1
|
Bonham C, Mandati V, Singh R, Pappin D, Tonks N. Coupling substrate-trapping with proximity-labeling to identify protein tyrosine phosphatase PTP1B signaling networks. J Biol Chem 2023; 299:104582. [PMID: 36871762 PMCID: PMC10148153 DOI: 10.1016/j.jbc.2023.104582] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
The ability to define functional interactions between enzymes and their substrates is crucial for understanding biological control mechanisms; however, such methods face challenges in the transient nature and low stoichiometry of enzyme-substrate interactions. Now, we have developed an optimized strategy that couples substrate-trapping mutagenesis to proximity-labeling mass spectrometry for quantitative analysis of protein complexes involving the protein tyrosine phosphatase PTP1B. This methodology represents a significant shift from classical schemes; it is capable of being performed at near-endogenous expression levels and increasing stoichiometry of target enrichment without a requirement for stimulation of supraphysiological tyrosine phosphorylation levels or maintenance of substrate complexes during lysis and enrichment procedures. Advantages of this new approach are illustrated through application to PTP1B interaction networks in models of HER2-positive and Herceptin-resistant breast cancer. We have demonstrated that inhibitors of PTP1B significantly reduced proliferation and viability in cell-based models of acquired and de novo Herceptin resistance in HER2-positive breast cancer. Using differential analysis, comparing substrate-trapping to wild-type PTP1B, we have identified multiple unreported protein targets of PTP1B with established links to HER2-induced signaling and provided internal validation of method specificity through overlap with previously identified substrate candidates. Overall, this versatile approach can be readily integrated with evolving proximity-labeling platforms (TurboID, BioID2, etc.), and is broadly applicable across all PTP family members for the identification of conditional substrate specificities and signaling nodes in models of human disease.
Collapse
Affiliation(s)
- ChristopherA Bonham
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Vinay Mandati
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - RakeshK Singh
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - DarrylJ Pappin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - NicholasK Tonks
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
2
|
Zhang L, Borjini N, Lun Y, Parab S, Asonye G, Singh R, Bell BA, Bonilha VL, Ivanov A, Fox DA, Caspi R, Lin F. CDCP1 regulates retinal pigmented epithelial barrier integrity for the development of experimental autoimmune uveitis. JCI Insight 2022; 7:e157038. [PMID: 35951427 PMCID: PMC9675461 DOI: 10.1172/jci.insight.157038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cub domain-containing protein 1 (CDCP1) is a protein that is highly expressed on the surface of many cancer cells. However, its distribution in normal tissues and its potential roles in nontumor cells are poorly understood. We found that CDCP1 is present on both human and mouse retinal pigment epithelial (RPE) cells. CDCP1-KO mice developed attenuated retinal inflammation in a passive model of autoimmune uveitis, with disrupted tight junctions and infiltrating T cells detected in RPE flat mounts from WT but not CDCP1-KO mice during EAU development. Mechanistically, we discovered that CDCP1 on RPE cells was upregulated by IFN-γ in vitro and after EAU induction in vivo. CD6 stimulation induced increased RPE barrier permeability of WT but not CDCP1-knockdown (CDCP1-KD) RPE cells, and activated T cells migrated through WT RPE monolayers more efficiently than the CDCP1-KD RPE monolayers. In addition, CD6 stimulation of WT but not the CDCP1-KD RPE cells induced massive stress fiber formation and focal adhesion disruption to reduce cell barrier tight junctions. These data suggest that CDCP1 on RPE cells interacts with CD6 on T cells to induce RPE cytoskeleton remodeling and focal adhesion disruption, which open up the tight junctions to facilitate T cell infiltration for the development of uveitis.
