/s00044-022-02963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022]
Abstract
Viral diseases are the cause of many global epidemics, leading to deaths, affecting the quality of life of populations, and impairing public health. The limitations in the treatment of viral diseases and the constant resistance to conventional antiviral treatments encourage researchers to discover new compounds. In this perspective, this literature review presents isolated molecules and extracts of natural products capable of inhibiting the activity of the nonstructural protein that acts as the RNA-dependent RNA polymerase. The literature review presented natural compounds with the potential to be tested as alternative medicines or used in the development of synthetic drugs to prevent the replication of RNA viruses, such as COVID-19, hepatitis C, and dengue viruses, among others. Natural products are known to exhibit remarkable activities in mitigation of different viral diseases, in addition, they help to decrease the aggravation of infections. Consequently, reducing hospitalization time and deaths.
Collapse
|
14
|
Wang Y, Yi Y, Yao J, Wan H, Yu M, Ge L, Zeng X, Wu M, Mei L. Isoginkgetin Synergizes with Doxorubicin for Robust Co-delivery to Induce Autophagic Cell Death in Hepatocellular Carcinoma. Acta Biomater 2022; 153:518-528. [PMID: 36152910 DOI: 10.1016/j.actbio.2022.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 11/01/2022]
Abstract
Doxorubicin (DOX) widely used in hepatocellular carcinoma (HCC) can induce serious side effects and drug resistance. Herein, we aimed to seek a strategy to improve the efficacy and reduce the side effects of DOX in HCC based on an autophagy inducer drug called isoginkgetin (ISO). The design of multifunctional nanocarriers based on hyaluronic acid-conjugated and manganese-doped mesoporous silica nanoparticles (HM) for the co-delivery of antitumor drugs against HCC provided an effective and promising antitumor strategy. Our results showed that HM@ISO@DOX could efficiently inhibit HCC cell proliferation through activating autophagy through AMPKa-ULK1 pathway. Moreover, intravenous injection of HM@ISO@DOX significantly suppressed HCC tumor progression in nude mouse HCC model. Collectively, our findings revealed an anti-HCC mechanism of HM@ISO@DOX through autophagy and provide an effective therapeutic strategy for HCC. STATEMENT OF SIGNIFICANCE: In our study, we constructed a co-delivery system by loading ISO and DOX in the mesoporous channels of manganese-doped mesoporous silica nanoparticles, which could be further conjugated with hyaluronic acid to obtain HM@ISO@DOX. The nanocarriers had been demonstrated to be biodegradable under the acidic and reducing tumor microenvironment, as well as to possess the tumor targeting capability via the conjugated hyaluronic acid. In addition, HM@ISO@DOX enhanced the therapeutic efficacy against human HCC tumor through the combinatorial therapies of chemotherapeutics, Mn2+-mediated chemodynamic therapeutics and autophagic cell death, which might be achieved through AMPK-ULK1 signaling. This work revealed that such a nanomedicine exhibited superior tumor accumulation and antitumor efficiency against HCC with extremely low systemic toxicity in an autophagy-boosted manner.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Central Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jie Yao
- Central Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Haoqiang Wan
- Central Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lanlan Ge
- Central Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Xiaobin Zeng
- Central Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
15
|
Yang X, Liu A, Yang L, Wen T, Wang J, Shi J, Zhou H, Chen Z, Lei M, Zhu Y. Preclinical Pharmacokinetics, Tissue Distribution and in vitro Metabolism of FHND6091, a Novel Oral Proteasome Inhibitor. Drug Des Devel Ther 2022; 16:3087-3107. [PMID: 36124108 PMCID: PMC9482464 DOI: 10.2147/dddt.s371020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Xu Yang
- College of Science, Nanjing Forestry University, Nanjing, People’s Republic of China
| | - Amin Liu
- College of Science, Nanjing Forestry University, Nanjing, People’s Republic of China
| | - Lin Yang
- College of Science, Nanjing Forestry University, Nanjing, People’s Republic of China
| | - Tiantian Wen
- College of Life Science, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, Nanjing, People’s Republic of China
| | - Jingmiao Shi
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, Nanjing, People’s Republic of China
| | - Hui Zhou
- College of Life Science, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Zhimeng Chen
- College of Science, Nanjing Forestry University, Nanjing, People’s Republic of China
| | - Meng Lei
- College of Science, Nanjing Forestry University, Nanjing, People’s Republic of China
- Correspondence: Meng Lei; Yongqiang Zhu, Tel +86 25 85427621; +86 25 85891591, Email ;
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing, People’s Republic of China
| |
Collapse
|
16
|
Letribot B, Nascimento M, Cerrato G, Darrigrand R, Salgues V, Renko D, Pruvost A, Alami M, Messaoudi S, Apcher S. Biological Investigation of a Water-Soluble Isoginkgetin-Phosphate Analogue, Targeting the Spliceosome with In Vivo Antitumor Activity. J Med Chem 2022; 65:4633-4648. [PMID: 35235336 DOI: 10.1021/acs.jmedchem.1c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first total synthesis of the natural product Isoginkgetin as well as four water-soluble Isoginkgetin-phosphate analogues is reported herein. Moreover, the full study of the IP2 phosphate analogue with respect to pharmacological properties (metabolic and plasmatic stabilities, pharmacokinetic, off-target, etc.) as well as in vitro and in vivo biological activities are disclosed herein.
