1
|
Hou W, Sun C, Han X, Fan M, Qiao W. NEDD4L affects stability of the CHEK2/TP53 axis through ubiquitination modification to enhance osteogenic differentiation of periodontal ligament stem cells. Connect Tissue Res 2024:1-14. [PMID: 39373023 DOI: 10.1080/03008207.2024.2406794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Checkpoint kinase 2 (CHEK2) and its regulated tumor protein p53 (TP53) have been correlated with osteogenic differentiation of osteoblast-like cells. Based on bioinformatics predictions, this study aims to investigate the effect of the CHEK2/TP53 axis on osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and to explore the regulatory mechanism. METHODS PDLSCs were isolated from human impacted wisdom teeth, and they were cultured in normal medium (NM) or osteogenic medium (OM). Protein levels of CHEK2 and TP53 were examined using western blot analysis. Osteogenic differentiation ability of PDLSCs was analyzed by measuring marker proteins (RUNX2, OCN, and OSX), ALP activity, and ALP staining. Molecular interaction between NEDD4 like E3 ubiquitin protein ligase (NEDD4L) and CHEK2 was examined by ubiquitination and co-immunoprecipitation assays. Gain- and loss-of function assays of NEDD4L, CHEK2, and TP53 were performed to analyze their function in osteogenic differentiation of PDLSCs. A rat model of mandibular bone defect was generated for in vivo validation. RESULTS NEDD4L was upregulated, while CHEK2 and TP53 were downregulated in PDLSCs cultured in OM. CHEK2 protected TP53 from degradation, while NEDD4L reduced CHEK2 protein level by ubiquitination modification. NEDD4L silencing reduced osteogenic differentiation ability of PDLSCs both in vitro and in vivo, which was restored by CHEK2 silencing. By contrast, CHEK2 overexpression blocked the osteogenic differentiation of PDLSCs in vitro. CONCLUSION This study demonstrates that NEDD4L affects protein stability of the CHEK2/TP53 axis through ubiquitination modification, thus increasing osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Wenyue Hou
- Outpatient Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Changsheng Sun
- Department of Stomatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xue Han
- Harbin Hou Kaiyu Dental Clinic, Harbin, Heilongjiang, P.R. China
| | - Mingyu Fan
- Harbin Hou Kaiyu Dental Clinic, Harbin, Heilongjiang, P.R. China
| | - Wenjuan Qiao
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
2
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
3
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
4
|
Shin U, Choi Y, Ko HS, Myung K, Lee S, Cheon CK, Lee Y. A heterozygous mutation in UBE2H in a patient with developmental delay leads to an aberrant brain development in zebrafish. Hum Genomics 2023; 17:44. [PMID: 37208785 DOI: 10.1186/s40246-023-00491-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Ubiquitin-related rare diseases are generally characterized by developmental delays and mental retardation, but the exact incidence or prevalence is not yet fully understood. The clinical application of next-generation sequencing for pediatric seizures and developmental delay of unknown causes has become common in studies aimed at identification of a causal gene in patients with ubiquitin-related rare diseases that cannot be diagnosed using conventional fluorescence in situ hybridization or chromosome microarray tests. Our study aimed to investigate the effects of ubiquitin-proteasome system on ultra-rare neurodevelopmental diseases, through functional identification of candidate genes and variants. METHODS In our present work, we carried out genome analysis of a patient with clinical phenotypes of developmental delay and intractable convulsion, to identify causal mutations. Further characterization of the candidate gene was performed using zebrafish, through gene knockdown approaches. Transcriptomic analysis using whole embryos of zebrafish knockdown morphants and additional functional studies identified downstream pathways of the candidate gene affecting neurogenesis. RESULTS Through trio-based whole-genome sequencing analysis, we identified a de novo missense variant of the ubiquitin system-related gene UBE2H (c.449C>T; p.Thr150Met) in the proband. Using zebrafish, we found that Ube2h is required for normal brain development. Differential gene expression analysis revealed activation of the ATM-p53 signaling pathway in the absence of Ube2h. Moreover, depletion of ube2h led to induction of apoptosis, specifically in the differentiated neural cells. Finally, we found that a missense mutation in zebrafish, ube2h (c.449C>T; p.Thr150Met), which mimics a variant identified in a patient with neurodevelopmental defects, causes aberrant Ube2h function in zebrafish embryos. CONCLUSION A de novo heterozygous variant in the UBE2H c.449C>T (p.Thr150Met) has been identified in a pediatric patient with global developmental delay and UBE2H is essential for normal neurogenesis in the brain.
Collapse
Affiliation(s)
- Unbeom Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yeonsong Choi
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, 44919, Republic of Korea
| | - Hwa Soo Ko
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Kyungjae Myung
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
- Korean Genomics Center, UNIST, Ulsan, 44919, Republic of Korea.
| | - Chong Kun Cheon
- Division of Medical Genetics and Metabolism Department of Paediatrics, Pusan National University School of Medicine, Pusan National University Children's Hospital, Yangsan, 50612, Republic of Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea.
