1
|
Yi W, Zhang J, Huang Y, Zhan Q, Zou M, Cheng X, Zhang X, Yin Z, Tao S, Cheng H, Wang F, Guo J, Ju Z, Chen Z. Ferritin-mediated mitochondrial iron homeostasis is essential for the survival of hematopoietic stem cells and leukemic stem cells. Leukemia 2024; 38:1003-1018. [PMID: 38402368 DOI: 10.1038/s41375-024-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
Iron metabolism plays a crucial role in cell viability, but its relationship with adult stem cells and cancer stem cells is not fully understood. The ferritin complex, responsible for intracellular iron storage, is important in this process. We report that conditional deletion of ferritin heavy chain 1 (Fth1) in the hematopoietic system reduced the number and repopulation capacity of hematopoietic stem cells (HSCs). These effects were associated with a decrease in cellular iron level, leading to impaired mitochondrial function and the initiation of apoptosis. Iron supplementation, antioxidant, and apoptosis inhibitors reversed the reduced cell viability of Fth1-deleted hematopoietic stem and progenitor cells (HSPCs). Importantly, leukemic stem cells (LSCs) derived from MLL-AF9-induced acute myeloid leukemia (AML) mice exhibited reduced Fth1 expression, rendering them more susceptible to apoptosis induced by the iron chelation compared to normal HSPCs. Modulating FTH1 expression using mono-methyl fumarate increased LSCs resistance to iron chelator-induced apoptosis. Additionally, iron supplementation, antioxidant, and apoptosis inhibitors protected LSCs from iron chelator-induced cell death. Fth1 deletion also extended the survival of AML mice. These findings unveil a novel mechanism by which ferritin-mediated iron homeostasis regulates the survival of both HSCs and LSCs, suggesting potential therapeutic strategies for blood cancer with iron dysregulation.
Collapse
Affiliation(s)
- Weiwei Yi
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinhua Zhang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yingxin Huang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qiang Zhan
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mi Zou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiang Cheng
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Shanghai, China
- Shanghai Institute of Nutrition and Health, The Chinese Academy of Sciences, Shanghai, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Si Tao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Guo
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
2
|
Joosten J, van Sluijs B, Vree Egberts W, Emmaneel M, W T C Jansen P, Vermeulen M, Boelens W, Bonger KM, Spruijt E. Dynamics and composition of small heat shock protein condensates and aggregates. J Mol Biol 2023; 435:168139. [PMID: 37146746 DOI: 10.1016/j.jmb.2023.168139] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Small heat shock proteins (sHSPs) are essential ATP-independent chaperones that protect the cellular proteome. These proteins assemble into polydisperse oligomeric structures, the composition of which dramatically affects their chaperone activity. The biomolecular consequences of variations in sHSP ratios, especially inside living cells, remain elusive. Here, we study the consequences of altering the relative expression levels of HspB2 and HspB3 in HEK293T cells. These chaperones are partners in a hetero-oligomeric complex, and genetic mutations that abolish their mutual interaction are associated with myopathic disorders. HspB2 displays three distinct phenotypes when co-expressed with HspB3 at varying ratios. Expression of HspB2 alone leads to formation of liquid nuclear condensates, while shifting the stoichiometry towards HspB3 resulted in the formation of large solid-like aggregates. Only cells co-expressing HspB2 with a limited amount of HspB3 formed fully soluble complexes that were distributed homogeneously throughout the nucleus. Strikingly, both condensates and aggregates were reversible, as shifting the HspB2:HspB3 balance in situ resulted in dissolution of these structures. To uncover the molecular composition of HspB2 condensates and aggregates, we used APEX-mediated proximity labelling. Most proteins interact transiently with the condensates and were neither enriched nor depleted in these cells. In contrast, we found that HspB2:HspB3 aggregates sequestered several disordered proteins and autophagy factors, suggesting that the cell is actively attempting to clear these aggregates. This study presents a striking example of how changes in the relative expression levels of interacting proteins affects their phase behavior. Our approach could be applied to study the role of protein stoichiometry and the influence of client binding on phase behavior in other biomolecular condensates and aggregates.