Collapse
Affiliation(s)
- Boris Letribot
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry 92290, France
| | - Megane Nascimento
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif 94805, France
| | - Giulia Cerrato
- Université Paris-Saclay, Institut Gustave Roussy, Metabolomics and Cell Biology Platforms, Villejuif 94805, France
| | - Romain Darrigrand
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif 94805, France
| | - Valerie Salgues
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif 94805, France
| | - Dolor Renko
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry 92290, France
| | - Alain Pruvost
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour La Santé, SPI, Gif-sur-Yvette 91191, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry 92290, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry 92290, France
| | - Sebastien Apcher
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif 94805, France
| |
Collapse
|
17
|
Li Y, Meng L, Li B, Huang D, Huang X, Lin C, Li D, Qiu S, Wu Y, Wei Z, Li X. Isoginkgetin attenuates endoplasmic reticulum stress-induced autophagy of brain after ischemic reperfusion injury. Bioengineered 2021; 13:14889-14902. [PMID: 34787074 PMCID: PMC10156416 DOI: 10.1080/21655979.2021.1997564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Isoginkgetin is characterized by properties of potent anticancer and anti-inflammation. To explore its effect on ischemic stroke, a rat model of ischemia/reperfusion (I/R) injury was established and induced by transient middle cerebral artery occlusion/reperfusion (MCAO/R). Different doses of isoginkgetin were intraperitoneally injected into each rat. Expressions of ER stress activation-related makers including phosphorylated inositol-requiring enzyme 1 (IRE1), phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), activating transcription factor-6 (ATF6), and two autophagy markers (ratio of LC3II/I and Beclin-1) were detected by western blot. Infarct volume, neurological deficits, and brain water content were detected. The results showed that ER stress and autophagy were activated by cerebral (I/R) injury, which could be effectively attenuated following pre-ischemia isoginkgetin administration. Moreover, autophagy induced by ER stress was triggered by the activation of PERK and IRE1 pathways. ER stress inhibitor (4-PBA) and ER related signaling inhibitors including PERK, GSK, IRE1, and DBSA markedly inhibited ER stress and autophagy induced by I/R. In addition, isoginkgetin markedly mitigated cerebral infarction, edema, neuronal apoptosis as well as neurological impairment induced by I/R injury, while tunicamycin (ER stress activator TM) and rapamycin (autophagy activator RAPA) could eliminate these lesions. This research identified a novel therapeutic agent isoginkgetin, which could effectively attenuate I/R injury by blocking autophagy induced by ER stress.