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| |
Collapse
|
5
|
Adaptive exchange sustains cullin-RING ubiquitin ligase networks and proper licensing of DNA replication. Proc Natl Acad Sci U S A 2022; 119:e2205608119. [PMID: 36037385 PMCID: PMC9456757 DOI: 10.1073/pnas.2205608119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cop9 signalosome (CSN) regulates the function of cullin-RING E3 ubiquitin ligases (CRLs) by deconjugating the ubiquitin-like protein NEDD8 from the cullin subunit. To understand the physiological impact of CSN function on the CRL network and cell proliferation, we combined quantitative mass spectrometry and genome-wide CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) screens to identify factors that modulate cell viability upon inhibition of CSN by the small molecule CSN5i-3. CRL components and regulators strongly modulated the antiproliferative effects of CSN5i-3, and in addition we found two pathways involved in genome integrity, SCFFBXO5-APC/C-GMNN and CUL4DTL-SETD8, that contribute substantially to the toxicity of CSN inhibition. Our data highlight the importance of CSN-mediated NEDD8 deconjugation and adaptive exchange of CRL substrate receptors in sustaining CRL function and suggest approaches for leveraging CSN inhibition for the treatment of cancer.
Collapse
|
6
|
Substrate spectrum of PPM1D in the cellular response to DNA double-strand breaks. iScience 2022; 25:104892. [PMID: 36060052 PMCID: PMC9436757 DOI: 10.1016/j.isci.2022.104892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
PPM1D is a p53-regulated protein phosphatase that modulates the DNA damage response (DDR) and is frequently altered in cancer. Here, we employed chemical inhibition of PPM1D and quantitative mass spectrometry-based phosphoproteomics to identify the substrates of PPM1D upon induction of DNA double-strand breaks (DSBs) by etoposide. We identified 73 putative PPM1D substrates that are involved in DNA repair, regulation of transcription, and RNA processing. One-third of DSB-induced S/TQ phosphorylation sites are dephosphorylated by PPM1D, demonstrating that PPM1D only partially counteracts ATM/ATR/DNA-PK signaling. PPM1D-targeted phosphorylation sites are found in a specific amino acid sequence motif that is characterized by glutamic acid residues, high intrinsic disorder, and poor evolutionary conservation. We identified a functionally uncharacterized protein Kanadaptin as ATM and PPM1D substrate upon DSB induction. We propose that PPM1D plays a role during the response to DSBs by regulating the phosphorylation of DNA- and RNA-binding proteins in intrinsically disordered regions. MS-based phosphoproteomic profiling of PPM1D substrates in U2OS and HCT116 cells PPM1D counteracts ATM in the cellular response to DNA double-strand breaks PPM1D target sites localize to glutamic acid-rich regions with high intrinsic disorder Kanadaptin is a putative DNA damage response factor regulated by ATM and PPM1D
Collapse
|
7
|
Sahay O, Barik GK, Sharma T, Pillai AD, Rapole S, Santra MK. Damsel in distress calling on her knights: Illuminating the pioneering role of E3 ubiquitin ligases in guarding the genome integrity. DNA Repair (Amst) 2021; 109:103261. [PMID: 34920250 DOI: 10.1016/j.dnarep.2021.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The maintenance of genomic integrity is of utmost importance for the organisms to survive and to accurately inherit traits to their progenies. Any kind of DNA damage either due to defect in DNA duplication and/ or uncontrolled cell division or intracellular insults or environment radiation can result in gene mutation, chromosomal aberration and ultimately genomic instability, which may cause several diseases including cancers. Therefore, cells have evolved machineries for the surveillance of genomic integrity. Enormous exciting studies in the past indicate that ubiquitination (a posttranslational modification of proteins) plays a crucial role in maintaining the genomic integrity by diverse ways. In fact, various E3 ubiquitin ligases catalyse ubiquitination of key proteins to control their central role during cell cycle, DNA damage response (DDR) and DNA repair. Some E3 ligases promote genomic instability while others prevent it, deregulation of both of which leads to several malignancies. In this review, we consolidate the recent findings wherein the role of ubiquitination in conferring genome integrity is highlighted. We also discuss the latest discoveries on the mechanisms utilized by various E3 ligases to preserve genomic stability, with a focus on their actions during cell cycle progression and different types of DNA damage response as well as repair pathways.
