1
|
Natalino M, Fumasoni M. Compensatory Evolution to DNA Replication Stress is Robust to Nutrient Availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620637. [PMID: 39553989 PMCID: PMC11565888 DOI: 10.1101/2024.10.29.620637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Evolutionary repair refers to the compensatory evolution that follows perturbations in cellular processes. While evolutionary trajectories are often reproducible, other studies suggest they are shaped by genotype-by-environment (GxE) interactions. Here, we test the predictability of evolutionary repair in response to DNA replication stress-a severe perturbation impairing the conserved mechanisms of DNA synthesis, resulting in genetic instability. We conducted high-throughput experimental evolution on Saccharomyces cerevisiae experiencing constitutive replication stress, grown under different glucose availabilities. We found that glucose levels impact the physiology and adaptation rate of replication stress mutants. However, the genetics of adaptation show remarkable robustness across environments. Recurrent mutations collectively recapitulated the fitness of evolved lines and are advantageous across macronutrient availability. We also identified a novel role of the mediator complex of RNA polymerase II in adaptation to replicative stress. Our results highlight the robustness and predictability of evolutionary repair mechanisms to DNA replication stress and provide new insights into the evolutionary aspects of genome stability, with potential implications for understanding cancer development.
Collapse
Affiliation(s)
- Mariana Natalino
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| | - Marco Fumasoni
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| |
Collapse
|
2
|
Martin P, Szkop KJ, Robert F, Bhattacharyya S, Beauchamp RL, Brenner J, Redmond NE, Huang S, Erdin S, Larsson O, Ramesh V. TSC2 loss in neural progenitor cells suppresses translation of ASD/NDD-associated transcripts in an mTORC1- and MNK1/2-reversible fashion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597393. [PMID: 38895292 PMCID: PMC11185676 DOI: 10.1101/2024.06.04.597393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberous sclerosis complex (TSC) is an inherited neurodevelopmental disorder (NDD) with frequent manifestations of epilepsy and autism spectrum disorder (ASD). TSC is caused by inactivating mutations in TSC1 or TSC2 tumor suppressor genes, with encoded proteins hamartin (TSC1) and tuberin (TSC2) forming a functional complex inhibiting mechanistic target of rapamycin complex 1 (mTORC1) signaling. This has led to treatment with allosteric mTORC1 inhibitor rapamycin analogs ("rapalogs") for TSC tumors; however, rapalogs are ineffective for treating neurodevelopmental manifestations. mTORC1 signaling controls protein synthesis by regulating formation of the eIF4F complex, with further modulation by MNK1/2 kinases via phosphorylation of the eIF4F subunit eIF4E. While both these pathways modulate translation, comparing their impact on transcriptome-wide mRNA translation, as well as effects of inhibiting these pathways in TSC has not been explored. Here, employing CRISPR-modified, isogenic TSC2 patient-derived neural progenitor cells (NPCs), we have examined transcriptome-wide changes in mRNA translation upon TSC2 loss. Our results reveal dysregulated translation in TSC2 -Null NPCs, which significantly overlaps with the translatome from TSC1 -Null NPCs. Interestingly, numerous non-monogenic ASD-, NDD-and epilepsy-associated genes identified in patients harboring putative loss-of-function mutations, were translationally suppressed in TSC2 -Null NPCs. Importantly, translation of these ASD- and NDD-associated genes was reversed upon inhibition of either mTORC1 or MNK1/2 signaling using RMC-6272 or eFT-508, respectively. This study establishes the importance of mTORC1-eIF4F- and MNK-eIF4E-sensitive mRNA translation in TSC, ASD and other neurodevelopmental disorders laying the groundwork for evaluating drugs in clinical development that target these pathways as a treatment strategy for these disorders.
Collapse
|
3
|
Xu J, Yu C, Zeng X, Tang W, Xu S, Tang L, Huang Y, Sun Z, Yu T. Visualization of breast cancer-related protein synthesis from the perspective of bibliometric analysis. Eur J Med Res 2023; 28:461. [PMID: 37885035 PMCID: PMC10605986 DOI: 10.1186/s40001-023-01364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer, as a daunting global health threat, has driven an exponential growth in related research activity in recent decades. An area of research of paramount importance is protein synthesis, and the analysis of specific proteins inextricably linked to breast cancer. In this article, we undertake a bibliometric analysis of the literature on breast cancer and protein synthesis, aiming to provide crucial insights into this esoteric realm of investigation. Our approach was to scour the Web of Science database, between 2003 and 2022, for articles containing the keywords "breast cancer" and "protein synthesis" in their title, abstract, or keywords. We deployed bibliometric analysis software, exploring a range of measures such as publication output, citation counts, co-citation analysis, and keyword analysis. Our search yielded 2998 articles that met our inclusion criteria. The number of publications in this area has steadily increased, with a significant rise observed after 2003. Most of the articles were published in oncology or biology-related journals, with the most publications in Journal of Biological Chemistry, Cancer Research, Proceedings of the National Academy of Sciences of the United States of America, and Oncogene. Keyword analysis revealed that "breast cancer," "expression," "cancer," "protein," and "translation" were the most commonly researched topics. In conclusion, our bibliometric analysis of breast cancer and related protein synthesis literature underscores the burgeoning interest in this research. The focus of the research is primarily on the relationship between protein expression in breast cancer and the development and treatment of tumors. These studies have been instrumental in the diagnosis and treatment of breast cancer. Sustained research in this area will yield essential insights into the biology of breast cancer and the genesis of cutting-edge therapies.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Chengdong Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Xiaoqiang Zeng
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Weifeng Tang
- Fuzhou Medical College of Nanchang University, Fuzhou, 344000, China
| | - Siyi Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Lei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Yanxiao Huang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| |
Collapse
|
4
|
Duan L, Chen YA, Liang Y, Chen Z, Lu J, Fang Y, Cao J, Lu J, Zhao H, Pong RC, Hernandez E, Kapur P, Tran TAT, Smith T, Martinez ED, Ahn JM, Hsieh JT, Luo JH, Liu ZP. Therapeutic targeting of histone lysine demethylase KDM4B blocks the growth of castration-resistant prostate cancer. Biomed Pharmacother 2023; 158:114077. [PMID: 36495660 PMCID: PMC10926092 DOI: 10.1016/j.biopha.2022.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Epigenetics is an emerging mechanism for tumorigenesis. Treatment that targets epigenetic regulators is becoming an attractive strategy for cancer therapy. The role of epigenetic therapy in prostate cancer (PCa) remains elusive. Previously we demonstrated that upregulation of histone lysine demethylase KDM4B correlated with the appearance of castration resistant prostate cancer (CRPC) and identified a small molecular inhibitor of KDM4B, B3. In this study, we further investigated the role of KDM4B in promoting PCa progression and tested the efficacy of B3 using clinically relevant PCa models including PCa cell line LNCaP and 22Rv1 and xenografts derived from these cell lines. In loss and gain-functional studies of KDM4B in PCa cells, we found that overexpression of KDM4B in LNCaP cells enhanced its tumorigenicity whereas knockdown of KDM4B in 22Rv1 cells reduced tumor growth in castrated mice. B3 suppressed the growth of 22Rv1 xenografts and sensitized tumor to anti-androgen receptor (AR) antagonist enzalutamide inhibition. B3 also inhibited 22Rv1 tumor growth synergistically with rapamycin, leading to cell apoptosis. Comparative transcriptomic analysis performed on KDM4B knockdown and B3-treated 22Rv1 cells revealed that B3 inhibited both H3K9me3 and H3K27me3 demethylase activities. Our studies establish KDM4B as a target for CRPC and B3 as a potential therapeutic agent. B3 as monotherapy or in combination with other anti-PCa therapeutics offers proof of principle for the clinical translation of epigenetic therapy targeting KDMs for CRPC patients.