Collapse
Affiliation(s)
- Lingjun Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nozha Borjini
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yu Lun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sweta Parab
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gospel Asonye
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brent A. Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vera L. Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrei Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - David A. Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
3
|
CDCP1: A promising diagnostic biomarker and therapeutic target for human cancer. Life Sci 2022; 301:120600. [DOI: 10.1016/j.lfs.2022.120600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
|
4
|
Ikeuchi M, Yuki R, Saito Y, Nakayama Y. The tumor suppressor LATS2 reduces v-Src-induced membrane blebs in a kinase activity-independent manner. FASEB J 2021; 35:e21242. [PMID: 33368671 DOI: 10.1096/fj.202001909r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
When cells with excess DNA, such as tetraploid cells, undergo cell division, it can contribute to cellular transformation via asymmetrical chromosome segregation-generated genetic diversity. Cell cycle progression of tetraploid cells is suppressed by large tumor suppressor 2 (LATS2) kinase-induced inhibitory phosphorylation of the transcriptional coactivator Yes-associated protein (YAP). We recently reported that the oncogene v-Src induces tetraploidy and promotes cell cycle progression of tetraploid cells by suppressing LATS2 activity. We explore here the mechanism by which v-Src suppresses LATS2 activity and the role of LATS2 in v-Src-expressing cells. LATS2 was directly phosphorylated by v-Src and the proto-oncogene c-Src, resulting in decreased LATS2 kinase activity. This kinase-deficient LATS2 accumulated in a YAP transcriptional activity-dependent manner, and knockdown of either LATS2 or the LATS2-binding partner moesin-ezrin-radixin-like protein (Merlin) accelerated v-Src-induced membrane bleb formation. Upon v-Src expression, the interaction of Merlin with LATS2 was increased possibly due to a decrease in Merlin phosphorylation at Ser518, the dephosphorylation of which is required for the open conformation of Merlin and interaction with LATS2. LATS2 was colocalized with Merlin at the plasma membrane in a manner that depends on the Merlin-binding region of LATS2. The bleb formation in v-Src-expressing and LATS2-knockdown cells was rescued by the reexpression of wild-type or kinase-dead LATS2 but not the LATS2 mutant lacking the Merlin-binding region. These results suggest that the kinase-deficient LATS2 plays a role with Merlin at the plasma membrane in the maintenance of cortical rigidity in v-Src-expressing cells, which may cause tumor suppression.
Collapse
Affiliation(s)
- Masayoshi Ikeuchi
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.,DC1, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
5
|
Alajati A, D'Ambrosio M, Troiani M, Mosole S, Pellegrini L, Chen J, Revandkar A, Bolis M, Theurillat JP, Guccini I, Losa M, Calcinotto A, De Bernardis G, Pasquini E, D'Antuono R, Sharp A, Figueiredo I, Nava Rodrigues D, Welti J, Gil V, Yuan W, Vlajnic T, Bubendorf L, Chiorino G, Gnetti L, Torrano V, Carracedo A, Camplese L, Hirabayashi S, Canato E, Pasut G, Montopoli M, Rüschoff JH, Wild P, Moch H, De Bono J, Alimonti A. CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J Clin Invest 2021; 130:2435-2450. [PMID: 32250342 DOI: 10.1172/jci131133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanisms by which prostate cancer shifts from an indolent castration-sensitive phenotype to lethal castration-resistant prostate cancer (CRPC) are poorly understood. Identification of clinically relevant genetic alterations leading to CRPC may reveal potential vulnerabilities for cancer therapy. Here we find that CUB domain-containing protein 1 (CDCP1), a transmembrane protein that acts as a substrate for SRC family kinases (SFKs), is overexpressed in a subset of CRPC. Notably, CDCP1 cooperates with the loss of the tumor suppressor gene PTEN to promote the emergence of metastatic prostate cancer. Mechanistically, we find that androgens suppress CDCP1 expression and that androgen deprivation in combination with loss of PTEN promotes the upregulation of CDCP1 and the subsequent activation of the SRC/MAPK pathway. Moreover, we demonstrate that anti-CDCP1 immunoliposomes (anti-CDCP1 ILs) loaded with chemotherapy suppress prostate cancer growth when administered in combination with enzalutamide. Thus, our study identifies CDCP1 as a powerful driver of prostate cancer progression and uncovers different potential therapeutic strategies for the treatment of metastatic prostate tumors.