Collapse
Affiliation(s)
- Osheen Sahay
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Tanisha Sharma
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
8
|
Huang C, Chen L, Savage SR, Eguez RV, Dou Y, Li Y, da Veiga Leprevost F, Jaehnig EJ, Lei JT, Wen B, Schnaubelt M, Krug K, Song X, Cieślik M, Chang HY, Wyczalkowski MA, Li K, Colaprico A, Li QK, Clark DJ, Hu Y, Cao L, Pan J, Wang Y, Cho KC, Shi Z, Liao Y, Jiang W, Anurag M, Ji J, Yoo S, Zhou DC, Liang WW, Wendl M, Vats P, Carr SA, Mani DR, Zhang Z, Qian J, Chen XS, Pico AR, Wang P, Chinnaiyan AM, Ketchum KA, Kinsinger CR, Robles AI, An E, Hiltke T, Mesri M, Thiagarajan M, Weaver AM, Sikora AG, Lubiński J, Wierzbicka M, Wiznerowicz M, Satpathy S, Gillette MA, Miles G, Ellis MJ, Omenn GS, Rodriguez H, Boja ES, Dhanasekaran SM, Ding L, Nesvizhskii AI, El-Naggar AK, Chan DW, Zhang H, Zhang B. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 2021; 39:361-379.e16. [PMID: 33417831 PMCID: PMC7946781 DOI: 10.1016/j.ccell.2020.12.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
We present a proteogenomic study of 108 human papilloma virus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs). Proteomic analysis systematically catalogs HNSCC-associated proteins and phosphosites, prioritizes copy number drivers, and highlights an oncogenic role for RNA processing genes. Proteomic investigation of mutual exclusivity between FAT1 truncating mutations and 11q13.3 amplifications reveals dysregulated actin dynamics as a common functional consequence. Phosphoproteomics characterizes two modes of EGFR activation, suggesting a new strategy to stratify HNSCCs based on EGFR ligand abundance for effective treatment with inhibitory EGFR monoclonal antibodies. Widespread deletion of immune modulatory genes accounts for low immune infiltration in immune-cold tumors, whereas concordant upregulation of multiple immune checkpoint proteins may underlie resistance to anti-programmed cell death protein 1 monotherapy in immune-hot tumors. Multi-omic analysis identifies three molecular subtypes with high potential for treatment with CDK inhibitors, anti-EGFR antibody therapy, and immunotherapy, respectively. Altogether, proteogenomics provides a systematic framework to inform HNSCC biology and treatment.
Collapse
Affiliation(s)
- Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lijun Chen
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rodrigo Vargas Eguez
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | | | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Schnaubelt
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Xiaoyu Song
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marcin Cieślik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Qing Kay Li
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - David J Clark
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yingwei Hu
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Liwei Cao
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jianbo Pan
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yuefan Wang
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kyung-Cho Cho
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiayi Ji
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Michael Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Zhen Zhang
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Xi S Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick NaVonal Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252 Szczecin, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Małgorzata Wierzbicka
- Poznań University of Medical Sciences, 61-701 Poznań, Poland; Institute of Human Genetics Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George Miles
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adel K El-Naggar
- Department of Pathology, Division of Pathology and Laboratory Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel W Chan
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Hui Zhang
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
9
|
Stolarova L, Kleiblova P, Janatova M, Soukupova J, Zemankova P, Macurek L, Kleibl Z. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 2020; 9:cells9122675. [PMID: 33322746 PMCID: PMC7763663 DOI: 10.3390/cells9122675] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Germline alterations in many genes coding for proteins regulating DNA repair and DNA damage response (DDR) to DNA double-strand breaks (DDSB) have been recognized as pathogenic factors in hereditary cancer predisposition. The ATM-CHEK2-p53 axis has been documented as a backbone for DDR and hypothesized as a barrier against cancer initiation. However, although CHK2 kinase coded by the CHEK2 gene expedites the DDR signal, its function in activation of p53-dependent cell cycle arrest is dispensable. CHEK2 mutations rank among the most frequent germline alterations revealed by germline genetic testing for various hereditary cancer predispositions, but their interpretation is not trivial. From the perspective of interpretation of germline CHEK2 variants, we review the current knowledge related to the structure of the CHEK2 gene, the function of CHK2 kinase, and the clinical significance of CHEK2 germline mutations in patients with hereditary breast, prostate, kidney, thyroid, and colon cancers.
Collapse
Affiliation(s)
- Lenka Stolarova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Petra Kleiblova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic;
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Correspondence: ; Tel.: +420-22496-745
| |
Collapse
|
10
|