Collapse
Affiliation(s)
- Lingling Duan
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-An Chen
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanping Liang
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhenhua Chen
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jun Lu
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong Fang
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiazheng Cao
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen 529030, China
| | - Jian Lu
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen 529030, China
| | - Hongwei Zhao
- Department of Urology, Affiliated Yantai Yuhuangding Hospital, Qingdao University Medical College, Yantai 264000, China
| | - Rey-Chen Pong
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Hernandez
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Payal Kapur
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tram Anh T Tran
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tristan Smith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Elisabeth D Martinez
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jer-Tsong Hsieh
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun-Hang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Zhi-Ping Liu
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Lehman SL, Wechsler T, Schwartz K, Brown LE, Porco JA, Devine WG, Pelletier J, Shankavaram UT, Camphausen K, Tofilon PJ. Inhibition of the Translation Initiation Factor eIF4A Enhances Tumor Cell Radiosensitivity. Mol Cancer Ther 2022; 21:1406-1414. [PMID: 35732578 PMCID: PMC9452469 DOI: 10.1158/1535-7163.mct-22-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
A fundamental component of cellular radioresponse is the translational control of gene expression. Because a critical regulator of translational control is the eukaryotic translation initiation factor 4F (eIF4F) cap binding complex, we investigated whether eIF4A, the RNA helicase component of eIF4F, can serve as a target for radiosensitization. Knockdown of eIF4A using siRNA reduced translational efficiency, as determined from polysome profiles, and enhanced tumor cell radiosensitivity as determined by clonogenic survival. The increased radiosensitivity was accompanied by a delayed dispersion of radiation-induced γH2AX foci, suggestive of an inhibition of DNA double-strand break repair. Studies were then extended to (-)-SDS-1-021, a pharmacologic inhibitor of eIF4A. Treatment of cells with the rocaglate (-)-SDS-1-021 resulted in a decrease in translational efficiency as well as protein synthesis. (-)-SDS-1-021 treatment also enhanced the radiosensitivity of tumor cell lines. This (-)-SDS-1-021-induced radiosensitization was accompanied by a delay in radiation-induced γH2AX foci dispersal, consistent with a causative role for the inhibition of double-strand break repair. In contrast, although (-)-SDS-1-021 inhibited translation and protein synthesis in a normal fibroblast cell line, it had no effect on radiosensitivity of normal cells. Subcutaneous xenografts were then used to evaluate the in vivo response to (-)-SDS-1-021 and radiation. Treatment of mice bearing subcutaneous xenografts with (-)-SDS-1-021 decreased tumor translational efficiency as determined by polysome profiles. Although (-)-SDS-1-021 treatment alone had no effect on tumor growth, it significantly enhanced the radiation-induced growth delay. These results suggest that eIF4A is a tumor-selective target for radiosensitization.
Collapse
Affiliation(s)
| | | | | | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts
| | - William G Devine
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts
| | - Jerry Pelletier
- Department of Biochemistry, Oncology and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
6
|
Gou R, Li X, Dong H, Hu Y, Liu O, Liu J, Lin B. RAD21 Confers Poor Prognosis and Affects Ovarian Cancer Sensitivity to Poly(ADP-Ribose)Polymerase Inhibitors Through DNA Damage Repair. Front Oncol 2022; 12:936550. [PMID: 35860572 PMCID: PMC9289200 DOI: 10.3389/fonc.2022.936550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Poly(ADP-ribose)polymerase (PARP) inhibitors are a class of molecular-targeted cancer drugs. Synthetic lethality is a phenomenon that renders homologous recombination repair defective cells more sensitive to PARP inhibitors. As a component of the cohesin complex, RAD21 regulates DNA damage repair. However, the biological roles of RAD21 in ovarian cancer and their underlying mechanisms remain unclear. Methods An immunohistochemical assay was used to validate the expression of RAD21 in ovarian cancer and its correlation with prognosis. The effects of RAD21 were evaluated through Cell Counting Kit-8 (CCK8), wound-healing, and invasion assays in vitro and the tumor growth in vivo. Furthermore, CCK8 assay and immunofluorescence assay were used to detect the effect of RAD21 on cell sensitivity to PARP inhibitors and their mechanism. The pathway changes were detected by Western blotting. Results RAD21 was markedly upregulated in ovarian cancer samples. High RAD21 expression was correlated with poor differentiation and poor prognosis in patients with ovarian cancer. Functionally, RAD21 overexpression promoted cancer cell proliferation, migration, and invasion. Moreover, RAD21 knockdown increased the sensitivity of ovarian cancer cells to three kinds of PARP inhibitors by affecting DNA damage repair. In vivo experiments indicated that RAD21 promoted tumor growth. Mechanistically, the overexpression of RAD21 led to increased phosphorylation levels of Akt and mTOR. Blocking the Akt/mTOR signaling pathway reversed RAD21 overexpression-induced cancer progression and drug resistance. Conclusions RAD21 can serve as a valuable prognostic marker for ovarian cancer and has the potential as a therapeutic target that can expand the utility of PARP inhibitors.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
- *Correspondence: Bei Lin,
| |
Collapse
|
7
|
Vaughan RM, Kordich JJ, Chan CY, Sasi NK, Celano SL, Sisson KA, Van Baren M, Kortus MG, Aguiar DJ, Martin KR, MacKeigan JP. Chemical Biology Screening Identifies a Vulnerability to Checkpoint Kinase Inhibitors in TSC2-Deficient Renal Angiomyolipomas. Front Oncol 2022; 12:852859. [PMID: 35359406 PMCID: PMC8960247 DOI: 10.3389/fonc.2022.852859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The tuberous sclerosis complex (TSC) is a rare genetic syndrome and multisystem disease resulting in tumor formation in major organs. A molecular hallmark of TSC is a dysregulation of the mammalian target of rapamycin (mTOR) through loss-of-function mutations in either tumor suppressor TSC1 or TSC2. Here, we sought to identify drug vulnerabilities conferred by TSC2 tumor-suppressor loss through cell-based chemical biology screening. Our small-molecule chemical screens reveal a sensitivity to inhibitors of checkpoint kinase 1/2 (CHK1/2), regulators of cell cycle, and DNA damage response, in both in vitro and in vivo models of TSC2-deficient renal angiomyolipoma (RA) tumors. Further, we performed transcriptional profiling on TSC2-deficient RA cell models and discovered that these recapitulate some of the features from TSC patient kidney tumors compared to normal kidneys. Taken together, our study provides a connection between mTOR-dependent tumor growth and CHK1/2, highlighting the importance of CHK1/2 inhibition as a potential antitumor strategy in TSC2-deficient tumors.