Collapse
Affiliation(s)
- Abdullah Alajati
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland.,Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Jingjing Chen
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland.,Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Ajinkya Revandkar
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland.,Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Ilaria Guccini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Marco Losa
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Gaston De Bernardis
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Rocco D'Antuono
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Adam Sharp
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom
| | - Ines Figueiredo
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Daniel Nava Rodrigues
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jonathan Welti
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Veronica Gil
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Wei Yuan
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Tatjana Vlajnic
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Verónica Torrano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Ikerbasque: Basque Foundation for Science, Bilbao, Spain
| | - Laura Camplese
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London, United Kingdom
| | - Susumu Hirabayashi
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London, United Kingdom
| | - Elena Canato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Jan Hendrik Rüschoff
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter Wild
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Johann De Bono
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland.,Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland.,Department of Medicine, University of Padua, Padua, Italy.,Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
| |
Collapse
|
6
|
Guo X, Eitnier RA, Beard RS, Meegan JE, Yang X, Aponte AM, Wang F, Nelson PR, Wu MH. Focal adhesion kinase and Src mediate microvascular hyperpermeability caused by fibrinogen- γC- terminal fragments. PLoS One 2020; 15:e0231739. [PMID: 32352989 PMCID: PMC7192500 DOI: 10.1371/journal.pone.0231739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives We previously reported microvascular leakage resulting from fibrinogen-γ chain C-terminal products (γC) occurred via a RhoA-dependent mechanism. The objective of this study was to further elucidate the signaling mechanism by which γC induces endothelial hyperpermeability. Since it is known that γC binds and activates endothelial αvβ3, a transmembrane integrin receptor involved in intracellular signaling mediated by the tyrosine kinases FAK and Src, we hypothesized that γC alters endothelial barrier function by activating the FAK-Src pathway leading to junction dissociation and RhoA driven cytoskeletal stress-fiber formation. Methods and results Using intravital microscopy of rat mesenteric microvessels, we show increased extravasation of plasma protein (albumin) resulting from γC administration. In addition, capillary fluid filtration coefficient (Kfc) indicated γC-induced elevated lung vascular permeability. Furthermore, γC decreased transendothelial barrier resistance in a time-dependent and dose-related fashion in cultured rat lung microvascular endothelial cells (RLMVECs), accompanied by increased FAK/Src phosphorylation detection by western blot. Experiments with pharmacological inhibition or gene silencing of FAK showed significantly reduced γC-induced albumin and fluid leakage across microvessels, stress-fiber formation, VE-cadherin tyrosine phosphorylation, and improved γC-induced endothelial barrier dysfunction, indicating the involvement of FAK in γC mediated hyperpermeability. Comparable results were found when Src was targeted in a similar manner, however inhibition of FAK prevented Src activation, suggesting that FAK is upstream of Src in γC-mediated hyperpermeability. In addition, γC-induced cytoskeletal stress-fiber formation was attenuated during inhibition or silencing of these tyrosine kinases, concomitantly with RhoA inhibition. Conclusion The FAK-Src pathway contributes to γC-induced microvascular barrier dysfunction, junction protein phosphorylation and disorganization in a manner that involves RhoA and stress-fiber formation.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Rebecca A. Eitnier
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Richard S. Beard
- Department of Biomolecular Research, Boise State University, Boise, ID, United States of America
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Alexandra M. Aponte
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Fang Wang
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Peter R. Nelson
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Mack H. Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
7
|
Bhandage AK, Cunningham JL, Jin Z, Shen Q, Bongiovanni S, Korol SV, Syk M, Kamali-Moghaddam M, Ekselius L, Birnir B. Depression, GABA, and Age Correlate with Plasma Levels of Inflammatory Markers. Int J Mol Sci 2019; 20:ijms20246172. [PMID: 31817800 PMCID: PMC6941074 DOI: 10.3390/ijms20246172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Immunomodulation is increasingly being recognised as a part of mental diseases. Here, we examined whether levels of immunological protein markers changed with depression, age, or the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). An analysis of plasma samples from patients with a major depressive episode and control blood donors (CBD) revealed the expression of 67 inflammatory markers. Thirteen of these markers displayed augmented levels in patients compared to CBD. Twenty-one markers correlated with the age of the patients, whereas 10 markers correlated with the age of CBD. Interestingly, CST5 and CDCP1 showed the strongest correlation with age in the patients and CBD, respectively. IL-18 was the only marker that correlated with the MADRS-S scores of the patients. Neuronal growth factors (NGFs) were significantly enhanced in plasma from the patients, as was the average plasma GABA concentration. GABA modulated the release of seven cytokines in anti-CD3-stimulated peripheral blood mononuclear cells (PBMCs) from the patients. The study reveals significant changes in the plasma composition of small molecules during depression and identifies potential peripheral biomarkers of the disease.