Zhang H, Shao F, Guo W, Gao Y, He J. Knockdown of KLF5 promotes cisplatin-induced cell apoptosis via regulating DNA damage checkpoint proteins in non-small cell lung cancer. Thorac Cancer 2019; 10:1069-1077. [PMID: 30900384 PMCID: PMC6501027 DOI: 10.1111/1759-7714.13046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previous research has revealed that Krüppel-like factor 5 (KLF5) may affect DNA damage repair pathways; however, the associated molecular mechanisms are unclear. METHODS The expression of KLF5 was studied by immunohistochemical staining in paired tumour and normal tissues from 90 patients with ESCC. We studied the effects of KLF5 knockdown on cell proliferation and apoptosis with or without cisplatin treatment in A549 and H1299 cell lines. Moreover, we examined the effect of KLF5 on the DNA damage response. RESULTS KLF5 was significantly overexpressed in non-small cell lung cancer (NSCLC) tissues, and high KLF5 expression predicted poor prognosis for NSCLC patients. The inhibition of KLF5 markedly augmented cisplatin-induced cell apoptosis. In addition, we observed that KLF5 knockdown could decrease DNA repair potential by inhibiting H2AX S139 phosphorylation in response to cisplatin. Moreover, silencing of KLF5 in NSCLC cell lines inhibited the phosphorylation of checkpoint kinases Chk1 S345 and Chk2 T68. KLF5 knockdown permits cells with broken or damaged DNA strands to enter mitosis by inhibiting the activation of H2AX, Chk1 and Chk2, resulting in mitotic catastrophe. CONCLUSION KLF5 plays a significant role in the DNA damage response by regulating DNA damage checkpoint proteins. Inhibition of KLF5 may be a potential therapeutic target for NSCLC patients with cisplatin resistance.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
USP39 regulates DNA damage response and chemo-radiation resistance by deubiquitinating and stabilizing CHK2. Cancer Lett 2019; 449:114-124. [PMID: 30771428 DOI: 10.1016/j.canlet.2019.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 11/23/2022]
Abstract
The serine/threonine kinase, CHK2 (checkpoint kinase 2), is a key mediator in DNA damage response and a tumor suppressor, which is implicated in promoting cell cycle arrest, apoptosis and DNA repair. Accumulating evidence suggests that these functions are primarily exerted through phosphorylation downstream factors such as p53 and BRCA1. Recent studies have shown that ubiquitination is an important mode of regulation of CHK2. However, it remains largely unclear whether deubiquitinases participate in regulation of CHK2. Here, we report that a deubiquitinase, USP39, is a new regulator of CHK2. Mechanistically, USP39 deubiquitinates and stabilizes CHK2, which in turn enhances CHK2 stability. Short hairpin RNA (shRNA) mediated knockdown of USP39 led to deregulate CHK2, which resulted in compromising the DNA damage-induced G2/M checkpoint, decreasing apoptosis, and conferring cancer cells resistance to chemotherapy drugs and radiation treatment. Collectively, we identify USP39 as a novel regulator of CHK2 in the DNA damage response.
Collapse
|
12
|
García-Limones C, Lara-Chica M, Jiménez-Jiménez C, Pérez M, Moreno P, Muñoz E, Calzado MA. CHK2 stability is regulated by the E3 ubiquitin ligase SIAH2. Oncogene 2016; 35:4289-301. [PMID: 26751770 DOI: 10.1038/onc.2015.495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 01/14/2023]
Abstract
The serine threonine checkpoint kinase 2 (CHK2) is a critical protein involved in the DNA damage-response pathway, which is activated by phosphorylation inducing cellular response such as DNA repair, cell-cycle regulation or apoptosis. Although CHK2 activation mechanisms have been amply described, very little is known about degradation control processes. In the present study, we identify the ubiquitin E3 ligase SIAH2 as an interaction partner of CHK2, which mediates its ubiquitination and proteasomal degradation. CHK2 degradation is independent of both its activation and its kinase activity, but also of the phosphorylation in S456. We show that SIAH2-deficient cells present CHK2 accumulation together with lower ubiquitination levels. Accordingly, SIAH2 depletion by siRNA increases CHK2 levels. In response to DNA damage induced by etoposide, interaction between both proteins is disrupted, thus avoiding CHK2 degradation and promoting its stabilization. We also found that CHK2 phosphorylates SIAH2 at three residues (Thr26, Ser28 and Thr119), modifying its ability to regulate certain substrates. Cellular arrest in the G2/M phase induced by DNA damage is reverted by SIAH2 expression through the control of CHK2 levels. We observed that hypoxia decreases CHK2 levels in parallel to SIAH2 induction. Similarly, we provide evidence suggesting that resistance to apoptosis induced by genotoxic agents in cells subjected to hypoxia could be partly explained by the mutual regulation between both proteins. These results indicate that SIAH2 regulates CHK2 basal turnover, with important consequences on cell-cycle control and on the ability of hypoxia to alter the DNA damage-response pathway in cancer cells.
Collapse
Affiliation(s)
- C García-Limones
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M Lara-Chica
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - C Jiménez-Jiménez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M Pérez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - P Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - E Muñoz
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M A Calzado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| |
Collapse
|
13
|
DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles' Heel of Cancer. Biomolecules 2015; 5:3204-59. [PMID: 26610585 PMCID: PMC4693276 DOI: 10.3390/biom5043204] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use.
Collapse
|
14
|
Kong Y, Barisone GA, Sidhu RS, O'Donnell RT, Tuscano JM. Efficacy of Combined Histone Deacetylase and Checkpoint Kinase Inhibition in a Preclinical Model of Human Burkitt Lymphoma. Mol Med 2015; 21:824-832. [PMID: 26322845 DOI: 10.2119/molmed.2015.00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/20/2015] [Indexed: 01/19/2023] Open
Abstract
Checkpoint kinase inhibition has been studied as a way of enhancing the effectiveness of DNA-damaging agents. More recently, histone deacetylase inhibitors have shown efficacy in several cancers, including non-Hodgkin lymphoma. To evaluate the effectiveness of this combination for the treatment of lymphoma, we examined the combination of AR42, a histone deacetylase inhibitor, and checkpoint kinase 2 (CHEK2) inhibitor II in vitro and in vivo. The combination resulted in up to 10-fold increase in potency in five Burkitt lymphoma cell lines when compared with either drug alone. Both drugs inhibited tumor progression in xenograft models, but the combination was more effective than either agent alone, resulting in regression of established tumors. No toxicity was observed. These results suggest that the combination of histone deacetylase inhibition and checkpoint kinase inhibition represent an effective and nontoxic treatment option that should be further explored in preclinical and clinical studies.