Collapse
Affiliation(s)
- Robert M Vaughan
- Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Jennifer J Kordich
- Center for Cancer & Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Chun-Yuan Chan
- Center for Cancer & Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Nanda K Sasi
- Graduate Program in Genetics, Michigan State University, East Lansing, MI, United States
| | - Stephanie L Celano
- Center for Cancer & Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States.,Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Kellie A Sisson
- Center for Cancer & Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Megan Van Baren
- Center for Cancer & Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Matthew G Kortus
- Center for Cancer & Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Dean J Aguiar
- Preclinical Research, Tuberous Sclerosis Complex (TSC) Alliance, Silver Springs, MD, United States
| | - Katie R Martin
- Center for Cancer & Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States.,Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Jeffrey P MacKeigan
- Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Center for Cancer & Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States.,Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
8
|
Liu L, Dai X, Yin S, Liu P, Hill EG, Wei W, Gan W. DNA-PK promotes activation of the survival kinase AKT in response to DNA damage through an mTORC2-ECT2 pathway. Sci Signal 2022; 15:eabh2290. [PMID: 34982576 DOI: 10.1126/scisignal.abh2290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liu Liu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shasha Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
9
|
Volta V, Pérez-Baos S, de la Parra C, Katsara O, Ernlund A, Dornbaum S, Schneider RJ. A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells. Nat Commun 2021; 12:6979. [PMID: 34848685 PMCID: PMC8632918 DOI: 10.1038/s41467-021-27087-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Treg cells) inhibit effector T cells and maintain immune system homeostasis. Treg cell maturation in peripheral sites requires inhibition of protein kinase mTORC1 and TGF-beta-1 (TGF-beta). While Treg cell maturation requires protein synthesis, mTORC1 inhibition downregulates it, leaving unanswered how Treg cells achieve essential mRNA translation for development and immune suppression activity. Using human CD4+ T cells differentiated in culture and genome-wide transcription and translation profiling, here we report that TGF-beta transcriptionally reprograms naive T cells to express Treg cell differentiation and immune suppression mRNAs, while mTORC1 inhibition impairs translation of T cell mRNAs but not those induced by TGF-beta. Rather than canonical mTORC1/eIF4E/eIF4G translation, Treg cell mRNAs utilize the eIF4G homolog DAP5 and initiation factor eIF3d in a non-canonical translation mechanism that requires cap-dependent binding by eIF3d directed by Treg cell mRNA 5' noncoding regions. Silencing DAP5 in isolated human naive CD4+ T cells impairs their differentiation into Treg cells. Treg cell differentiation is mediated by mTORC1 downregulation and TGF-beta transcriptional reprogramming that establishes a DAP5/eIF3d-selective mechanism of mRNA translation.
Collapse
Affiliation(s)
- Viviana Volta
- Synthis LLC, 430 East 29th Street, Launch Labs, Alexandria Center for Life Sciences, New York, NY, 10016, USA
| | - Sandra Pérez-Baos
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Columba de la Parra
- Department of Chemistry, Herbert H. Lehman College, City University of New York, The Graduate Center, Biochemistry Ph.D. Program, City University of New York, New York, NY, 10016, USA
| | - Olga Katsara
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Amanda Ernlund
- Johns Hopkins Applied Physics Lab, 11000 Johns Hopkins Road, Laurel, MD, 20723, USA
| | - Sophie Dornbaum
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
10
|
Lehman SL, Wilson ED, Camphausen K, Tofilon PJ. Translation Initiation Machinery as a Tumor Selective Target for Radiosensitization. Int J Mol Sci 2021; 22:ijms221910664. [PMID: 34639005 PMCID: PMC8508945 DOI: 10.3390/ijms221910664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
Towards improving the efficacy of radiotherapy, one approach is to target the molecules and processes mediating cellular radioresponse. Along these lines, translational control of gene expression has been established as a fundamental component of cellular radioresponse, which suggests that the molecules participating in this process (i.e., the translational machinery) can serve as determinants of radiosensitivity. Moreover, the proteins comprising the translational machinery are often overexpressed in tumor cells suggesting the potential for tumor specific radiosensitization. Studies to date have shown that inhibiting proteins involved in translation initiation, the rate-limiting step in translation, specifically the three members of the eIF4F cap binding complex eIF4E, eIF4G, and eIF4A as well as the cap binding regulatory kinases mTOR and Mnk1/2, results in the radiosensitization of tumor cells. Because ribosomes are required for translation initiation, inhibiting ribosome biogenesis also appears to be a strategy for radiosensitization. In general, the radiosensitization induced by targeting the translation initiation machinery involves inhibition of DNA repair, which appears to be the consequence of a reduced expression of proteins critical to radioresponse. The availability of clinically relevant inhibitors of this component of the translational machinery suggests opportunities to extend this approach to radiosensitization to patient care.