Collapse
Affiliation(s)
- Amol K. Bhandage
- Department of Neuroscience, Physiology, Uppsala University, BMC, Box 593, 75124 Uppsala, Sweden; (A.K.B.); (Z.J.); (S.V.K.)
| | - Janet L. Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, 75185 Uppsala, Sweden; (J.L.C.); (S.B.); (M.S.); (L.E.)
| | - Zhe Jin
- Department of Neuroscience, Physiology, Uppsala University, BMC, Box 593, 75124 Uppsala, Sweden; (A.K.B.); (Z.J.); (S.V.K.)
| | - Qiujin Shen
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, 75108 Uppsala, Sweden; (Q.S.); (M.K.-M.)
| | - Santiago Bongiovanni
- Department of Neuroscience, Psychiatry, Uppsala University, 75185 Uppsala, Sweden; (J.L.C.); (S.B.); (M.S.); (L.E.)
| | - Sergiy V. Korol
- Department of Neuroscience, Physiology, Uppsala University, BMC, Box 593, 75124 Uppsala, Sweden; (A.K.B.); (Z.J.); (S.V.K.)
| | - Mikaela Syk
- Department of Neuroscience, Psychiatry, Uppsala University, 75185 Uppsala, Sweden; (J.L.C.); (S.B.); (M.S.); (L.E.)
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, 75108 Uppsala, Sweden; (Q.S.); (M.K.-M.)
| | - Lisa Ekselius
- Department of Neuroscience, Psychiatry, Uppsala University, 75185 Uppsala, Sweden; (J.L.C.); (S.B.); (M.S.); (L.E.)
| | - Bryndis Birnir
- Department of Neuroscience, Physiology, Uppsala University, BMC, Box 593, 75124 Uppsala, Sweden; (A.K.B.); (Z.J.); (S.V.K.)
- Correspondence: ; Tel.: +46-18-471-4622
| |
Collapse
|
8
|
Luo F, Hong G, Matsui H, Endo K, Wan Q, Sasaki K. Initial osteoblast adhesion and subsequent differentiation on zirconia surfaces are regulated by integrins and heparin-sensitive molecule. Int J Nanomedicine 2018; 13:7657-7667. [PMID: 30538450 PMCID: PMC6251461 DOI: 10.2147/ijn.s175536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose It is well known that zirconia materials have good biocompatibility; however, little is known regarding the mechanism by which cells attach to these materials. The purpose of this study is to elucidate the mechanism of cell attachment. Materials and methods In this study, we examined the surface characteristics of ceria-stabilized zirconia/alumina nanocomposite (NANOZR), yttria-stabilized zirconia (Y-TZP) and commercially pure titanium (CpTi), and we evaluated the initial response of osteoblast-like cells to them with different inhibitors. Results Under the same polishing treatment, the three materials, NANOZR, Y-TZP and CpTi, show similar surface wettability but different surface roughness. Osteoblasts could adhere to the surface of all three materials, and spindle shapes were clearer in serum-containing media compared to PBS and serum-free culture media, suggesting that serum-contained proteins are helpful for the initial cell adhesion and spreading. Cell adhesion and proliferation were disrupted in the presence of EDTA. RGD-peptide interfered with cell proliferation by affecting cell protrusion and stress fibers. Monoclonal antibody against non-RGD type integrin α2β1 enhanced proliferation in Y-TZP, CpTi and culture dish but not in NANOZR. Cell proliferation on NANOZR was specifically inhibited in the presence of heparin. Furthermore, under heparin administration, spindle shape formation was maintained but actin cytoskeleton was disrupted, resulting in loose cellular spreading. Conclusion These results suggest that RGD type integrins and heparin-sensitive protein in coordination regulate cell morphology and proliferation on NANOZR, through the regulation of cell polarity and stress fiber formation, respectively.