Collapse
Affiliation(s)
- YanGuo Kong
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America.,Department of Neurosurgery, Peking University Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gustavo A Barisone
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Ranjit S Sidhu
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Robert T O'Donnell
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America.,Department of Veterans Affairs, Northern California Healthcare System, Sacramento, California, United States of America
| | - Joseph M Tuscano
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America.,Department of Veterans Affairs, Northern California Healthcare System, Sacramento, California, United States of America
| |
Collapse
|
15
|
Takada S, Collins ER, Kurahashi K. The FHA domain determines Drosophila Chk2/Mnk localization to key mitotic structures and is essential for early embryonic DNA damage responses. Mol Biol Cell 2015; 26:1811-28. [PMID: 25808488 PMCID: PMC4436828 DOI: 10.1091/mbc.e14-07-1238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/17/2015] [Indexed: 01/23/2023] Open
Abstract
DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage.
Collapse
Affiliation(s)
- Saeko Takada
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Eric R Collins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Kayo Kurahashi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
16
|
Zannini L, Delia D, Buscemi G. CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol 2014; 6:442-57. [PMID: 25404613 PMCID: PMC4296918 DOI: 10.1093/jmcb/mju045] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/17/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022] Open
Abstract
The serine/threonine kinase CHK2 is a key component of the DNA damage response. In human cells, following genotoxic stress, CHK2 is activated and phosphorylates >20 proteins to induce the appropriate cellular response, which, depending on the extent of damage, the cell type, and other factors, could be cell cycle checkpoint activation, induction of apoptosis or senescence, DNA repair, or tolerance of the damage. Recently, CHK2 has also been found to have cellular functions independent of the presence of nuclear DNA lesions. In particular, CHK2 participates in several molecular processes involved in DNA structure modification and cell cycle progression. In this review, we discuss the activity of CHK2 in response to DNA damage and in the maintenance of the biological functions in unstressed cells. These activities are also considered in relation to a possible role of CHK2 in tumorigenesis and, as a consequence, as a target of cancer therapy.
Collapse
Affiliation(s)
- Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
17
|
Fukumoto Y, Kuki K, Morii M, Miura T, Honda T, Ishibashi K, Hasegawa H, Kubota S, Ide Y, Yamaguchi N, Nakayama Y, Yamaguchi N. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks. Biochem Biophys Res Commun 2014; 452:542-7. [DOI: 10.1016/j.bbrc.2014.08.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 11/30/2022]
|
18
|
Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, Okamoto A, Yamaguchi N, Iwama A, Nakayama Y, Yamaguchi N. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem 2014; 289:12313-29. [PMID: 24634213 DOI: 10.1074/jbc.m113.533752] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage checkpoint arrests cell cycle progression to allow time for repair. Once DNA repair is completed, checkpoint signaling is terminated. Currently little is known about the mechanism by which checkpoint signaling is terminated, and the disappearance of DNA lesions is considered to induce the end of checkpoint signaling; however, here we show that the termination of checkpoint signaling is an active process promoted by Src family tyrosine kinases. Inhibition of Src activity delays recovery from the G2 phase DNA damage checkpoint following DNA repair. Src activity is required for the termination of checkpoint signaling, and inhibition of Src activity induces persistent activation of ataxia telangiectasia mutated (ATM)- and Rad3-related (ATR) and Chk1 kinases. Src-dependent nuclear protein tyrosine phosphorylation and v-Src expression suppress the ATR-mediated Chk1 and Rad17 phosphorylation induced by DNA double strand breaks or DNA replication stress. Thus, Src family kinases promote checkpoint recovery through termination of ATR- and Chk1-dependent G2 DNA damage checkpoint. These results suggest a model according to which Src family kinases send a termination signal between the completion of DNA repair and the initiation of checkpoint termination.