Collapse
Affiliation(s)
- Joep Joosten
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands; Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands; Synthetic Organic Chemistry, Radboud University Institute for Molecular and Materials, the Netherlands.
| | - Bob van Sluijs
- Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Wilma Vree Egberts
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Martin Emmaneel
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Molecular Biology, Radboud University Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Molecular Biology, Radboud University Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Wilbert Boelens
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Radboud University Institute for Molecular and Materials, the Netherlands
| | - Evan Spruijt
- Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Asad Samani L, Ghaedi K, Majd A, Peymani M, Etemadifar M. Coordinated modification in expression levels of HSPA1A/B, DGKH, and NOTCH2 in Parkinson's patients' blood and substantia nigra as a diagnostic sign: the transcriptomes' relationship. Neurol Sci 2023:10.1007/s10072-023-06738-4. [PMID: 36973590 DOI: 10.1007/s10072-023-06738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Diagnosis of Parkinson's disease (PD) is associated with a vast number of challenges. This study aimed to assess the overlap of PD patients' transcriptomes in the substantia nigra (SN) with peripheral blood mononuclear cells (PBMCs) to discover potential biomarkers for diagnosis. METHODS GEO data were used to select genes with significant changes in expression level in the SN region and eligible studies. Also, transcriptome data related to blood of PD patients with other neurodegenerative diseases (ND) was considered. Differential expression genes between PD and control were evaluated in the SN and blood, and RT-qPCR was applied to validate the findings. RESULTS At the expression level, no significant similarity in long non-coding RNA was found between the patients' SN and blood. While in silico results revealed 16 common mRNAs in SN and blood with significant expression levels. Among all overexpressed mRNAs, HSPA1A/B expression level had the highest expression difference between control and PD samples. Moreover, DGKH had the highest score of down-regulated genes in both blood and SN. The NOTCH pathway had the highest score pathway among up-regulated pathways, and the expression levels of NOTCH2, H4C8, and H2BC21 associated with this pathway had the most ability to separate the control and PD populations. Furthermore, RT-qPCR results revealed that HSPA1A/B, NOTCH2, and H4C8 were overexpressed in PD PBMCs, while DGKH expression levels were lower compared to controls. CONCLUSION Our findings indicate that expression levels of HSPA1A/B, DGKH, and NOTCH2 could be applied as candidate biomarkers to diagnose PD patients in the SN region and PBMCs.
Collapse
Affiliation(s)
- Leila Asad Samani
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Azadi Sq., Hezar Jerib Ave, P.O. Code, Isfahan, 81746-73441, Iran.
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Masoud Etemadifar
- Department of Neurology and Isfahan Neurosurgery Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
5
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Amino acid transporter SLC6A14 depends on heat shock protein HSP90 in trafficking to the cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1544-1555. [PMID: 31326539 DOI: 10.1016/j.bbamcr.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/21/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Plasma membrane transporter SLC6A14 transports all neutral and basic amino acids in a Na/Cl - dependent way and it is up-regulated in many types of cancer. Mass spectrometry analysis of overexpressed SLC6A14-associated proteins identified, among others, the presence of cytosolic heat shock proteins (HSPs) and co-chaperones. We detected co-localization of overexpressed and native SLC6A14 with HSP90-beta and HSP70 (HSPA14). Proximity ligation assay confirmed a direct interaction of overexpressed SLC6A14 with both HSPs. Treatment with radicicol and VER155008, specific inhibitors of HSP90 and HSP70, respectively, attenuated these interactions and strongly reduced transporter presence at the cell surface, what resulted from the diminished level of the total transporter protein. Distortion of SLC6A14 proper folding by both HSPs inhibitors directed the transporter towards endoplasmic reticulum-associated degradation pathway, a process reversed by the proteasome inhibitor - bortezomib. As demonstrated in an in vitro ATPase assay of recombinant purified HSP90-beta, the peptides corresponding to C-terminal amino acid sequence following the last transmembrane domain of SLC6A14 affected the HSP90-beta activity. These results indicate that a plasma membrane protein folding can be controlled not only by chaperones in the endoplasmic reticulum, but also those localized in the cytosol.
Collapse
|
7
|
Fang X, Bogomolovas J, Trexler C, Chen J. The BAG3-dependent and -independent roles of cardiac small heat shock proteins. JCI Insight 2019; 4:126464. [PMID: 30830872 DOI: 10.1172/jci.insight.126464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small heat shock proteins (sHSPs) comprise an important protein family that is ubiquitously expressed, is highly conserved among species, and has emerged as a critical regulator of protein folding. While these proteins are functionally important for a variety of tissues, an emerging field of cardiovascular research reveals sHSPs are also extremely important for maintaining normal cardiac function and regulating the cardiac stress response. Notably, numerous mutations in genes encoding sHSPs have been associated with multiple cardiac diseases. sHSPs (HSPB5, HSPB6, and HSPB8) have been described as mediating chaperone functions within the heart by interacting with the cochaperone protein BCL-2-associated anthanogene 3 (BAG3); however, recent reports indicate that sHSPs (HSPB7) can perform other BAG3-independent functions. Here, we summarize the cardiac functions of sHSPs and present the notion that cardiac sHSPs function via BAG3-dependent or -independent pathways.