Collapse
|
11
|
Shen C, He Y, Chen Q, Feng H, Williams TM, Lu Y, He Z. Narrative review of emerging roles for AKT-mTOR signaling in cancer radioimmunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1596. [PMID: 34790802 PMCID: PMC8576660 DOI: 10.21037/atm-21-4544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To summarize the roles of AKT-mTOR signaling in the regulation of the DNA damage response and PD-L1 expression in cancer cells, and propose a novel strategy of targeting AKT-mTOR signaling in combination with radioimmunotherapy in the era of cancer immunotherapy. BACKGROUND Immunotherapy has greatly improved the clinical outcomes of many cancer patients and has changed the landscape of cancer patient management. However, only a small subgroup of cancer patients (~20-30%) benefit from immune checkpoint blockade-based immunotherapy. The current challenge is to find biomarkers to predict the response of patients to immunotherapy and strategies to sensitize patients to immunotherapy. METHODS Search and review the literature which were published in PUBMED from 2000-2021 with the key words mTOR, AKT, drug resistance, DNA damage response, immunotherapy, PD-L1, DNA repair, radioimmunotherapy. CONCLUSIONS More than 50% of cancer patients receive radiotherapy during their course of treatment. Radiotherapy has been shown to reduce the growth of locally irradiated tumors as well as metastatic non-irradiated tumors (abscopal effects) by affecting systemic immunity. Consistently, immunotherapy has been demonstrated to enhance radiotherapy with more than one hundred clinical trials of radiation in combination with immunotherapy (radioimmunotherapy) across cancer types. Nevertheless, current available data have shown limited efficacy of trials testing radioimmunotherapy. AKT-mTOR signaling is a major tumor growth-promoting pathway and is upregulated in most cancers. AKT-mTOR signaling is activated by growth factors as well as genotoxic stresses including radiotherapy. Importantly, recent advances have shown that AKT-mTOR is one of the main signaling pathways that regulate DNA damage repair as well as PD-L1 levels in cancers. These recent advances clearly suggest a novel cancer therapy strategy by targeting AKT-mTOR signaling in combination with radioimmunotherapy.
Collapse
Affiliation(s)
- Changxian Shen
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuqi He
- Monash School of Medicine, Monash University, Clayton, VIC, Australia
| | - Qiang Chen
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haihua Feng
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence M. Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Ramkumar K, Stewart CA, Cargill KR, Corte CMD, Wang Q, Shen L, Diao L, Cardnell RJ, Peng DH, Rodriguez BL, Fan YH, Heymach JV, Wang J, Gay CM, Gibbons DL, Byers LA. AXL Inhibition Induces DNA Damage and Replication Stress in Non-Small Cell Lung Cancer Cells and Promotes Sensitivity to ATR Inhibitors. Mol Cancer Res 2021; 19:485-497. [PMID: 33172976 PMCID: PMC7925356 DOI: 10.1158/1541-7786.mcr-20-0414] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
AXL, a TAM (TYRO3, AXL, and MERTK) family receptor tyrosine kinase, is increasingly being recognized as a key determinant of resistance to targeted therapies, as well as chemotherapy and radiation in non-small cell lung cancer (NSCLC) and other cancers. We further show here that high levels of AXL and epithelial-to-mesenchymal transition were frequently expressed in subsets of both treatment-naïve and treatment-relapsed NSCLC. Previously, we and others have demonstrated a role for AXL in mediating DNA damage response (DDR), as well as resistance to inhibition of WEE1, a replication stress response kinase. Here, we show that BGB324 (bemcentinib), a selective small-molecule AXL inhibitor, caused DNA damage and induced replication stress, indicated by ATR/CHK1 phosphorylation, more significantly in TP53-deficient NSCLC cell lines. Similar effects were also observed in large-cell neuroendocrine carcinoma (LCNEC) cell lines. High AXL protein levels were also associated with resistance to ATR inhibition. Combined inhibition of AXL and ATR significantly decreased cell proliferation of NSCLC and LCNEC cell lines. Mechanistically, combined inhibition of AXL and ATR significantly increased RPA32 hyperphosphorylation and DNA double-strand breaks and induced markers of mitotic catastrophe. Notably, NSCLC cell lines with low levels of SLFN11, a known predictive biomarker for platinum and PARP inhibitor sensitivity, were more sensitive to AXL/ATR cotargeting. These findings demonstrate a novel and unexpected role for AXL in replication stress tolerance, with potential therapeutic implications. IMPLICATIONS: These findings demonstrate that the combination of AXL and ATR inhibitors could be a promising therapeutic combination for NSCLC, LCNEC, and other cancers.
Collapse
Affiliation(s)
- Kavya Ramkumar
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Allison Stewart
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kasey R. Cargill
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carminia M. Della Corte
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Current affiliation: University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Qi Wang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert J. Cardnell
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David H. Peng
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Current affiliation: Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - B. Leticia Rodriguez
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - You-Hong Fan
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V. Heymach
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M. Gay
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L. Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A. Byers
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Corresponding author: Lauren A. Byers, 1515 Holcombe Blvd., Unit 432, Houston, Texas, 77030. Phone: (713) 745-2982; Fax: (713) 792-1220;
| |
Collapse
|
13
|
Wang S, Meyer DH, Schumacher B. H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. Nat Struct Mol Biol 2020; 27:1165-1177. [DOI: 10.1038/s41594-020-00513-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
|
14
|
Huang TT, Brill E, Nair JR, Zhang X, Wilson KM, Chen L, Thomas CJ, Lee JM. Targeting the PI3K/mTOR Pathway Augments CHK1 Inhibitor-Induced Replication Stress and Antitumor Activity in High-Grade Serous Ovarian Cancer. Cancer Res 2020; 80:5380-5392. [PMID: 32998994 DOI: 10.1158/0008-5472.can-20-1439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecologic malignancy in industrialized countries and has limited treatment options. Targeting ataxia-telangiectasia and Rad3-related/cell-cycle checkpoint kinase 1 (CHK1)-mediated S-phase and G2-M-phase cell-cycle checkpoints has been a promising therapeutic strategy in HGSOC. To improve the efficacy of CHK1 inhibitor (CHK1i), we conducted a high-throughput drug combination screening in HGSOC cells. PI3K/mTOR pathway inhibitors (PI3K/mTORi) showed supra-additive cytotoxicity with CHK1i. Combined treatment with CHK1i and PI3K/mTORi significantly attenuated cell viability and increased DNA damage, chromosomal breaks, and mitotic catastrophe compared with monotherapy. PI3K/mTORi decelerated fork speed by promoting new origin firing via increased CDC45, thus potentiating CHK1i-induced replication stress. PI3K/mTORi also augmented CHK1i-induced DNA damage by attenuating DNA homologous recombination repair activity and RAD51 foci formation. High expression of replication stress markers was associated with poor prognosis in patients with HGSOC. Our findings indicate that combined PI3K/mTORi and CHK1i induces greater cell death in HGSOC cells and in vivo models by causing lethal replication stress and DNA damage. This insight can be translated therapeutically by further developing combinations of PI3K and cell-cycle pathway inhibitors in HGSOC. SIGNIFICANCE: Dual inhibition of CHK1 and PI3K/mTOR pathways yields potent synthetic lethality by causing lethal replication stress and DNA damage in HGSOC, warranting further clinical development.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland.
