1
|
Tarvestad-Laise K, Ceresa BP. Knockout of c-Cbl/Cbl-b slows c-Met trafficking resulting in enhanced signaling in corneal epithelial cells. J Biol Chem 2023; 299:105233. [PMID: 37690689 PMCID: PMC10622846 DOI: 10.1016/j.jbc.2023.105233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023] Open
Abstract
In many cell types, the E3 ubiquitin ligases c-Cbl and Cbl-b induce ligand-dependent ubiquitylation of the hepatocyte growth factor (HGF)-stimulated c-Met receptor and target it for lysosomal degradation. This study determines whether c-Cbl/Cbl-b are negative regulators of c-Met in the corneal epithelium (CE) and if their inhibition can augment c-Met-mediated CE homeostasis. Immortalized human corneal epithelial cells were transfected with Cas9 only (Cas9, control cells) or with Cas9 and c-Cbl/Cbl-b guide RNAs to knockout each gene singularly (-c-Cbl or -Cbl-b cells) or both genes (double KO [DKO] cells) and monitored for their responses to HGF. Cells were assessed for ligand-dependent c-Met ubiquitylation via immunoprecipitation, magnitude, and duration of c-Met receptor signaling via immunoblot and receptor trafficking by immunofluorescence. Single KO cells displayed a decrease in receptor ubiquitylation and an increase in phosphorylation compared to control. DKO cells had no detectable ubiquitylation, had delayed receptor trafficking, and a 2.3-fold increase in c-Met phosphorylation. Based on the observed changes in receptor trafficking and signaling, we examined HGF-dependent in vitro wound healing via live-cell time-lapse microscopy in control and DKO cells. HGF-treated DKO cells healed at approximately twice the rate of untreated cells. From these data, we have generated a model in which c-Cbl/Cbl-b mediate the ubiquitylation of c-Met, which targets the receptor through the endocytic pathway toward lysosomal degradation. In the absence of ubiquitylation, the stimulated receptor stays phosphorylated longer and enhances in vitro wound healing. We propose that c-Cbl and Cbl-b are promising pharmacologic targets for enhancing c-Met-mediated CE re-epithelialization.
Collapse
Affiliation(s)
- Kate Tarvestad-Laise
- Department of Pharmacology and Toxicology (KTL, BPC) and Department of Ophthalmology and Vision Sciences (BPC), University of Louisville, Louisville, Kentucky, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology (KTL, BPC) and Department of Ophthalmology and Vision Sciences (BPC), University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
2
|
The effect of balanities aeqyptiaca defatted protein meal and protein concentrate supplemented diet on biochemical and molecular stability of diabetic wister albino rat. Biomed Pharmacother 2022; 153:113510. [DOI: 10.1016/j.biopha.2022.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
|
3
|
Semaniuk U, Strilbytska O, Malinovska K, Storey KB, Vaiserman A, Lushchak V, Lushchak O. Factors that regulate expression patterns of insulin-like peptides and their association with physiological and metabolic traits in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 135:103609. [PMID: 34146686 DOI: 10.1016/j.ibmb.2021.103609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/05/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Insulin-like peptides (ILPs) and components of the insulin signaling pathway are conserved across different animal phyla. Eight ILPs (called DILPs) and two receptors, dInR and Lgr3, have been described in Drosophila. DILPs regulate varied physiological traits including lifespan, reproduction, development, feeding behavior, stress resistance and metabolism. At the same time, different conditions such as nutrition, dietary supplements and environmental factors affect the expression of DILPs. This review focuses primarily on DILP2, DILP3, and DILP5 which are produced by insulin-producing cells in the brain of Drosophila. Although they are produced by the same cells and can potentially compensate for each other, DILP2, DILP3, and DILP5 expression may be differentially regulated at the mRNA level. Thus, we summarized available data on the conditions affecting the expression profiles of these DILPs in adult Drosophila. The accumulated data indicate that transcript levels of DILPs are determined by (a) nutritional conditions such as the protein-to-carbohydrate ratio, (b) carbohydrate type within the diet, (c) malnutrition or complete starvation; (d) environmental factors such as stress or temperature; (e) mutations of single peptides that induce changes in the expression of the other peptides; and (f) dietary supplements of drugs or natural substances. Furthermore, manipulation of specific genes in a cell- and tissue-specific manner affects mRNA levels for DILPs and, thereby, modulates various physiological traits and metabolism in Drosophila.