Collapse
Affiliation(s)
- Yueyong Li
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China.,Department of Interventional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong Province, 510630, PR. China
| | - Lingzhang Meng
- Center for Systemic Inflammation Research, School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Baosheng Li
- Department of radiology Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Deyou Huang
- Department of radiology Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Xiaohua Huang
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China.,Department of Interventional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong Province, 510630, PR. China
| | - Cheng Lin
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Dong Li
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Shaocai Qiu
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Yingning Wu
- Department of radiology Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Zhongheng Wei
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Xuebin Li
- Center for Clinical Research, School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| |
Collapse
|
18
|
Theerawatanasirikul S, Thangthamniyom N, Kuo CJ, Semkum P, Phecharat N, Chankeeree P, Lekcharoensuk P. Natural Phytochemicals, Luteolin and Isoginkgetin, Inhibit 3C Protease and Infection of FMDV, In Silico and In Vitro. Viruses 2021; 13:2118. [PMID: 34834926 PMCID: PMC8625466 DOI: 10.3390/v13112118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth-disease virus (FMDV) is a picornavirus that causes a highly contagious disease of cloven-hoofed animals resulting in economic losses worldwide. The 3C protease (3Cpro) is the main protease essential in the picornavirus life cycle, which is an attractive antiviral target. Here, we used computer-aided virtual screening to filter potential anti-FMDV agents from the natural phytochemical compound libraries. The top 23 filtered compounds were examined for anti-FMDV activities by a cell-based assay, two of which possessed antiviral effects. In the viral and post-viral entry experiments, luteolin and isoginkgetin could significantly block FMDV growth with low 50% effective concentrations (EC50). Moreover, these flavonoids could reduce the viral load as determined by RT-qPCR. However, their prophylactic activities were less effective. Both the cell-based and the fluorescence resonance energy transfer (FRET)-based protease assays confirmed that isoginkgetin was a potent FMDV 3Cpro inhibitor with a 50% inhibition concentration (IC50) of 39.03 ± 0.05 and 65.3 ± 1.7 μM, respectively, whereas luteolin was less effective. Analyses of the protein-ligand interactions revealed that both compounds fit in the substrate-binding pocket and reacted to the key enzymatic residues of the 3Cpro. Our findings suggested that luteolin and isoginkgetin are promising antiviral agents for FMDV and other picornaviruses.
Collapse
Affiliation(s)
- Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nattarat Thangthamniyom
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Nantawan Phecharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Penpitcha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
- Center for Advanced Studies in Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
19
|
van Zyl E, Tolls V, Blackmore A, McKay BC. Isoginkgetin leads to decreased protein synthesis and activates an ATF4-dependent transcriptional response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119123. [PMID: 34419492 DOI: 10.1016/j.bbamcr.2021.119123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023]
Abstract
Isoginkgetin (IGG) is a small molecule inhibitor of pre-mRNA splicing. Failure to accurately remove introns could lead to the production of aberrant mRNAs and proteins. The cellular responses to splicing stress are not well defined. Here, we used oligonucleotide microarrays to assess genome wide changes in gene expression associated with exposure to IGG. Two of the 3 enriched pathways identified using PANTHER analysis of differentially expressed transcripts are linked to the ATF4 transcription factor. We confirmed that ATF4 was selectively translated and upregulated in response IGG despite an almost complete block to total protein synthesis. Importantly, partial disruption of the ATF4 gene using CRISPR-mediated gene editing prevented IGG-induced changes in gene expression. Remarkably, another spliceosome inhibitor, pladienolide B, did not inhibit translation, activate ATF4 or increase ATF4-dependent gene expression. Taken together, IGG activates ATF4 and an ATF4-dependent transcriptional response but these effects are not common to all spliceosome inhibitors.
Collapse
Affiliation(s)
- Erin van Zyl
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Victoria Tolls
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Alex Blackmore
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Bruce C McKay
- Department of Biology, Carleton University, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
20
|
Goossens JF, Goossens L, Bailly C. Hinokiflavone and Related C-O-C-Type Biflavonoids as Anti-cancer Compounds: Properties and Mechanism of Action. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:365-377. [PMID: 33534099 PMCID: PMC7856339 DOI: 10.1007/s13659-021-00298-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Biflavonoids are divided in two classes: C-C type compounds represented by the dimeric compound amentoflavone and C-O-C-type compounds typified by hinokiflavone (HNK) with an ether linkage between the two connected apigenin units. This later sub-group of bisflavonyl ethers includes HNK, ochnaflavone, delicaflavone and a few other dimeric compounds, found in a variety of plants, notably Selaginella species. A comprehensive review of the anticancer properties and mechanism of action of HNK is provided, to highlight the anti-proliferative and anti-metastatic activities of HNK and derivatives, and HNK-containing plant extracts. The anticancer effects rely on the capacity of HNK to interfere with the ERK1-2/p38/NFκB signaling pathway and the regulation of the expression of the matrix metalloproteinases MMP-2 and MMP-9 (with a potential direct binding to MMP-9). In addition, HNK was found to function as a potent modulator of pre-mRNA splicing, inhibiting the SUMO-specific protease SENP1. As such, HNK represents a rare SENP1 inhibitor of natural origin and a scaffold to design synthetic compounds. Oral formulations of HNK have been elaborated to enhance its solubility, to facilitate the compound delivery and to enhance its anticancer efficacy. The review shed light on the anticancer potential of C-O-C-type biflavonoids and specifically on the pharmacological profile of HNK. This compound deserves further attention as a regulator of pre-mRNA splicing, useful to treat cancers (in particular hepatocellular carcinoma) and other human pathologies.