| | - Ethan Brill
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Jayakumar R Nair
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland.,Lymphoid Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| |
Collapse
|
15
|
Huang TT, Lampert EJ, Coots C, Lee JM. Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer. Cancer Treat Rev 2020; 86:102021. [PMID: 32311593 DOI: 10.1016/j.ctrv.2020.102021] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide although exponential progress has been made in its treatment over the last decade. New agents and novel combination treatments are on the horizon. Among many new drugs, a series of PI3K/AKT/mTOR pathway (referred to as the PI3K pathway) inhibitors are under development or already in clinical testing. The PI3K pathway is frequently upregulated in ovarian cancer and activated PI3K signaling contributes to increased cell survival and chemoresistance. However, no significant clinical success has been achieved with the PI3K pathway inhibitor(s) to date, reflecting the complex biology and also highlighting the need for combination treatment strategies. DNA damage repair pathways have been active therapeutic targets in ovarian cancer. Emerging data suggest the PI3K pathway is also involved in DNA replication and genome stability, making DNA damage response (DDR) inhibitors as an attractive combination treatment for PI3K pathway blockades. This review describes an expanded role for the PI3K pathway in the context of DDR and cell cycle regulation. We also present the novel treatment strategies combining PI3K pathway inhibitors with DDR blockades to improve the efficacy of these inhibitors for ovarian cancer.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Erika J Lampert
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cynthia Coots
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
16
|
Torin2 Exploits Replication and Checkpoint Vulnerabilities to Cause Death of PI3K-Activated Triple-Negative Breast Cancer Cells. Cell Syst 2019; 10:66-81.e11. [PMID: 31812693 DOI: 10.1016/j.cels.2019.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/11/2019] [Accepted: 11/04/2019] [Indexed: 01/22/2023]
Abstract
Frequent mutation of PI3K/AKT/mTOR signaling pathway genes in human cancers has stimulated large investments in targeted drugs but clinical successes are rare. As a result, many cancers with high PI3K pathway activity, such as triple-negative breast cancer (TNBC), are treated primarily with chemotherapy. By systematically analyzing responses of TNBC cells to a diverse collection of PI3K pathway inhibitors, we find that one drug, Torin2, is unusually effective because it inhibits both mTOR and other PI3K-like kinases (PIKKs). In contrast to mTOR-selective inhibitors, Torin2 exploits dependencies on several kinases for S-phase progression and cell-cycle checkpoints, thereby causing accumulation of single-stranded DNA and death by replication catastrophe or mitotic failure. Thus, Torin2 and its chemical analogs represent a mechanistically distinct class of PI3K pathway inhibitors that are uniquely cytotoxic to TNBC cells. This insight could be translated therapeutically by further developing Torin2 analogs or combinations of existing mTOR and PIKK inhibitors.
Collapse
|
17
|
Amini P, Nassiri S, Ettlin J, Malbon A, Markkanen E. Next-generation RNA sequencing of FFPE subsections reveals highly conserved stromal reprogramming between canine and human mammary carcinoma. Dis Model Mech 2019; 12:dmm.040444. [PMID: 31308057 PMCID: PMC6737962 DOI: 10.1242/dmm.040444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Spontaneous canine simple mammary carcinomas (mCA) are often viewed as models of human mCA. Cancer-associated stroma (CAS) is central for initiation and progression of human cancer, and is likely to play a key role in canine tumours as well. However, canine CAS lacks characterisation and it remains unclear how canine and human CAS compare. Formalin-fixed paraffin embedded (FFPE) tissue constitutes a valuable resource of patient material, but chemical crosslinking has largely precluded its analysis by next-generation RNA sequencing (RNAseq). We have recently established a protocol to isolate CAS and normal stroma from archival FFPE tumours using laser-capture microdissection followed by RNAseq. Using this approach, we have analysed stroma from 15 canine mCA. Our data reveal strong reprogramming of canine CAS. We demonstrate a high-grade molecular homology between canine and human CAS, and show that enrichment of upregulated canine CAS genes strongly correlates with the enrichment of an independently derived human stromal signature in the TCGA breast tumour dataset. Relationships between different gene signatures observed in human breast cancer are largely maintained in the canine model, suggesting a close interspecies similarity in the network of cancer signalling circuitries. Finally, we establish the prognostic potential of the canine CAS signature in human samples, emphasising the relevance of studying canine CAS as a model of the human disease. In conclusion, we provide a proof-of-principle to analyse specific subsections of FFPE tissue by RNAseq, and compare stromal gene expression between human and canine mCA to reveal molecular drivers in CAS supporting tumour growth and malignancy. Summary: This study offers proof-of-principle for a novel protocol to analyse gene expression in subsections of FFPE patient tissue, supporting the use of spontaneous canine mammary tumours as models for the human disease.
Collapse
Affiliation(s)
- Parisa Amini
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, CH-8057 Zürich, Switzerland
| | - Sina Nassiri
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Julia Ettlin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, CH-8057 Zürich, Switzerland
| | - Alexandra Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, CH-8057 Zürich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, CH-8057 Zürich, Switzerland
| |
Collapse
|
18
|
Nguyen JT, Haidar FS, Fox AL, Ray C, Mendonça DB, Kim JK, Krebsbach PH. mEAK-7 Forms an Alternative mTOR Complex with DNA-PKcs in Human Cancer. iScience 2019; 17:190-207. [PMID: 31288154 PMCID: PMC6614755 DOI: 10.1016/j.isci.2019.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/30/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
MTOR associated protein, eak-7 homolog (mEAK-7), activates mechanistic target of rapamycin (mTOR) signaling in human cells through an alternative mTOR complex to regulate S6K2 and 4E-BP1. However, the role of mEAK-7 in human cancer has not yet been identified. We demonstrate that mEAK-7 and mTOR signaling are strongly elevated in tumor and metastatic lymph nodes of patients with non-small-cell lung carcinoma compared with those of patients with normal lung or lymph tissue. Cancer stem cells, CD44+/CD90+ cells, yield elevated mEAK-7 and activated mTOR signaling. mEAK-7 is required for clonogenic potential and spheroid formation. mEAK-7 associates with DNA-dependent protein kinase catalytic subunit isoform 1 (DNA-PKcs), and this interaction is increased in response to X-ray irradiation to regulate S6K2 signaling. DNA-PKcs pharmacologic inhibition or genetic knockout reduced S6K2, mEAK-7, and mTOR binding with DNA-PKcs, resulting in loss of S6K2 activity and mTOR signaling. Therefore, mEAK-7 forms an alternative mTOR complex with DNA-PKcs to regulate S6K2 in human cancer cells.