Collapse
|
8
|
Pla2g6 Deficiency in Zebrafish Leads to Dopaminergic Cell Death, Axonal Degeneration, Increased β-Synuclein Expression, and Defects in Brain Functions and Pathways. Mol Neurobiol 2018; 55:6734-6754. [PMID: 29344929 DOI: 10.1007/s12035-017-0846-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
This study aimed to gain insights into the pathophysiology underlying PLA2G6-associated neurodegeneration that is implicated in three different neurological disorders, suggesting that other, unknown genetic or environmental factors might contribute to its wide phenotypic expression. To accomplish this, we downregulated the function of pla2g6 in the zebrafish nervous system, performed parkinsonism-related phenotypic characterization, and determined the effects of gene regulation upon the loss of pla2g6 function by using RNA sequencing and downstream analyses. Pla2g6 deficiency resulted in axonal degeneration, dopaminergic and motor neuron cell loss, and increased β-synuclein expression. We also observed that many of the identified, differentially expressed genes were implicated in other brain disorders, which might explain the variable phenotypic expression of pla2g6-associated disease, and found that top enriched canonical pathways included those already known or suggested to play a major role in the pathogenesis of Parkinson's disease. Our data support that pla2g6 is relevant for cranial motor development with significant implications in the pathophysiology underlying Parkinson's disease.
Collapse
|
9
|
Versatile members of the DNAJ family show Hsp70 dependent anti-aggregation activity on RING1 mutant parkin C289G. Sci Rep 2016; 6:34830. [PMID: 27713507 PMCID: PMC5054386 DOI: 10.1038/srep34830] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative disorders and several mutations in different genes have been identified to contribute to the disease. A loss of function parkin RING1 domain mutant (C289G) is associated with autosomal-recessive juvenile-onset Parkinsonism (AR-JP) and displays altered solubility and sequesters into aggregates. Single overexpression of almost each individual member of the Hsp40 (DNAJ) family of chaperones efficiently reduces parkin C289G aggregation and requires interaction with and activity of endogenously expressed Hsp70 s. For DNAJB6 and DNAJB8, potent suppressors of aggregation of polyglutamine proteins for which they rely mainly on an S/T-rich region, it was found that the S/T-rich region was dispensable for suppression of parkin C289G aggregation. Our data implies that different disease-causing proteins pose different challenges to the protein homeostasis system and that DNAJB6 and DNAJB8 are highly versatile members of the DNAJ protein family with multiple partially non-overlapping modes of action with respect to handling disease-causing proteins, making them interesting potential therapeutic targets.
Collapse
|
10
|
Tobin SW, Yang D, Girgis J, Farahzad A, Blais A, McDermott JC. Regulation of Hspb7 by MEF2 and AP-1: implications for Hspb7 in muscle atrophy. J Cell Sci 2016; 129:4076-4090. [PMID: 27632998 DOI: 10.1242/jcs.190009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
Mycocyte enhancer factor 2 (MEF2) and activator protein 1 (AP-1) transcription complexes have been individually implicated in myogenesis, but their genetic interaction has not previously been addressed. Using MEF2A, c-Jun and Fra-1 chromatin immunoprecipitation sequencing (ChIP-seq) data and predicted AP-1 consensus motifs, we identified putative common MEF2 and AP-1 target genes, several of which are implicated in regulating the actin cytoskeleton. Because muscle atrophy results in remodelling or degradation of the actin cytoskeleton, we characterized the expression of putative MEF2 and AP-1 target genes (Dstn, Flnc, Hspb7, Lmod3 and Plekhh2) under atrophic conditions using dexamethasone (Dex) treatment in skeletal myoblasts. Heat shock protein b7 (Hspb7) was induced by Dex treatment and further analyses revealed that loss of MEF2A using siRNA prevented Dex-regulated induction of Hspb7. Conversely, ectopic Fra-2 or c-Jun expression reduced Dex-mediated upregulation of Hspb7 whereas AP-1 depletion enhanced Hspb7 expression. In vivo, expression of Hspb7 and other autophagy-related genes was upregulated in response to atrophic conditions in mice. Manipulation of Hspb7 levels in mice also impacted gross muscle mass. Collectively, these data indicate that MEF2 and AP-1 confer antagonistic regulation of Hspb7 gene expression in skeletal muscle, with implications for autophagy and muscle atrophy.