Collapse
Affiliation(s)
- Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Karina Malinovska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | | | - Volodymyr Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; Research and Development University, Ivano-Frankivsk, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; Research and Development University, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
4
|
Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Front Physiol 2021; 12:701203. [PMID: 34267679 PMCID: PMC8276055 DOI: 10.3389/fphys.2021.701203] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The insulin-like peptide (ILP) and insulin-like growth factor (IGF) signalling pathways play a crucial role in the regulation of metabolism, growth and development, fecundity, stress resistance, and lifespan. ILPs are encoded by multigene families that are expressed in nervous and non-nervous organs, including the midgut, salivary glands, and fat body, in a tissue- and stage-specific manner. Thus, more multidirectional and more complex control of insect metabolism can occur. ILPs are not the only factors that regulate metabolism. ILPs interact in many cross-talk interactions of different factors, for example, hormones (peptide and nonpeptide), neurotransmitters and growth factors. These interactions are observed at different levels, and three interactions appear to be the most prominent/significant: (1) coinfluence of ILPs and other factors on the same target cells, (2) influence of ILPs on synthesis/secretion of other factors regulating metabolism, and (3) regulation of activity of cells producing/secreting ILPs by various factors. For example, brain insulin-producing cells co-express sulfakinins (SKs), which are cholecystokinin-like peptides, another key regulator of metabolism, and express receptors for tachykinin-related peptides, the next peptide hormones involved in the control of metabolism. It was also shown that ILPs in Drosophila melanogaster can directly and indirectly regulate AKH. This review presents an overview of the regulatory role of insulin-like peptides in insect metabolism and how these factors interact with other players involved in its regulation.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Pawel Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Li B, Wang Z, Yu M, Wang X, Wang X, Chen C, Zhang Z, Zhang M, Sun C, Zhao C, Li Q, Wang W, Wang T, Zhang L, Ning G, Feng S. miR-22-3p enhances the intrinsic regenerative abilities of primary sensory neurons via the CBL/p-EGFR/p-STAT3/GAP43/p-GAP43 axis. J Cell Physiol 2019; 235:4605-4617. [PMID: 31663116 DOI: 10.1002/jcp.29338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a devastating disease. Strategies that enhance the intrinsic regenerative ability are very important for the recovery of SCI to radically prevent the occurrence of sensory disorders. Epidermal growth factor (EGF) showed a limited effect on the growth of primary sensory neuron neurites due to the degradation of phosphorylated-epidermal growth factor receptor (p-EGFR) in a manner dependent on Casitas B-lineage lymphoma (CBL) (an E3 ubiquitin-protein ligase). MiR-22-3p predicted from four databases could target CBL to inhibit the expression of CBL, increase p-EGFR levels and neurites length via STAT3/GAP43 pathway rather than Erk1/2 axis. EGF, EGFR, and miR-22-3p were downregulated sharply after injury. In vivo miR-22-3p Agomir application could regulate CBL/p-EGFR/p-STAT3/GAP43/p-GAP43 axis, and restore spinal cord sensory conductive function. This study clarified the mechanism of the limited promotion effect of EGF on adult primary sensory neuron neurite and targeting miR-22-3p could be a novel strategy to treat sensory dysfunction after SCI.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Mei Yu
- Department of Leukemia Center, Chinese Academy of Medical Sciences & Peking Union of Medical College, Institute of Hematology & Hospital of Blood Diseases, Tianjin, 30020, China
| | - Xu Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xin Wang
- Department of Graduate School, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Chuanjie Chen
- Department of Orthopedics, Chengde Central Hospital, Chengde, 067000, Hebei, China
| | - Zheng Zhang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, 067000, Hebei, China
| | - Meiling Zhang
- Department of Graduate School, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Qiang Li
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Wei Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Tianyi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, 067000, Hebei, China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Department of Translational Medicine, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Department of Translational Medicine, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, China
| |
Collapse
|
6
|