Collapse
Affiliation(s)
- Joe Truong Nguyen
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Fatima Sarah Haidar
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Alexandra Lucienne Fox
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Connor Ray
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | | | - Jin Koo Kim
- Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul H Krebsbach
- Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Montané MH, Menand B. TOR inhibitors: from mammalian outcomes to pharmacogenetics in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2297-2312. [PMID: 30773593 DOI: 10.1093/jxb/erz053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/05/2019] [Indexed: 05/19/2023]
Abstract
Target of rapamycin (TOR) is a conserved eukaryotic phosphatidylinositol 3-kinase-related kinase that regulates growth and metabolism in response to environment in plants and algae. The study of the plant and algal TOR pathway has largely depended on TOR inhibitors first developed for non-photosynthetic eukaryotes. In animals and yeast, fundamental work on the TOR pathway has benefited from the allosteric TOR inhibitor rapamycin and more recently from ATP-competitive TOR inhibitors (asTORis) that circumvent the limitations of rapamycin. The asTORis, developed for medical application, inhibit TOR complex 1 (TORC1) more efficiently than rapamycin and also inhibit rapamycin-resistant TORCs. This review presents knowledge on TOR inhibitors from the mammalian field and underlines important considerations for plant and algal biologists. It discusses the use of rapamycin and asTORis in plants and algae and concludes with guidelines for physiological studies and genetic screens with TOR inhibitors.
Collapse
Affiliation(s)
- Marie-Hélène Montané
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de génétique et biophysique des plantes, Marseille, F-13009, France
| | - Benoît Menand
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de génétique et biophysique des plantes, Marseille, F-13009, France
| |
Collapse
|
20
|
Lamm N, Rogers S, Cesare AJ. The mTOR pathway: Implications for DNA replication. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:17-25. [PMID: 30991055 DOI: 10.1016/j.pbiomolbio.2019.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
DNA replication plays a central role in genome health. Deleterious alteration of replication dynamics, or "replication stress", is a key driver of genome instability and oncogenesis. The replication stress response is regulated by the ATR kinase, which functions to mitigate replication abnormalities through coordinated efforts that arrest the cell cycle and repair damaged replication forks. mTOR kinase regulates signaling networks that control cell growth and metabolism in response to environmental cues and cell stress. In this review, we discuss interconnectivity between the ATR and mTOR pathways, and provide putative mechanisms for mTOR engagement in DNA replication and the replication stress response. Finally, we describe how connectivity between mTOR and replication stress may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Noa Lamm
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia
| | - Samuel Rogers
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia.
| |
Collapse
|
21
|
Gomig THB, Cavalli IJ, Souza RLRD, Vieira E, Lucena ACR, Batista M, Machado KC, Marchini FK, Marchi FA, Lima RS, de Andrade Urban C, Cavalli LR, Ribeiro EMDSF. Quantitative label-free mass spectrometry using contralateral and adjacent breast tissues reveal differentially expressed proteins and their predicted impacts on pathways and cellular functions in breast cancer. J Proteomics 2019; 199:1-14. [PMID: 30772490 DOI: 10.1016/j.jprot.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 02/08/2023]
Abstract
Proteins play an essential role in the biological processes associated with cancer. Their altered expression levels can deregulate critical cellular pathways and interactive networks. In this study, the mass spectrometry-based label-free quantification followed by functional annotation was performed to investigate the most significant deregulated proteins among tissues of primary breast tumor (PT) and axillary metastatic lymph node (LN) and corresponding non-tumor tissues contralateral (NCT) and adjacent (ANT) from patients diagnosed with invasive ductal carcinoma. A total of 462 proteins was observed as differentially expressed (DEPs) among the groups analyzed. A high level of similarity was observed in the proteome profile of both non-tumor breast tissues and DEPs (n = 12) were mainly predicted in the RNA metabolism. The DEPs among the malignant and non-tumor breast tissues [n = 396 (PTxNCT) and n = 410 (LNxNCT)] were related to pathways of the LXR/RXR, NO, eNOS, eIF2 and sirtuins, tumor-related functions, fatty acid metabolism and oxidative stress. Remarkable similarity was observed between both malignant tissues, which the DEPs were related to metastatic capabilities. Altogether, our findings revealed differential proteomic profiles that affected cancer associated and interconnected signaling processes. Validation studies are recommended to demonstrate the potential of individual proteins and/or pathways as biological markers in breast cancer. SIGNIFICANCE: The proteomic analysis of this study revealed high similarity in the proteomic profile of the contralateral and adjacent non-tumor breast tissues. Significant differences were identified among the proteome of the malignant and non-tumor tissue groups of the same patients, providing relevant insights into the hallmarks, signaling pathways, biological functions, and interactive protein networks that act during tumorigenesis and breast cancer progression. These proteins are suggested as targets of relevant interest to be explored as potential biological markers related to tumor development and metastatic progression in the breast cancer disease.
Collapse
Affiliation(s)
| | | | | | - Evelyn Vieira
- Genetics Department, Federal University of Parana, Curitiba, Brazil
| | | | - Michel Batista
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | - Fabricio Klerynton Marchini
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | | | | | - Luciane Regina Cavalli
- Research Institute Pele Pequeno Principe, Curitiba, Brazil; Lombardi Comprehensive Cancer Center, Georgetown University, USA
| | | |
Collapse
|
22
|
Ernlund AW, Schneider RJ, Ruggles KV. RIVET: comprehensive graphic user interface for analysis and exploration of genome-wide translatomics data. BMC Genomics 2018; 19:809. [PMID: 30409155 PMCID: PMC6225633 DOI: 10.1186/s12864-018-5166-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022] Open
Abstract
Background Translatomics data, particularly genome-wide ribosome profiling and polysome profiling, provide multiple levels of gene regulatory information that can be used to assess general transcription and translation, as well translational efficiency. The increasing popularity of these techniques has resulted in multiple algorithms to detect translational regulation, typically distributed in the form of command line tools that require a basic level of programming ability. Additionally, due to the static nature of current software, dynamic transcriptional and translational comparative analysis cannot be adequately achieved. In order to streamline hypothesis generation, investigators must have the ability to manipulate and interact with their data in real-time. Results To address the lack of integration in current software, we introduce RIVET, Ribosomal Investigation and Visualization to Evaluate Translation, an R shiny based graphical user interface for translatomics data exploration and differential analysis. RIVET can analyze either microarray or RNA sequencing data from polysome profiling and ribosome profiling experiments. RIVET provides multiple choices for statistical analysis as well as integration of transcription, translation, and translational efficiency data analytics and the ability to visualize all results dynamically. Conclusions RIVET is a user-friendly tool designed for bench scientists with little to no programming background. RIVET facilitates the data analysis of translatomics data allowing for dynamic generation of results based on user-defined inputs and publication ready visualization. We expect RIVET will allow for scientists to efficiently make more comprehensive data observations that will lead to more robust hypothesis regarding translational regulation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5166-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amanda W Ernlund
- Department of Microbiology, New York University School of Medicine, New York, 10016, USA
| | - Robert J Schneider
- Department of Microbiology, New York University School of Medicine, New York, 10016, USA.