Collapse
Affiliation(s)
- Jean-François Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | - Laurence Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | | |
Collapse
|
21
|
Han Q, Huang L, Luo Q, Wang Y, Wu M, Sun S, Zhang H, Wang Y. Synthesis and biological evaluation of biotin-conjugated Portulaca oleracea polysaccharides. RSC Adv 2021; 11:18084-18092. [PMID: 35480215 PMCID: PMC9033186 DOI: 10.1039/d1ra02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Biotinylated Portulaca oleracea polysaccharide (Bio-POP) conjugates were successfully prepared by the esterification reaction. The biotinylated polysaccharide products were an off-white powder with an average degree of substitution of 42.5%. After grafting biotin onto POP, the thermal stability of Bio-POP conjugates was much higher than that of POP and the surface topography of Bio-POP was a loose and porous cross-linked structure. The cytotoxicity assay in vitro demonstrated that POP, biotin, and Bio-POP conjugates exhibited different cytotoxicity to HeLa, MCF-7, LO-2, and A549, in particular POP inhibited the growth of the A549 cell line more than other cell lines. The nuclear staining method demonstrated that Bio-POP conjugates can interfere with the apoptosis of A549 cells to some extent and the immunofluorescence staining photograph illustrated that Bio-POP conjugates induced A549 cells to exhibit immune activity. Therefore, the combination of biotin and Portulaca oleracea polysaccharides had immune synergistic therapeutic effects on A549 cells and can be applied in the field of anti-tumor conjugate drugs.
Collapse
Affiliation(s)
- Qianqian Han
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing City Jiangsu Province 210009 People's Republic of China
| | - Lirong Huang
- Cardio-Thoracic Surgery, Yancheng First People's Hospital Yancheng 224006 China
| | - Qiang Luo
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing City Jiangsu Province 210009 People's Republic of China
| | - Ying Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing City Jiangsu Province 210009 People's Republic of China
| | - Mingliang Wu
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| | - Shixin Sun
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| | - Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| |
Collapse
|
22
|
Lei J, Jiang Y, Luo X, Zheng Y, Zhu L, Sun C, Linghu L, Qin C, Gang W. Ultrasonic‐Assisted Ionic Liquid Extraction of Four Biflavonoids from
Ginkgo biloba L
. ChemistrySelect 2021. [DOI: 10.1002/slct.202004605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie Lei
- School of Pharmacy Zunyi Medical University Zunyi 563003 Guizhou China
| | - Yongmei Jiang
- Modern Agriculture Department Zunyi Vocational and Technical College Zunyi 563006 Guizhou China
| | - Xirong Luo
- Modern Agriculture Department Zunyi Vocational and Technical College Zunyi 563006 Guizhou China
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation Zunyi Academy of Agricultural Sciences Zunyi 563006 Guizhou China
| | - Yu Zheng
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation Zunyi Academy of Agricultural Sciences Zunyi 563006 Guizhou China
| | - Lei Zhu
- School of Pharmacy Zunyi Medical University Zunyi 563003 Guizhou China
| | - Chengxin Sun
- School of Pharmacy Zunyi Medical University Zunyi 563003 Guizhou China
| | - Lang Linghu
- School of Pharmacy Zunyi Medical University Zunyi 563003 Guizhou China
| | - Cheng Qin
- Modern Agriculture Department Zunyi Vocational and Technical College Zunyi 563006 Guizhou China
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation Zunyi Academy of Agricultural Sciences Zunyi 563006 Guizhou China
| | - Wang Gang
- School of Pharmacy Zunyi Medical University Zunyi 563003 Guizhou China
| |
Collapse
|
23
|
Darrigrand R, Pierson A, Rouillon M, Renko D, Boulpicante M, Bouyssié D, Mouton-Barbosa E, Marcoux J, Garcia C, Ghosh M, Alami M, Apcher S. Isoginkgetin derivative IP2 enhances the adaptive immune response against tumor antigens. Commun Biol 2021; 4:269. [PMID: 33649389 PMCID: PMC7921396 DOI: 10.1038/s42003-021-01801-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
The success of cancer immunotherapy relies on the induction of an immunoprotective response targeting tumor antigens (TAs) presented on MHC-I molecules. We demonstrated that the splicing inhibitor isoginkgetin and its water-soluble and non-toxic derivative IP2 act at the production stage of the pioneer translation products (PTPs). We showed that IP2 increases PTP-derived antigen presentation in cancer cells in vitro and impairs tumor growth in vivo. IP2 action is long-lasting and dependent on the CD8+ T cell response against TAs. We observed that the antigen repertoire displayed on MHC-I molecules at the surface of MCA205 fibrosarcoma is modified upon treatment with IP2. In particular, IP2 enhances the presentation of an exon-derived epitope from the tumor suppressor nischarin. The combination of IP2 with a peptide vaccine targeting the nischarin-derived epitope showed a synergistic antitumor effect in vivo. These findings identify the spliceosome as a druggable target for the development of epitope-based immunotherapies.