Xing B, Ma J, Jiang Z, Feng Z, Ling S, Szigety K, Su W, Zhang L, Jia R, Sun Y, Zhang L, Kong X, Ma X, Hua X. GLP-1 signaling suppresses menin's transcriptional block by phosphorylation in β cells. J Cell Biol 2019; 218:855-870. [PMID: 30792230 PMCID: PMC6400573 DOI: 10.1083/jcb.201805049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/23/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Both menin and glucagon-like peptide 1 (GLP-1) pathways play central yet opposing role in regulating β cell function, with menin suppressing, and GLP-1 promoting, β cell function. However, little is known as to whether or how GLP-1 pathway represses menin function. Here, we show that GLP-1 signaling-activated protein kinase A (PKA) directly phosphorylates menin at the serine 487 residue, relieving menin-mediated suppression of insulin expression and cell proliferation. Mechanistically, Ser487-phosphorylated menin gains increased binding affinity to nuclear actin/myosin IIa proteins and gets sequestrated from the Ins1 promoter. This event leads to reduced binding of repressive epigenetic histone modifiers suppressor variegation 3-9 homologue protein 1 (SUV39H1) and histone deacetylases 1 (HDAC1) at the locus and subsequently increased Ins1 gene transcription. Ser487 phosphorylation of menin also increases expression of proproliferative cyclin D2 and β cell proliferation. Our results have uncovered a previously unappreciated physiological link in which GLP-1 signaling suppresses menin function through phosphorylation-triggered and actin/myosin cytoskeletal protein-mediated derepression of gene transcription.
Collapse
Affiliation(s)
- Bowen Xing
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zongzhe Jiang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sunbin Ling
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katy Szigety
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Wen Su
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Longmei Zhang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Ruirui Jia
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Yanmei Sun
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Lin Zhang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xiangchen Kong
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xiaosong Ma
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xianxin Hua
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China .,Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
7
|
Buhler K, Clements J, Winant M, Bolckmans L, Vulsteke V, Callaerts P. Growth control through regulation of insulin-signaling by nutrition-activated steroid hormone in Drosophila. Development 2018; 145:dev.165654. [DOI: 10.1242/dev.165654] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Abstract
Growth and maturation are coordinated processes in all animals. Integration of internal cues, such as signalling pathways, with external cues such as nutritional status is paramount for an orderly progression of development in function of growth. In Drosophila, this involves insulin and steroid signalling, but the underlying mechanisms and their coordination are incompletely understood. We show that bioactive 20-hydroxyecdysone production by the enzyme Shade in the fat body is a nutrient-dependent process. We demonstrate that under fed conditions, Shade plays a role in growth control. We identify the trachea and the insulin-producing cells in the brain as direct targets through which 20-hydroxyecdysone regulates insulin-signaling. The identification of the trachea-dependent regulation of insulin-signaling exposes an important variable that may have been overlooked in other studies focusing on insulin-signaling in Drosophila. Our findings provide a potentially conserved, novel mechanism by which nutrition can modulate steroid hormone bioactivation, reveal an important caveat of a commonly used transgenic tool to study IPC function and yield further insights as to how steroid and insulin signalling are coordinated during development to regulate growth and developmental timing.
Collapse
Affiliation(s)
- Kurt Buhler
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Jason Clements
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Mattias Winant
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Lenz Bolckmans
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Veerle Vulsteke
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| |
Collapse
|
8
|
Ulasov IV, Foster H, Butters M, Yoon JG, Ozawa T, Nicolaides T, Figueroa X, Hothi P, Prados M, Butters J, Cobbs C. Precision knockdown of EGFR gene expression using radio frequency electromagnetic energy. J Neurooncol 2017; 133:257-264. [PMID: 28434113 DOI: 10.1007/s11060-017-2440-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
Abstract
Electromagnetic fields (EMF) in the radio frequency energy (RFE) range can affect cells at the molecular level. Here we report a technology that can record the specific RFE signal of a given molecule, in this case the siRNA of epidermal growth factor receptor (EGFR). We demonstrate that cells exposed to this EGFR siRNA RFE signal have a 30-70% reduction of EGFR mRNA expression and ~60% reduction in EGFR protein expression vs. control treated cells. Specificity for EGFR siRNA effect was confirmed via RNA microarray and antibody dot blot array. The EGFR siRNA RFE decreased cell viability, as measured by Calcein-AM measures, LDH release and Caspase 3 cleavage, and increased orthotopic xenograft survival. The outcomes of this study demonstrate that an RFE signal can induce a specific siRNA-like effect on cells. This technology opens vast possibilities of targeting a broader range of molecules with applications in medicine, agriculture and other areas.