| | - Kelly V Ruggles
- Department of Medicine, Department of Translational Medicine, New York University School of Medicine, New York, 10016, USA.
| |
Collapse
|
23
|
David-West G, Ernlund A, Gadi A, Schneider RJ. mTORC1/2 inhibition re-sensitizes platinum-resistant ovarian cancer by disrupting selective translation of DNA damage and survival mRNAs. Oncotarget 2018; 9:33064-33076. [PMID: 30237852 PMCID: PMC6145695 DOI: 10.18632/oncotarget.25869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/08/2018] [Indexed: 12/12/2022] Open
Abstract
Platinum resistance is a major cause of treatment failure and mortality in epithelial ovarian cancer. mTORC1/2 inhibitors, which impair mRNA translation, can re-sensitize resistant ovarian cancer cells to platinum chemotherapy but the mechanism remains poorly described. Using platinum-resistant OVCAR-3 cells treated with the selective mTORC1/2 inhibitor INK128/MLN128, we conducted genome-wide transcription and translation studies and analyzed the effect on cell proliferation, AKT-mTOR signaling and cell survival, to determine whether carboplatin resistance involves selective mRNA translational reprogramming, and whether it is sensitive to mTORC1/2 inhibition. Gene ontology and Ingenuity Pathway Analysis (IPA) were used to categorize gene expression changes into experimentally authenticated biochemical and molecular networks. We show that carboplatin resistance involves increased mTORC1/2 signaling, resulting in selective translation of mRNAs involved in DNA damage and repair responses (DDR), cell cycle and anti-apoptosis (survival) pathways. Re-sensitization of ovarian cancer cell killing by carboplatin required only modest mTORC1/2 inhibition, with downregulation of protein synthesis by only 20-30%. Genome-wide transcriptomic and translatomic analyses in OVCAR-3 cells revealed that the modest downregulation of global protein synthesis by dual mTORC1/2 inhibition is associated with greater selective inhibition of DDR, cell cycle and survival mRNA translation, which was confirmed in platinum-resistant SKOV-3 cells. These data suggest a clinical path to re-sensitize platinum resistant ovarian cancer to platinum chemotherapy through partial inhibition of mTORC1/2, resulting in selective translation inhibition of DDR and anti-apoptosis protective mRNAs.
Collapse
Affiliation(s)
- Gizelka David-West
- Division of Gynecologic Oncology, New York University School of Medicine, New York, NY, USA
- New York Medical College, Westchester Medical Center, Hawthorne, NY, USA
| | - Amanda Ernlund
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Abhilash Gadi
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
24
|
Abstract
The rates of ribosome production by a nucleolus and of protein biosynthesis by ribosomes are tightly correlated with the rate of cell growth and proliferation. All these processes must be matched and appropriately regulated to provide optimal cell functioning. Deregulation of certain factors, including oncogenes, controlling these processes, especially ribosome biosynthesis, can lead to cell transformation. Cancer cells are characterized by intense ribosome biosynthesis which is advantageous for their growth and proliferation. On the other hand, this feature can be engaged as an anticancer strategy. Numerous nucleolar factors such as nucleolar and ribosomal proteins as well as different RNAs, in addition to their role in ribosome biosynthesis, have other functions, including those associated with cancer biology. Some of them can contribute to cell transformation and cancer development. Others, under stress evoked by different factors which often hamper function of nucleoli and thus induce nucleolar/ribosomal stress, can participate in combating cancer cells. In this sense, intentional application of therapeutic agents affecting ribosome biosynthesis can cause either release of these molecules from nucleoli or their de novo biosynthesis to mediate the activation of pathways leading to elimination of harmful cells. This review underlines the role of a nucleolus not only as a ribosome constituting apparatus but also as a hub of both positive and negative control of cancer development. The article is mainly based on original papers concerning mechanisms in which the nucleolus is implicated directly or indirectly in processes associated with neoplasia.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|
25
|
de la Parra C, Ernlund A, Alard A, Ruggles K, Ueberheide B, Schneider RJ. A widespread alternate form of cap-dependent mRNA translation initiation. Nat Commun 2018; 9:3068. [PMID: 30076308 PMCID: PMC6076257 DOI: 10.1038/s41467-018-05539-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 11/30/2022] Open
Abstract
Translation initiation of most mammalian mRNAs is mediated by a 5′ cap structure that binds eukaryotic initiation factor 4E (eIF4E). However, inactivation of eIF4E does not impair translation of many capped mRNAs, suggesting an unknown alternate mechanism may exist for cap-dependent but eIF4E-independent translation. We show that DAP5, an eIF4GI homolog that lacks eIF4E binding, utilizes eIF3d to facilitate cap-dependent translation of approximately 20% of mRNAs. Genome-wide transcriptomic and translatomic analyses indicate that DAP5 is required for translation of many transcription factors and receptor capped mRNAs and their mRNA targets involved in cell survival, motility, DNA repair and translation initiation, among other mRNAs. Mass spectrometry and crosslinking studies demonstrate that eIF3d is a direct binding partner of DAP5. In vitro translation and ribosome complex studies demonstrate that DAP5 and eIF3d are both essential for eIF4E-independent capped-mRNA translation. These studies disclose a widespread and previously unknown mechanism for cap-dependent mRNA translation by DAP5-eIF3d complexes. Binding of eIF4E to the 5′ cap of mRNAs is a key early step in canonical translation initiation, but the requirement for eIF4E is not universal. Here the authors show that the eIF4G homolog DAP5 interacts with eIF3 to promote cap-dependent translation of a significant number of mRNA in an eIF4E-independent manner.