Collapse
Affiliation(s)
- Romain Darrigrand
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
| | - Alison Pierson
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
| | - Marine Rouillon
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
- SATT Paris Saclay, Orsay, France
| | - Dolor Renko
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Mathilde Boulpicante
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
| | - David Bouyssié
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Garcia
- Institut Jacques Monod, CNRS U7592 Université Paris Diderot, Paris, France
- Institut Pasteur, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR 2000 CNRS, Paris, France
| | - Michael Ghosh
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Sébastien Apcher
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France.
| |
Collapse
|
24
|
The spliceosome inhibitors isoginkgetin and pladienolide B induce ATF3-dependent cell death. PLoS One 2020; 15:e0224953. [PMID: 33370278 PMCID: PMC7769279 DOI: 10.1371/journal.pone.0224953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/09/2020] [Indexed: 11/19/2022] Open
Abstract
The spliceosome assembles on pre-mRNA in a stepwise manner through five successive pre-spliceosome complexes. The spliceosome functions to remove introns from pre-mRNAs to generate mature mRNAs that encode functional proteins. Many small molecule inhibitors of the spliceosome have been identified and they are cytotoxic. However, little is known about genetic determinants of cell sensitivity. Activating transcription factor 3 (ATF3) is a transcription factor that can stimulate apoptotic cell death in response to a variety of cellular stresses. Here, we used a genetic approach to determine if ATF3 was important in determining the sensitivity of mouse embryonic fibroblasts (MEFs) to two splicing inhibitors: pladienolide B (PB) and isoginkgetin (IGG), that target different pre-spliceosome complexes. Both compounds led to increased ATF3 expression and apoptosis in control MEFs while ATF3 null cells were significantly protected from the cytotoxic effects of these drugs. Similarly, ATF3 was induced in response to IGG and PB in the two human tumour cell lines tested while knockdown of ATF3 protected cells from both drugs. Taken together, ATF3 appears to contribute to the cytotoxicity elicited by these spliceosome inhibitors in both murine and human cells.
Collapse
|
25
|
Preparation, evaluation and metabolites study in rats of novel Isoginkgetin-loaded TPGS/soluplus mixed nanomicelles. J Food Drug Anal 2020; 28:309-321. [PMID: 35696106 PMCID: PMC9261864 DOI: 10.38212/2224-6614.1065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/21/2020] [Indexed: 11/25/2022] Open
Abstract
At present, cancer is one of the most lethal diseases in the world, and researchers are committed to developing effective anticancer drugs. Isoginkgetin (IGG) is a kind of biflavone with the potential to treat cancer due to the features of altering the cell cycle and inhibiting tumor cell infiltration. However, its solubility, absorbability and bioavailability are poor, so in this study, IGG was prepared into mixed nanomicelles and evaluated in vitro and in vivo. After condition optimization, IGG-loaded TPGS/soluplus mixed nanomicelles with particle size of 62.34 ± 1.10 nm, entrapment efficiency of 96.92 ± 0.66% and drug loading of 2.42 ± 0.02% were successfully prepared. The physicochemical properties of the nanomicelles were stable within 60 days, and the cytotoxicity of the nanomicelles was significantly higher than that of IGG. The metabolism results showed that 32 kinds of metabolites of IGG and 21 kinds of IGG-loaded nanomicelles were detected. The metabolites of IGG can only be detected in feces of rats, while the metabolites of IGG-loaded nanomicelles can be detected in plasma, bile, urine and feces. All these indicated that after prepared into nanomicelles, the stability, solubility, cytotoxicity and bioavailability of IGG were increased significantly, which provided a new choice for the development of new drugs.
Collapse
|