Collapse
Affiliation(s)
- Ilya V Ulasov
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA.
| | - Haidn Foster
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Mike Butters
- Nativis Inc., 219 Terry Avenue North, Seattle, WA, 98109, USA
| | - Jae-Geun Yoon
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Tomoko Ozawa
- Department of Neurosurgery, Brain Tumor Research Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Theodore Nicolaides
- Department of Neurosurgery, Brain Tumor Research Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xavier Figueroa
- Nativis Inc., 219 Terry Avenue North, Seattle, WA, 98109, USA
| | - Parvinder Hothi
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Michael Prados
- Department of Neurosurgery, Brain Tumor Research Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - John Butters
- Nativis Inc., 219 Terry Avenue North, Seattle, WA, 98109, USA
| | - Charles Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA.
| |
Collapse
|
9
|
Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A 2016; 113:E8228-E8237. [PMID: 27930322 DOI: 10.1073/pnas.1615677113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Casitas B-cell lymphoma (Cbl) family ubiquitin ligases negatively regulate tyrosine kinase-dependent signal transduction by promoting degradation of active kinases. We and others previously reported that loss of Cbl functions caused hyperproliferation in lymphoid and hematopoietic systems. Unexpectedly, Cbl deletion in Cbl-b-null, Cbl-c-null primary mouse mammary epithelial cells (MECs) (Cbl triple-deficiency) induced rapid cell death despite enhanced MAP kinase and AKT activation. Acute Cbl triple-deficiency elicited distinct transcriptional and biochemical responses with partial overlap with previously described cellular reactions to unfolded proteins and oxidative stress. Although the levels of reactive oxygen species were comparable, detergent-insoluble protein aggregates containing phosphorylated c-Src accumulated in Cbl triple-deficient MECs. Treatment with a broad-spectrum kinase inhibitor dasatinib blocked protein aggregate accumulation and restored in vitro organoid formation. This effect is most likely mediated through c-Src because Cbl triple-deficient MECs were able to form organoids upon shRNA-mediated c-Src knockdown. Taking these data together, the present study demonstrates that Cbl family proteins are required to protect MECs from proteotoxic stress-induced cell death by promoting turnover of active c-Src.
Collapse
|
10
|
Xin Y, Okamoto H, Kim J, Ni M, Adler C, Cavino K, Na E, Murphy AJ, Yancopoulos GD, Lin C, Gromada J. Single-Cell RNAseq Reveals That Pancreatic β-Cells From Very Old Male Mice Have a Young Gene Signature. Endocrinology 2016; 157:3431-8. [PMID: 27466694 DOI: 10.1210/en.2016-1235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aging improves pancreatic β-cell function in mice. This is a surprising finding because aging is typically associated with functional decline. We performed single-cell RNA sequencing of β-cells from 3- and 26-month-old mice to explore how changes in gene expression contribute to improved function with age. The old mice were healthy and had reduced blood glucose levels and increased β-cell mass, which correlated to their body weight. β-Cells from young and old mice had similar transcriptome profiles. In fact, only 193 genes (0.89% of all detected genes) were significantly regulated (≥2-fold; false discovery rate < 0.01; normalized counts > 5). Of these, 183 were down-regulated and mainly associated with pathways regulating gene expression, cell cycle, cell death, and survival as well as cellular movement, function, and maintenance. Collectively our data show that β-cells from very old mice have transcriptome profiles similar to those of young mice. These data support previous findings that aging is not associated with reduced β-cell mass or functional β-cell decline in mice.