Collapse
Affiliation(s)
- Yasunori Fukumoto
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Marcilla M, Alpízar A, Lombardía M, Ramos-Fernandez A, Ramos M, Albar JP. Increased diversity of the HLA-B40 ligandome by the presentation of peptides phosphorylated at their main anchor residue. Mol Cell Proteomics 2013; 13:462-74. [PMID: 24366607 DOI: 10.1074/mcp.m113.034314] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human leukocyte antigen (HLA) class I molecules bind peptides derived from the intracellular degradation of endogenous proteins and present them to cytotoxic T lymphocytes, allowing the immune system to detect transformed or virally infected cells. It is known that HLA class I-associated peptides may harbor posttranslational modifications. In particular, phosphorylated ligands have raised much interest as potential targets for cancer immunotherapy. By combining affinity purification with high-resolution mass spectrometry, we identified more than 2000 unique ligands bound to HLA-B40. Sequence analysis revealed two major anchor motifs: aspartic or glutamic acid at peptide position 2 (P2) and methionine, phenylalanine, or aliphatic residues at the C terminus. The use of immobilized metal ion and TiO2 affinity chromatography allowed the characterization of 85 phosphorylated ligands. We further confirmed every sequence belonging to this subset by comparing its experimental MS2 spectrum with that obtained upon fragmentation of the corresponding synthetic peptide. Remarkably, three phospholigands lacked a canonical anchor residue at P2, containing phosphoserine instead. Binding assays showed that these peptides bound to HLA-B40 with high affinity. Together, our data demonstrate that the peptidome of a given HLA allotype can be broadened by the presentation of peptides with posttranslational modifications at major anchor positions. We suggest that ligands with phosphorylated residues at P2 might be optimal targets for T-cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Miguel Marcilla
- Proteomics Unit, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Halaby MJ, Hakem R, Hakem A. Pirh2: an E3 ligase with central roles in the regulation of cell cycle, DNA damage response, and differentiation. Cell Cycle 2013; 12:2733-7. [PMID: 23966173 DOI: 10.4161/cc.25785] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ubiquitylation is currently recognized as a major posttranslational modification that regulates diverse cellular processes. Pirh2 is a ubiquitin E3 ligase that regulates the turnover and functionality of several proteins involved in cell proliferation and differentiation, cell cycle checkpoints, and cell death. Here we review the role of Pirh2 as a regulator of the DNA damage response through the ubiquitylation of p53, Chk2, p73, and PolH. By ubiquitylating these proteins, Pirh2 regulates cell cycle checkpoints and cell death in response to DNA double-strand breaks or the formation of bulky DNA lesions. We also discuss how Pirh2 affects cell proliferation and differentiation in unstressed conditions through ubiquitylation and degradation of c-Myc, p63, and p27(kip1). Finally, we link these different functions of Pirh2 to its role as a tumor suppressor in mice and as a prognosis marker in various human cancer subtypes.
Collapse
Affiliation(s)
- Marie-jo Halaby
- Ontario Cancer Institute; University Health Network and Department of Medical Biophysics; University of Toronto; Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Abstract
The serine threonine kinase checkpoint kinase 2 (CHK2) is a DNA damage checkpoint protein important for the ATM-p53 signaling pathway. In addition to its phosphorylation, CHK2 is also ubiquitylated, and both post-translational modifications are important for its function. However, although the mechanisms that regulate CHK2 phosphorylation are well established, those that control its ubiquitylation are not fully understood. In this study, we demonstrate that the ubiquitin E3 ligase PIRH2 (p53-induced protein with a RING (Really Interesting New Gene)-H2 domain) interacts with CHK2 and mediates its polyubiquitylation and proteasomal degradation. We show that the deubiquitylating enzyme USP28 forms a complex with PIRH2 and CHK2 and antagonizes PIRH2-mediated polyubiquitylation and proteasomal degradation of CHK2. We also provide evidence that CHK2 ubiquitylation by PIRH2 is dependent on its phosphorylation status. Cells deficient in Pirh2 displayed accumulation of Chk2 and enhanced hyperactivation of G1/S and G2/M cell-cycle checkpoints. This hyperactivation was, however, no longer observed in Pirh2-/-Chk2-/- cells, providing evidence for the importance of Chk2 regulation by Pirh2. These findings indicate that PIRH2 has central roles in the ubiquitylation of Chk2 and its turnover and in the regulation of its function.
Collapse
|
22
|
Abstract
CDT2 targets proteins involved in replication licensing (CDT1), cell cycle control (p21), and chromatin modification (SET8) for destruction by the CUL4-based E3 ligase (CRL4). CRL4(CDT2) recruits these substrates through interactions with chromatin-bound PCNA and ubiquitinates them exclusively on chromatin. Rereplication and G(2) cell cycle arrest are observed in CDT2-depleted cells. The rereplication phenotype has been attributed to an inability to destroy CDT1, but the molecular target important for G(2) cell cycle arrest in CDT2-depleted cells has not been identified. Here we identify CHK1 as a novel CRL4(CDT2) substrate and demonstrate that CHK1 activity is required for maintaining G(2) arrest in CDT2-depleted cells. We demonstrate that CRL4(CDT2) targets the activated form of CHK1 for destruction in the nucleoplasm rather than on chromatin and that this occurs in a PCNA-independent manner. Although both CRL1 and CRL4 ubiquitinate CHK1, we report that they bind CHK1 in distinct cellular compartments. Our study provides insight into how elevated CDT2 expression levels may provide tumors with a proliferative advantage.