Collapse
Affiliation(s)
- Columba de la Parra
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA.,Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Amanda Ernlund
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Amandine Alard
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Kelly Ruggles
- Department of Medicine, NYU School of Medicine, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA. .,Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
26
|
Ma Y, Vassetzky Y, Dokudovskaya S. mTORC1 pathway in DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1293-1311. [PMID: 29936127 DOI: 10.1016/j.bbamcr.2018.06.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
Abstract
Living organisms have evolved various mechanisms to control their metabolism and response to various stresses, allowing them to survive and grow in different environments. In eukaryotes, the highly conserved mechanistic target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cellular metabolism, proliferation and survival. A growing body of evidence indicates that mTOR signaling is closely related to another cellular protection mechanism, the DNA damage response (DDR). Many factors important for the DDR are also involved in the mTOR pathway. In this review, we discuss how these two pathways communicate to ensure an efficient protection of the cell against metabolic and genotoxic stresses. We also describe how anticancer therapies benefit from simultaneous targeting of the DDR and mTOR pathways.
Collapse
Affiliation(s)
- Yinxing Ma
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France
| | - Yegor Vassetzky
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France
| | - Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France.
| |
Collapse
|
27
|
Willet SG, Lewis MA, Miao ZF, Liu D, Radyk MD, Cunningham RL, Burclaff J, Sibbel G, Lo HYG, Blanc V, Davidson NO, Wang ZN, Mills JC. Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis. EMBO J 2018; 37:e98311. [PMID: 29467218 PMCID: PMC5881627 DOI: 10.15252/embj.201798311] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
In 1900, Adami speculated that a sequence of context-independent energetic and structural changes governed the reversion of differentiated cells to a proliferative, regenerative state. Accordingly, we show here that differentiated cells in diverse organs become proliferative via a shared program. Metaplasia-inducing injury caused both gastric chief and pancreatic acinar cells to decrease mTORC1 activity and massively upregulate lysosomes/autophagosomes; then increase damage associated metaplastic genes such as Sox9; and finally reactivate mTORC1 and re-enter the cell cycle. Blocking mTORC1 permitted autophagy and metaplastic gene induction but blocked cell cycle re-entry at S-phase. In kidney and liver regeneration and in human gastric metaplasia, mTORC1 also correlated with proliferation. In lysosome-defective Gnptab-/- mice, both metaplasia-associated gene expression changes and mTORC1-mediated proliferation were deficient in pancreas and stomach. Our findings indicate differentiated cells become proliferative using a sequential program with intervening checkpoints: (i) differentiated cell structure degradation; (ii) metaplasia- or progenitor-associated gene induction; (iii) cell cycle re-entry. We propose this program, which we term "paligenosis", is a fundamental process, like apoptosis, available to differentiated cells to fuel regeneration following injury.
Collapse
Affiliation(s)
- Spencer G Willet
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark A Lewis
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhi-Feng Miao
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dengqun Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Megan D Radyk
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca L Cunningham
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Burclaff
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Greg Sibbel
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hei-Yong G Lo
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Valerie Blanc
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
28
|
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-dependent pathway is one of the most integral pathways linked to cell metabolism, proliferation, differentiation, and survival. This pathway is dysregulated in a variety of diseases, including neoplasia, immune-mediated diseases, and fibroproliferative diseases such as pulmonary fibrosis. The mTOR kinase is frequently referred to as the master regulator of this pathway. Alterations in mTOR signaling are closely associated with dysregulation of autophagy, inflammation, and cell growth and survival, leading to the development of lung fibrosis. Inhibitors of mTOR have been widely studied in cancer therapy, as they may sensitize cancer cells to radiation therapy. Studies also suggest that mTOR inhibitors are promising modulators of fibroproliferative diseases such as idiopathic pulmonary fibrosis (IPF) and radiation-induced pulmonary fibrosis (RIPF). Therefore, mTOR represents an attractive and unique therapeutic target in pulmonary fibrosis. In this review, we discuss the pathological role of mTOR kinase in pulmonary fibrosis and examine how mTOR inhibitors may mitigate fibrotic progression.
Collapse
|
29
|
Geter PA, Ernlund AW, Bakogianni S, Alard A, Arju R, Giashuddin S, Gadi A, Bromberg J, Schneider RJ. Hyperactive mTOR and MNK1 phosphorylation of eIF4E confer tamoxifen resistance and estrogen independence through selective mRNA translation reprogramming. Genes Dev 2017; 31:2235-2249. [PMID: 29269484 PMCID: PMC5769768 DOI: 10.1101/gad.305631.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
Geter et al. show that tamoxifen resistance involves selective mRNA translational reprogramming to an anti-estrogen state by Runx2 and other mRNAs. Tamoxifen-resistant translational reprogramming is shown to be mediated by increased expression of eIF4E and its increased availability by hyperactive mTOR and to require phosphorylation of eIF4E at Ser209 by increased MNK activity. The majority of breast cancers expresses the estrogen receptor (ER+) and is treated with anti-estrogen therapies, particularly tamoxifen in premenopausal women. However, tamoxifen resistance is responsible for a large proportion of breast cancer deaths. Using small molecule inhibitors, phospho-mimetic proteins, tamoxifen-sensitive and tamoxifen-resistant breast cancer cells, a tamoxifen-resistant patient-derived xenograft model, patient tumor tissues, and genome-wide transcription and translation studies, we show that tamoxifen resistance involves selective mRNA translational reprogramming to an anti-estrogen state by Runx2 and other mRNAs. Tamoxifen-resistant translational reprogramming is shown to be mediated by increased expression of eIF4E and its increased availability by hyperactive mTOR and to require phosphorylation of eIF4E at Ser209 by increased MNK activity. Resensitization to tamoxifen is restored only by reducing eIF4E expression or mTOR activity and also blocking MNK1 phosphorylation of eIF4E. mRNAs specifically translationally up-regulated with tamoxifen resistance include Runx2, which inhibits ER signaling and estrogen responses and promotes breast cancer metastasis. Silencing Runx2 significantly restores tamoxifen sensitivity. Tamoxifen-resistant but not tamoxifen-sensitive patient ER+ breast cancer specimens also demonstrate strongly increased MNK phosphorylation of eIF4E. eIF4E levels, availability, and phosphorylation therefore promote tamoxifen resistance in ER+ breast cancer through selective mRNA translational reprogramming
Collapse
Affiliation(s)
- Phillip A Geter
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Amanda W Ernlund
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Sofia Bakogianni
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Amandine Alard
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Rezina Arju
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Shah Giashuddin
- New York Presbyterian-Brooklyn Methodist Hospital, Brooklyn, New York 11215, USA
| | - Abhilash Gadi
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Jacqueline Bromberg
- Memorial Sloan Kettering Cancer Institute, New York, New York 10016 USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016 USA
| | - Robert J Schneider
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA.,Memorial Sloan Kettering Cancer Institute, New York, New York 10016 USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016 USA
| |
Collapse
|