1
|
Lou L, Tu ZJ, Lahondère C, Vinauger C. Rhythms in insect olfactory systems: underlying mechanisms and outstanding questions. J Exp Biol 2024; 227:jeb244182. [PMID: 39508241 DOI: 10.1242/jeb.244182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Olfaction is a critical sensory modality for invertebrates, and it mediates a wide range of behaviors and physiological processes. Like most living organisms, insects live in rhythmic environments: the succession of nights and days is accompanied by cyclic variations in light intensity and temperature, as well as in the availability of resources and the activity of predators. Responding to olfactory cues in the proper temporal context is thus highly adaptive and allows for the efficient allocation of energy resources. Given the agricultural or epidemiological importance of some insect species, understanding olfactory rhythms is critical for the development of effective control strategies. Although the vinegar fly Drosophila melanogaster has been a classical model for the study of olfaction and circadian rhythms, recent studies focusing on non-model species have expanded our understanding of insect olfactory rhythms. Additionally, recent evidence revealing receptor co-expression by sensory neurons has brought about an ongoing paradigm shift in our understanding of insect olfaction, making it timely to review the state of our knowledge on olfactory rhythms and identify critical future directions for the field. In this Review, we discuss the multiple biological scales at which insect olfactory rhythms are being analyzed, and identify outstanding questions.
Collapse
Affiliation(s)
- Lan Lou
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Global Change Center, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Cai YD, Xue Y, Truong CC, Del Carmen-Li J, Ochoa C, Vanselow JT, Murphy KA, Li YH, Liu X, Kunimoto BL, Zheng H, Zhao C, Zhang Y, Schlosser A, Chiu JC. CK2 Inhibits TIMELESS Nuclear Export and Modulates CLOCK Transcriptional Activity to Regulate Circadian Rhythms. Curr Biol 2021; 31:502-514.e7. [PMID: 33217322 PMCID: PMC7878342 DOI: 10.1016/j.cub.2020.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
Circadian clocks orchestrate daily rhythms in organismal physiology and behavior to promote optimal performance and fitness. In Drosophila, key pacemaker proteins PERIOD (PER) and TIMELESS (TIM) are progressively phosphorylated to perform phase-specific functions. Whereas PER phosphorylation has been extensively studied, systematic analysis of site-specific TIM phosphorylation is lacking. Here, we identified phosphorylation sites of PER-bound TIM by mass spectrometry, given the importance of TIM as a modulator of PER function in the pacemaker. Among the 12 TIM phosphorylation sites we identified, at least two of them are critical for circadian timekeeping as mutants expressing non-phosphorylatable mutations exhibit altered behavioral rhythms. In particular, we observed that CK2-dependent phosphorylation of TIM(S1404) promotes nuclear accumulation of PER-TIM heterodimers by inhibiting the interaction of TIM and nuclear export component, Exportin 1 (XPO1). We propose that proper level of nuclear PER-TIM accumulation is necessary to facilitate kinase recruitment for the regulation of daily phosphorylation rhythm and phase-specific transcriptional activity of CLOCK (CLK). Our results highlight the contribution of phosphorylation-dependent nuclear export of PER-TIM heterodimers to the maintenance of circadian periodicity and identify a new mechanism by which the negative elements of the circadian clock (PER-TIM) regulate the positive elements (CLK-CYC). Finally, because the molecular phenotype of tim(S1404A) non-phosphorylatable mutant exhibits remarkable similarity to that of a mutation in human timeless that underlies familial advanced sleep phase syndrome (FASPS), our results revealed an unexpected parallel between the functions of Drosophila and human TIM and may provide new insights into the molecular mechanisms underlying human FASPS. Organisms in all domains of life exhibit circadian rhythms. Cai et al. reveal that phosphorylation of TIMELESS modulates kinase accessibility to CLOCK in the nucleus. This mechanism is important in controlling daily phosphorylation rhythm of CLOCK, which is critical for its function as a key regulator of circadian rhythms.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Cindy C Truong
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jose Del Carmen-Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christopher Ochoa
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Wurzburg, Wurzburg, Germany
| | - Katherine A Murphy
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ying H Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ben L Kunimoto
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Wurzburg, Wurzburg, Germany
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Kula-Eversole E, Lee DH, Samba I, Yildirim E, Levine DC, Hong HK, Lear BC, Bass J, Rosbash M, Allada R. Phosphatase of Regenerating Liver-1 Selectively Times Circadian Behavior in Darkness via Function in PDF Neurons and Dephosphorylation of TIMELESS. Curr Biol 2021; 31:138-149.e5. [PMID: 33157022 PMCID: PMC7855481 DOI: 10.1016/j.cub.2020.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
The timing of behavior under natural light-dark conditions is a function of circadian clocks and photic input pathways, but a mechanistic understanding of how these pathways collaborate in animals is lacking. Here we demonstrate in Drosophila that the Phosphatase of Regenerating Liver-1 (PRL-1) sets period length and behavioral phase gated by photic signals. PRL-1 knockdown in PDF clock neurons dramatically lengthens circadian period. PRL-1 mutants exhibit allele-specific interactions with the light- and clock-regulated gene timeless (tim). Moreover, we show that PRL-1 promotes TIM accumulation and dephosphorylation. Interestingly, the PRL-1 mutant period lengthening is suppressed in constant light, and PRL-1 mutants display a delayed phase under short, but not long, photoperiod conditions. Thus, our studies reveal that PRL-1-dependent dephosphorylation of TIM is a core mechanism of the clock that sets period length and phase in darkness, enabling the behavioral adjustment to change day-night cycles.
Collapse
Affiliation(s)
| | - Da Hyun Lee
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Ima Samba
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Evrim Yildirim
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Daniel C Levine
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hee-Kyung Hong
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bridget C Lear
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Joseph Bass
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02445, USA
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|