Collapse
|
23
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
24
|
Den Herder G, Yoshida S, Antolín-Llovera M, Ried MK, Parniske M. Lotus japonicus E3 ligase SEVEN IN ABSENTIA4 destabilizes the symbiosis receptor-like kinase SYMRK and negatively regulates rhizobial infection. THE PLANT CELL 2012; 24:1691-707. [PMID: 22534128 PMCID: PMC3398572 DOI: 10.1105/tpc.110.082248] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/28/2012] [Accepted: 03/21/2012] [Indexed: 05/18/2023]
Abstract
The Lotus japonicus SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for symbiotic signal transduction upon stimulation of root cells by microbial signaling molecules. Here, we identified members of the SEVEN IN ABSENTIA (SINA) E3 ubiquitin-ligase family as SYMRK interactors and confirmed their predicted ubiquitin-ligase activity. In Nicotiana benthamiana leaves, SYMRK-yellow fluorescent protein was localized at the plasma membrane, and interaction with SINAs, as determined by bimolecular fluorescence complementation, was observed in small punctae at the cytosolic interface of the plasma membrane. Moreover, fluorescence-tagged SINA4 partially colocalized with SYMRK and caused SYMRK relocalization as well as disappearance of SYMRK from the plasma membrane. Neither the localization nor the abundance of Nod-factor receptor1 was altered by the presence of SINA4. SINA4 was transcriptionally upregulated during root symbiosis, and rhizobia inoculated roots ectopically expressing SINA4 showed reduced SYMRK protein levels. In accordance with a negative regulatory role in symbiosis, infection thread development was impaired upon ectopic expression of SINA4. Our results implicate SINA4 E3 ubiquitin ligase in the turnover of SYMRK and provide a conceptual mechanism for its symbiosis-appropriate spatio-temporal containment.
Collapse
Affiliation(s)
- Griet Den Herder
- Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany
| | - Satoko Yoshida
- Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | - Martina K. Ried
- Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany
| | - Martin Parniske
- Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
25
|
Dai B, Zhao XF, Mazan-Mamczarz K, Hagner P, Corl S, Bahassi EM, Lu S, Stambrook PJ, Shapiro P, Gartenhaus RB. Functional and molecular interactions between ERK and CHK2 in diffuse large B-cell lymphoma. Nat Commun 2011; 2:402. [PMID: 21772273 PMCID: PMC3144586 DOI: 10.1038/ncomms1404] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/20/2011] [Indexed: 01/02/2023] Open
Abstract
Distinct oncogenic signalling cascades have been associated with non-Hodgkin lymphoma. ERK1/2 signalling elicits both transcriptional and post-transcriptional effects through phosphorylation of numerous substrates. Here we report a novel molecular relationship between ERK1/2 and CHK2, a protein kinase that is a key mediator of the DNA damage checkpoint that responds to DNA double-strand breaks. Our studies are the first to demonstrate the co-localization and overexpression of ERK1/2 and CHK2 in diffuse large B-cell lymphoma (DLBCL). The physical interaction between ERK and CHK2 was highly dependent on phosphorylated Thr 68 of CHK2. Concurrent administration of an ERK inhibitor enhances the antitumour activity of CHK2 inhibition in both a human DLBCL xenograft model as well as primary human DLBCL cells. Our data suggest a functional interaction between ERK and CHK2 and support the potential combined therapeutic targeting of ERK and CHK2 in human DLBCL. Chk2 is a kinase that is a potential chemotherapeutic target. Here, Chk2 and the kinase ERK are shown to functionally interact, and are elevated in expression in human diffuse B-cell lymphomas. Combinatorial inhibition of the kinases was also shown to block tumour growth in an in vivo mouse model.
Collapse
Affiliation(s)
- Bojie Dai
- University of Maryland, Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Guo X, Ward MD, Tiedebohl JB, Oden YM, Nyalwidhe JO, Semmes OJ. Interdependent phosphorylation within the kinase domain T-loop Regulates CHK2 activity. J Biol Chem 2010; 285:33348-33357. [PMID: 20713355 PMCID: PMC2963420 DOI: 10.1074/jbc.m110.149609] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chk2 is a critical regulator of the cellular DNA damage repair response. Activation of Chk2 in response to IR-induced damage is initiated by phosphorylation of the Chk2 SQ/TQ cluster domain at Ser19, Ser33, Ser35, and Thr68. This precedes autophosphorylation of Thr383/Thr387 in the T-loop region of the kinase domain an event that is a prerequisite for efficient kinase activity. We conducted an in-depth analysis of phosphorylation within the T-loop region (residues 366–406). We report four novel phosphorylation sites at Ser372, Thr378, Thr389, and Tyr390. Substitution mutation Y390F was defective for kinase function. The substitution mutation T378A ablated the IR induction of kinase activity. Interestingly, the substitution mutation T389A demonstrated a 6-fold increase in kinase activity when compared with wild-type Chk2. In addition, phosphorylation at Thr389 was a prerequisite to phosphorylation at Thr387 but not at Thr383. Quantitative mass spectrometry analysis revealed IR-induced phosphorylation and subcellular distribution of Chk2 phosphorylated species. We observed IR-induced increase in phosphorylation at Ser379, Thr389, and Thr383/Thr389. Phosphorylation at Tyr390 was dramatically reduced following IR. Exposure to IR was also associated with changes in the ratio of chromatin/nuclear localization. IR-induced increase in chromatin localization was associated with phosphorylation at Thr372, Thr379, Thr383, Thr389, Thr383/Thr387, and Thr383/Thr389. Chk2 hyper-phosphorylated species at Thr383/Thr387/Thr389 and Thr383/Thr387/Thr389/Tyr390 relocalized from almost exclusively chromatin to predominately nuclear expression, suggesting a role for phosphorylation in regulation of chromatin targeting and egress. The differential impact of T-loop phosphorylation on Chk2 ubiquitylation suggests a co-dependence of these modifications. The results demonstrate that a complex interdependent network of phosphorylation events within the T-loop exchange region regulates dimerization/autophosphorylation, kinase activation, and chromatin targeting/egress of Chk2.