Collapse
Affiliation(s)
- Yurong Xin
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Min Ni
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | - Katie Cavino
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Erqian Na
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | | | - Calvin Lin
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| |
Collapse
|
11
|
Morris BJ, Donlon TA, He Q, Grove JS, Masaki KH, Elliott A, Willcox DC, Willcox BJ. Association analyses of insulin signaling pathway gene polymorphisms with healthy aging and longevity in Americans of Japanese ancestry. J Gerontol A Biol Sci Med Sci 2014; 69:270-3. [PMID: 23770741 PMCID: PMC3968832 DOI: 10.1093/gerona/glt082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/11/2013] [Indexed: 01/11/2023] Open
Abstract
Evidence from model organisms suggests that the insulin/IGF-1 signaling pathway has an important, evolutionarily conserved influence over rate of aging and thus longevity. In humans, the FOXO3 gene is the only widely replicated insulin/IGF-1 signaling pathway gene associated with longevity across multiple populations. Therefore, we conducted a nested case-control study of other insulin/IGF-1 signaling genes and longevity, utilizing a large, homogeneous, long-lived population of American men of Japanese ancestry, well characterized for aging phenotypes. Genotyping was performed of single nucleotide polymorphisms, tagging most of the genetic variation across several genes in the insulin/IGF-1 signaling pathway or related gene networks that may be influenced by FOXO3, namely, ATF4, CBL, CDKN2, EXO1, and JUN. Two initial, marginal associations with longevity did not remain significant after correction for multiple comparisons, nor were they correlated with aging-related phenotypes.
Collapse
Affiliation(s)
- Brian J Morris
- DSc Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, 347 North Kuakini Street, HPM-9, Honolulu, Hawaii 96817.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Trinh I, Boulianne GL. Modeling obesity and its associated disorders in Drosophila. Physiology (Bethesda) 2014; 28:117-24. [PMID: 23455770 DOI: 10.1152/physiol.00025.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In recent years, obesity has been recognized as a major public health problem due to its increased prevalence in both children and adults and its association with numerous life-threatening complications including diabetes, heart disease, hypertension, and cancer. Obesity is a complex disorder that is the result of the interaction between predisposing genetic and environmental factors. However, the precise nature of these gene-gene and gene-environment interactions remains unclear. Here, we will describe recent studies demonstrating how fruit flies can be used to identify and characterize the mechanisms underlying obesity and to establish models of obesity-associated disorders.
Collapse
Affiliation(s)
- Irene Trinh
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
13
|
Kannan K, Fridell YWC. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Front Physiol 2013; 4:288. [PMID: 24137131 PMCID: PMC3797364 DOI: 10.3389/fphys.2013.00288] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/22/2013] [Indexed: 11/13/2022] Open
Abstract
The neuroendocrine architecture and insulin/insulin-like signaling (IIS) events in Drosophila are remarkably conserved. As IIS pathway governs growth and development, metabolism, reproduction, stress response, and longevity; temporal, spatial, and nutrient regulation of dilps encoding Drosophila insulin-like peptides (DILPs) provides potential mechanisms in modulating IIS. Of eight DILPs (DILP1–8) identified, recent studies have furthered our understanding of physiological roles of DILP2, DILP3, DILP5, and DILP6 in metabolism, aging, and responses to dietary restriction (DR), which will be the focus of this review. While the DILP producing IPCs of the brain secrete DILP2, 3, and 5, fat body produces DILP6. Identification of factors that influence dilp expression and DILP secretion has provided insight into the intricate regulatory mechanisms underlying transcriptional regulation of those genes and the activity of each peptide. Studies involving loss-of-function dilp mutations have defined the roles of DILP2 and DILP6 in carbohydrate and lipid metabolism, respectively. While DILP3 has been implicated to modulate lipid metabolism, a metabolic role for DILP5 is yet to be determined. Loss of dilp2 or adult fat body specific expression of dilp6 has been shown to extend lifespan, establishing their roles in longevity regulation. The exact role of DILP3 in aging awaits further clarification. While DILP5 has been shown associated with DR-mediated lifespan extension, contradictory evidence that precludes a direct involvement of DILP5 in DR exists. This review highlights recent findings on the importance of conserved DILPs in metabolic homeostasis, DR, and aging, providing strong evidence for the use of DILPs in modeling metabolic disorders such as diabetes and hyperinsulinemia in the fly that could further our understanding of the underlying processes and identify therapeutic strategies to treat them.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Molecular and Cell Biology, University of Connecticut-Storrs, Storrs , CT, USA
| | | |
Collapse
|