Collapse
Affiliation(s)
- Stephanie Wales Tobin
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Centre for Research in Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Dabo Yang
- Ottawa Institute of Systems Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - John Girgis
- Ottawa Institute of Systems Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Ali Farahzad
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Centre for Research in Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - John C McDermott
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3 .,Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Centre for Research in Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Centre for Research in Mass Spectrometry (CRMS), York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
11
|
Iannaccone A, Giorgianni F, New DD, Hollingsworth TJ, Umfress A, Alhatem AH, Neeli I, Lenchik NI, Jennings BJ, Calzada JI, Satterfield S, Mathews D, Diaz RI, Harris T, Johnson KC, Charles S, Kritchevsky SB, Gerling IC, Beranova-Giorgianni S, Radic MZ. Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis. PLoS One 2015; 10:e0145323. [PMID: 26717306 PMCID: PMC4696815 DOI: 10.1371/journal.pone.0145323] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We investigated sera from elderly subjects with and without age-related macular degeneration (AMD) for presence of autoantibodies (AAbs) against human macular antigens and characterized their identity. METHODS Sera were collected from participants in the Age-Related Maculopathy Ancillary (ARMA) Study, a cross-sectional investigation ancillary to the Health ABC Study, enriched with participants from the general population. The resulting sample (mean age: 79.2±3.9 years old) included subjects with early to advanced AMD (n = 131) and controls (n = 231). Sera were tested by Western blots for immunoreactive bands against human donor macular tissue homogenates. Immunoreactive bands were identified and graded, and odds ratios (OR) calculated. Based on these findings, sera were immunoprecipitated, and subjected to 2D gel electrophoresis (GE). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify the targets recognized by circulating AAbs seen on 2D-GE, followed by ELISAs with recombinant proteins to confirm LC-MS/MS results, and quantify autoreactivities. RESULTS In AMD, 11 immunoreactive bands were significantly more frequent and 13 were significantly stronger than in controls. Nine of the more frequent bands also showed stronger reactivity. OR estimates ranged between 4.06 and 1.93, and all clearly excluded the null value. Following immunoprecipitation, 2D-GE and LC-MS/MS, five of the possible autoreactivity targets were conclusively identified: two members of the heat shock protein 70 (HSP70) family, HSPA8 and HSPA9; another member of the HSP family, HSPB4, also known as alpha-crystallin A chain (CRYAA); Annexin A5 (ANXA5); and Protein S100-A9, also known as calgranulin B that, when complexed with S100A8, forms calprotectin. ELISA testing with recombinant proteins confirmed, on average, significantly higher reactivities against all targets in AMD samples compared to controls. CONCLUSIONS Consistent with other evidence supporting the role of inflammation and the immune system in AMD pathogenesis, AAbs were identified in AMD sera, including early-stage disease. Identified targets may be mechanistically linked to AMD pathogenesis because the identified proteins are implicated in autophagy, immunomodulation, and protection from oxidative stress and apoptosis. In particular, a role in autophagy activation is shared by all five autoantigens, raising the possibility that the detected AAbs may play a role in AMD via autophagy compromise and downstream activation of the inflammasome. Thus, we propose that the detected AAbs provide further insight into AMD pathogenesis and have the potential to contribute to disease biogenesis and progression.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - David D. New
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - T. J. Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Allison Umfress
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Albert H. Alhatem
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Indira Neeli
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Nataliya I. Lenchik
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Internal Medicine/Endocrinology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Barbara J. Jennings
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jorge I. Calzada
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Dennis Mathews
- Eye Specialty Group, Memphis, TN, United States of America
- Southern College of Optometry, Memphis, TN, United States of America
| | - Rocio I. Diaz
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Tamara Harris
- National Institute on Aging, NIH, Bethesda, MD, United States of America
| | - Karen C. Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Steve Charles
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Stephen B. Kritchevsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Sticht Center on Aging, Wake Forest University, Winston-Salem, NC, United States of America
| | - Ivan C. Gerling
- Department of Internal Medicine/Endocrinology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Marko Z. Radic
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | | |
Collapse
|
12
|
Hussein RM, Benjamin IJ, Kampinga HH. Rescue of αB Crystallin (HSPB5) Mutants Associated Protein Aggregation by Co-Expression of HSPB5 Partners. PLoS One 2015; 10:e0126761. [PMID: 25961584 PMCID: PMC4427338 DOI: 10.1371/journal.pone.0126761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/07/2015] [Indexed: 11/23/2022] Open
Abstract
HSPB5 (also called αB-crystallin) is a ubiquitously expressed small heat shock protein. Mutations in HSPB5 have been found to cause cataract, but are also associated with a subgroup of myofibrillar myopathies. Cells expressing each of these HSPB5 mutants are characterized by the appearance of protein aggregates of primarily the mutant HSPB5. Like several members of the HSPB family, HSPB5 can form both homo-oligomeric and hetero-oligomeric complexes. Previous studies showed that co-expression of HSPB1 and HSPB8 can prevent the aggregation associated with the HSPB5 (R120G) mutant in cardiomyocytes and in transgenic mice. In this study, we systematically compared the effect of co-expression of each of the members of the human HSPB family (HSPB1-10) on the aggregation of three different HSPB5 mutants (R120G, 450 Δ A, 464 Δ CT). Of all members, co-expression of HSPB1, HSPB4 and HSPB5 itself, most effectively prevent the aggregation of these 3 HSPB5 mutants. HSPB6 and HSPB8 were also active but less, whilst the other 5 HSPB members were ineffective. Co-expression of Hsp70 did not reduce the aggregation of the HSPB5 mutants, suggesting that aggregate formation is most likely not related to a toxic gain of function of the mutants per se, but rather related to a loss of chaperone function of the oligomeric complexes containing the HSPB5 mutants (dominant negative effects). Our data suggest that the rescue of aggregation associated with the HSPB5 mutants is due to competitive incorporation of its partners into hetero-oligomers hereby negating the dominant negative effects of the mutant on the functioning of the hetero-oligomer.