Collapse
Affiliation(s)
- Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China, .,Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan, .,Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia,
| | - Hiroyuki Matsui
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Kosei Endo
- Division of Aging and Geriatric Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China,
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Regulation of inside-out β1-integrin activation by CDCP1. Oncogene 2018; 37:2817-2836. [PMID: 29511352 DOI: 10.1038/s41388-018-0142-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/21/2022]
Abstract
Tumor metastasis depends on the dynamic regulation of cell adhesion through β1-integrin. The Cub-Domain Containing Protein-1, CDCP1, is a transmembrane glycoprotein which regulates cell adhesion. Overexpression and loss of CDCP1 have been observed in the same cancer types to promote metastatic progression. Here, we demonstrate reduced CDCP1 expression in high-grade, primary prostate cancers, circulating tumor cells and tumor metastases of patients with castrate-resistant prostate cancer. CDCP1 is expressed in epithelial and not mesenchymal cells, and its cell surface and mRNA expression declines upon stimulation with TGFβ1 and epithelial-to-mesenchymal transition. Silencing of CDCP1 in DU145 and PC3 cells resulted in 3.4-fold higher proliferation of non-adherent cells and 4.4-fold greater anchorage independent growth. CDCP1-silenced tumors grew in 100% of mice, compared to 30% growth of CDCP1-expressing tumors. After CDCP1 silencing, cell adhesion and migration diminished 2.1-fold, caused by loss of inside-out activation of β1-integrin. We determined that the loss of CDCP1 reduces CDK5 kinase activity due to the phosphorylation of its regulatory subunit, CDK5R1/p35, by c-SRC on Y234. This generates a binding site for the C2 domain of PKCδ, which in turn phosphorylates CDK5 on T77. The resulting dissociation of the CDK5R1/CDK5 complex abolishes the activity of CDK5. Mutations of CDK5-T77 and CDK5R1-Y234 phosphorylation sites re-establish the CDK5/CDKR1 complex and the inside-out activity of β1-integrin. Altogether, we discovered a new mechanism of regulation of CDK5 through loss of CDCP1, which dynamically regulates β1-integrin in non-adherent cells and which may promote vascular dissemination in patients with advanced prostate cancer.
Collapse
|
10
|
Wasik AA, Schiller HB. Functional proteomics of cellular mechanosensing mechanisms. Semin Cell Dev Biol 2017; 71:118-128. [DOI: 10.1016/j.semcdb.2017.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
|
11
|
Abstract
It has been proposed that CD6, an important regulator of T cells, functions by interacting with its currently identified ligand, CD166, but studies performed during the treatment of autoimmune conditions suggest that the CD6-CD166 interaction might not account for important functions of CD6 in autoimmune diseases. The antigen recognized by mAb 3A11 has been proposed as a new CD6 ligand distinct from CD166, yet the identity of it is hitherto unknown. We have identified this CD6 ligand as CD318, a cell surface protein previously found to be present on various epithelial cells and many tumor cells. We found that, like CD6 knockout (KO) mice, CD318 KO mice are also protected in experimental autoimmune encephalomyelitis. In humans, we found that CD318 is highly expressed in synovial tissues and participates in CD6-dependent adhesion of T cells to synovial fibroblasts. In addition, soluble CD318 is chemoattractive to T cells and levels of soluble CD318 are selectively and significantly elevated in the synovial fluid from patients with rheumatoid arthritis and juvenile inflammatory arthritis. These results establish CD318 as a ligand of CD6 and a potential target for the diagnosis and treatment of autoimmune diseases such as multiple sclerosis and inflammatory arthritis.
Collapse
|
12
|
Zarif JC, Miranti CK. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cell Signal 2016; 28:348-356. [PMID: 26829214 PMCID: PMC4788534 DOI: 10.1016/j.cellsig.2016.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/28/2016] [Indexed: 01/22/2023]
Abstract
The androgen receptor (AR) remains the major oncogenic driver of prostate cancer, as evidenced by the efficacy of androgen deprivation therapy (ADT) in naïve patients, and the continued effectiveness of second generation ADTs in castration resistant disease. However, current ADTs are limited to interfering with AR ligand binding, either through suppression of androgen production or the use of competitive antagonists. Recent studies demonstrate 1) the expression of constitutively active AR splice variants that no longer depend on androgen, and 2) the ability of AR to signal in the cytoplasm independently of its transcriptional activity (non-genomic); thus highlighting the need to consider other ways to target AR. Herein, we review canonical AR signaling, but focus on AR non-genomic signaling, some of its downstream targets and how these effectors contribute to prostate cancer cell behavior. The goals of this review are to 1) re-highlight the continued importance of AR in prostate cancer as the primary driver, 2) discuss the limitations in continuing to use ligand binding as the sole targeting mechanism, 3) discuss the implications of AR non-genomic signaling in cancer progression and therapeutic resistance, and 4) address the need to consider non-genomic AR signaling mechanisms and pathways as a viable targeting strategy in combination with current therapies.