Collapse
Affiliation(s)
- Xin Guo
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Michael D Ward
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica B Tiedebohl
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Yvonne M Oden
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Julius O Nyalwidhe
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - O John Semmes
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507.
| |
Collapse
|
27
|
Korzeniewski N, Zheng L, Cuevas R, Parry J, Chatterjee P, Anderton B, Duensing A, Münger K, Duensing S. Cullin 1 functions as a centrosomal suppressor of centriole multiplication by regulating polo-like kinase 4 protein levels. Cancer Res 2009; 69:6668-75. [PMID: 19679553 DOI: 10.1158/0008-5472.can-09-1284] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormal centrosome and centriole numbers are frequently detected in tumor cells where they can contribute to mitotic aberrations that cause chromosome missegregation and aneuploidy. The molecular mechanisms of centriole overduplication in malignant cells, however, are poorly characterized. Here, we show that the core SKP1-cullin-F-box component cullin 1 (CUL1) localizes to maternal centrioles and that CUL1 is critical for suppressing centriole overduplication through multiplication, a recently discovered mechanism whereby multiple daughter centrioles form concurrently at single maternal centrioles. We found that this activity of CUL1 involves the degradation of Polo-like kinase 4 (PLK4) at maternal centrioles. PLK4 is required for centriole duplication and strongly stimulates centriole multiplication when aberrantly expressed. We found that CUL1 is critical for the degradation of active PLK4 following deregulation of cyclin E/cyclin-dependent kinase 2 activity, as is frequently observed in human cancer cells, as well as for baseline PLK4 protein stability. Collectively, our results suggest that CUL1 may function as a tumor suppressor by regulating PLK4 protein levels and thereby restraining excessive daughter centriole formation at maternal centrioles.
Collapse
|
28
|
Xu YJ, Kelly TJ. Autoinhibition and autoactivation of the DNA replication checkpoint kinase Cds1. J Biol Chem 2009; 284:16016-27. [PMID: 19357077 PMCID: PMC2708895 DOI: 10.1074/jbc.m900785200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/30/2009] [Indexed: 11/06/2022] Open
Abstract
Cds1 is the ortholog of Chk2 and the major effector of the DNA replication checkpoint in Schizosaccharomyces pombe. Previous studies have shown that Cds1 is activated by a two-stage mechanism. In the priming stage, the sensor kinase Rad3 and the mediator Mrc1 function to phosphorylate a threonine residue, Thr(11), in the SQ/TQ domain of Cds1. In the autoactivation stage, primed Cds1 molecules dimerize via intermolecular interactions between the phosphorylated Thr(11) in one Cds1 and the forkhead-associated domain of the other. Dimerization activates Cds1, probably by promoting autophosphorylation. To define the mechanisms for the autoactivation of primed Cds1 and the regulation of this process, we carried out genetic and biochemical studies to identify phosphorylatable residues required for checkpoint activation. Our data indicate that dimerization of Cds1 promotes trans-autophosphorylation of a number of residues in the catalytic domain, but phosphorylation of a highly conserved threonine residue (Thr(328)) in the activation loop is the only covalent modification required for kinase activation in vitro and in vivo. Autophosphorylation of Thr(328) and kinase activation in unprimed, monomeric Cds1 are strongly inhibited by the C-terminal 27-amino acid tail of the enzyme. This autoinhibitory effect may play an important role in preventing spontaneous activation of the replication checkpoint during normal cell cycles. The two-stage activation pathway and the autoinhibition mechanism, which are probably shared by other members of the Chk2 family, provide sensitivity, specificity, and noise immunity, properties required for the replication checkpoint.
Collapse
Affiliation(s)
- Yong-jie Xu
- From the Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021 and the
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Thomas J. Kelly
- From the Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021 and the
| |
Collapse
|
29
|
Stracker TH, Usui T, Petrini JHJ. Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 2009; 8:1047-54. [PMID: 19473886 DOI: 10.1016/j.dnarep.2009.04.012] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cellular DNA damage response (DDR) is activated by many types of DNA lesions. Upon recognition of DNA damage by sensor proteins, an intricate signal transduction network is activated to coordinate diverse cellular outcomes that promote genome integrity. Key components of the DDR in mammalian cells are the checkpoint effector kinases Chk1 and Chk2 (referred to henceforth as the effector kinases; orthologous to spChk1 and spCds1 in the fission yeast S. pombe and scChk1 and scRad53 in the budding yeast S. cerevisiae). These evolutionarily conserved and structurally divergent kinases phosphorylate numerous substrates to regulate the DDR. This review will focus on recent advances in our understanding of the structure, regulation, and functions of the effector kinases in the DDR, as well as their potential roles in human disease.
Collapse
|