Collapse
Affiliation(s)
- Rasha M. Hussein
- Department of Cell Biology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, 62511, Beni-Suef, Egypt
| | - Ivor J. Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Harm H. Kampinga
- Department of Cell Biology, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Ylikallio E, Konovalova S, Dhungana Y, Hilander T, Junna N, Partanen JV, Toppila JP, Auranen M, Tyynismaa H. Truncated HSPB1 causes axonal neuropathy and impairs tolerance to unfolded protein stress. BBA CLINICAL 2015; 3:233-42. [PMID: 26675522 PMCID: PMC4661565 DOI: 10.1016/j.bbacli.2015.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/26/2022]
Abstract
Background HSPB1 belongs to the family of small heat shock proteins (sHSP) that have importance in protection against unfolded protein stress, in cancer cells for escaping drug toxicity stress and in neurons for suppression of protein aggregates. sHSPs have a conserved α-crystalline domain (ACD), flanked by variable N- and C-termini, whose functions are not fully understood. Dominant missense variants in HSPB1, locating mostly to the ACD, have been linked to inherited neuropathy. Methods Patients underwent detailed clinical and neurophysiologic characterization. Disease causing variants were identified by exome or gene panel sequencing. Primary patient fibroblasts were used to investigate the effects of the dominant defective HSPB1 proteins. Results Frameshift variant predicting ablation of the entire C-terminus p.(Met169Cfs2*) of HSPB1 and a missense variant p.(Arg127Leu) were identified in patients with dominantly inherited motor-predominant axonal Charcot–Marie–Tooth neuropathy. We show that the truncated protein is stable and binds wild type HSPB1. Both mutations impaired the heat stress tolerance of the fibroblasts. This effect was particularly pronounced for the cells with the truncating variant, independent of heat-induced nuclear translocation and induction of global transcriptional heat response. Furthermore, the truncated HSPB1 increased cellular sensitivity to protein misfolding. Conclusion Our results suggest that truncation of the non-conserved C-terminus impairs the function of HSPB1 in cellular stress response. General significance sHSPs have important roles in prevention of protein aggregates that induce toxicity. We showed that C-terminal part of HSPB1 is critical for tolerance of unfolded protein stress, and when lacking causes axonal neuropathy in patients. C-terminal truncation of small heat shock protein HSPB1 causes neuropathy. Truncated HSPB1 is stable in patient fibroblasts and binds wild type HSPB1. C-terminus of HSPB1 is critical for tolerance to unfolded protein stress. Neuropathy may develop as a consequence of impaired cellular stress response.
Collapse
Key Words
- ACD, α-crystalline domain
- CADD, combined annotation dependent depletion
- CMT, Charcot–Marie–Tooth disease
- Charcot–Marie–Tooth neuropathy
- EMG, electromyography
- ENMG, electroneuromyography
- EVS, exome variant server
- HSPB1
- MUP, motor unit potential
- Protein misfolding
- QST, quantitative sensory testing
- SISu, Sequencing Initiative Suomi
- dHMN, distal hereditary motor neuropathy
- heat shock protein
- sHSP, small heat shock protein
Collapse
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Svetlana Konovalova
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Yogesh Dhungana
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Taru Hilander
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Nella Junna
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Juhani V Partanen
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Central Hospital, Finland
| | - Jussi P Toppila
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Central Hospital, Finland
| | - Mari Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland ; Department of Neurology, Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland ; Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|