Collapse
Affiliation(s)
- Jelani C Zarif
- The James Buchanan Brady Urological Institute at The Johns Hopkins University School of Medicine Baltimore, MD 21287, United States
| | - Cindy K Miranti
- Lab of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503, United States.
| |
Collapse
|
13
|
Wright HJ, Arulmoli J, Motazedi M, Nelson LJ, Heinemann FS, Flanagan LA, Razorenova OV. CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Oncogene 2016; 35:4762-72. [PMID: 26876198 DOI: 10.1038/onc.2016.7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 01/17/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic form of breast cancer that lacks the estrogen, progesterone and HER2 receptors and is resistant to targeted and hormone therapies. TNBCs express high levels of the transmembrane glycoprotein, complement C1r/C1s, Uegf, Bmp1 (CUB)-domain containing protein 1 (CDCP1), which has been correlated with the aggressiveness and poor prognosis of multiple carcinomas. Full-length CDCP1 (flCDCP1) can be proteolytically cleaved, resulting in a cleaved membrane-bound isoform (cCDCP1). CDCP1 is phosphorylated by Src family kinases in its full-length and cleaved states, which is important for its pro-metastatic signaling. We observed that cCDCP1, compared with flCDCP1, induced a dramatic increase in phosphorylation of the migration-associated proteins: PKCδ, ERK1/2 and p38 mitogen-activated protein kinase in HEK 293T. In addition, only cCDCP1 induced migration of HEK 293T cells and rescued migration of the TNBC cell lines expressing short hairpin RNA against CDCP1. Importantly, we found that only cCDCP1 is capable of dimerization, which can be blocked by expression of the extracellular portion of cCDCP1 (ECC), indicating that dimerization occurs through CDCP1's ectodomain. We found that ECC inhibited phosphorylation of PKCδ and migration of TNBC cells in two-dimensional culture. Furthermore, ECC decreased cell invasiveness, inhibited proliferation and stimulated apoptosis of TNBC cells in three-dimensional culture, indicating that the cCDCP1 dimer is an important contributor to TNBC aggressiveness. These studies have important implications for the development of a therapeutic to block CDCP1 activity and TNBC metastasis.
Collapse
Affiliation(s)
- H J Wright
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - J Arulmoli
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - M Motazedi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - L J Nelson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - F S Heinemann
- Department of Pathology, Hoag Memorial Hospital Presbyterian, Newport Beach, CA, USA
| | - L A Flanagan
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.,Department of Neurology, University of California, Irvine, CA, USA
| | - O V Razorenova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| |
Collapse
|
14
|
Wu H, Shang LQ, Chen RL, Yang SM, Wang SL, Wang J, Sun G. Significance of Trask protein interactions in brain metastatic cohorts of lung cancers. Tumour Biol 2015; 36:4181-7. [PMID: 25775948 DOI: 10.1007/s13277-015-3053-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/02/2015] [Indexed: 12/19/2022] Open
Abstract
A class of adhesion protein that occurs in the membrane with both extracellular and intracellular domain and play vital role in maintaining multicellularity is TRASK, also called CUB-domain containing protein1, CD318 (CDCP1). Specifically, in the current study, documented aggressive grades of lung cancers and distant metastatic tissues were examined for protein interactions of Trask and compared with lung cancer variants in situ. The intracellular domain of Trask has the ability to undergo tyrosine phosphorylation and thereafter undergo increased genomic expression, as well as interact with cytoskeletal proteins in the cell periphery and other local signal transduction machinery to induce invadopodia formation and distant metastasis. We incorporated proximity ligation assay to examine protein interactions of Trask in metastatic lung cancer tissues and compare with advanced and low-grade lung cancers restricted to the primary site of origins. Here, we provide direct evidence that activated Trask, which is a phosphorylated form, binds with cytoskeletal proteins actin and spectrin. These interactions were not seen in locally growing lung cancer and cancer in situ. These interactions may be responsible for invadopodia formation and breaking free from a multicellular environment. Functional studies demonstrated interaction between Trask and the STOCs Orai1 and Stim1. Calcium release from internal stores was highest in metastatic lung cancers, suggesting this mechanism as an initial stimulus for the cells to respond chaotically to external growth factor stimulation, especially in aggressive metastatic variants of lung cancers. Recently, inhibitors of STOCs have been identified, and preclinical evidence may be obtained whether these drugs may be of benefit in preventing the deadly consequences of lung cancer.
Collapse
Affiliation(s)
- Hua Wu
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China,
| | | | | | | | | | | | | |
Collapse
|
15
|
Chen IH, Chang FR, Wu YC, Kung PH, Wu CC. 3,4-Methylenedioxy-β-nitrostyrene inhibits adhesion and migration of human triple-negative breast cancer cells by suppressing β1 integrin function and surface protein disulfide isomerase. Biochimie 2015; 110:81-92. [PMID: 25593085 DOI: 10.1016/j.biochi.2015.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022]
Abstract
Triple negative breast cancer (TNBC) exhibits an aggressive clinical course by high metastatic potential. It is known that integrin-mediated cell adhesion and migration are important for cancer metastasis. In the present study, a synthetic compound, 3, 4-methyenedioxy-β-nitrostyrene (MNS), significantly inhibited adhesion of TNBC cell lines to different extracellular matrix (ECM) components. The antimetastatic capacity of MNS was also observed through reducing TNBC cells migration and invasion without affecting cell viability. Confocal microscopy revealed that MNS disrupted the formation of focal adhesion complex and actin stress fiber networks. Consistent with this finding, MNS inhibited phosphorylation of focal adhesion kinase (FAK) and paxillin as detected by Western blot analysis. In exploring the underlying mechanism, we found that MNS inhibited phosphorylation of FAK as a result of reducing β1 integrin activation and clustering. A cell-impermeable dithiol reagent, 2, 3-dimercaptopropane-1-sulfonic acid abrogated all of MNS's actions, indicating that MNS may react with thiol groups of cell surface proteins that are involved in regulation of β1 integrin function as well as cell adhesion and migration. Cell surface protein disulfide isomerase (PDI) has been reported to be essential for the affinity modulation of β integrins. We also demonstrated that MNS inhibited PDI activity both in a pure enzyme system and in intact cancer cells. Taken together, our results suggest that MNS inhibits in vitro metastatic properties of TNBC cells through suppression of β1 integrin activation and focal adhesion signaling. Moreover, inhibition of surface PDI may contribute, at least in part, to the actions of MNS. These results suggest that MNS has a potential to be developed as an anticancer agent for treatment of TNBC.
Collapse
Affiliation(s)
- I-Hua Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.
| | - Po-Hsiung Kung
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Sawada G, Takahashi Y, Niida A, Shimamura T, Kurashige J, Matsumura T, Ueo H, Uchi R, Takano Y, Ueda M, Hirata H, Sakimura S, Shinden Y, Eguchi H, Sudo T, Sugimachi K, Miyano S, Doki Y, Mori M, Mimori K. Loss of CDCP1 expression promotes invasiveness and poor prognosis in esophageal squamous cell carcinoma. Ann Surg Oncol 2014; 21 Suppl 4:S640-7. [PMID: 24849519 DOI: 10.1245/s10434-014-3740-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Human CDCP1 gene, located on chromosome 3p21.3, is a transmembrane glycoprotein widely expressed in epithelial tissues, and its role in cancer remains to be understood. METHODS Using microarray profiles of gene expression and copy number data from 69 esophageal squamous cell carcinoma (ESCC) samples, we performed informatics analyses to reveal the significance of CDCP1 expression. We also performed migration and invasion assays of siRNA-targeted CDCP1-transfected cells and CDCP1-overexpressing cell in vitro. Moreover, we evaluated the clinical magnitude of CDCP1 expression in esophageal squamous cell cancer cases. RESULTS Allelic loss of chromosome 3p was confirmed by copy number analysis. The expression level of CDCP1 in tumor tissue was significantly lower than that in corresponding normal tissue. siRNA targeting of CDCP1 promoted the migratory and invasive abilities of esophageal cancer cell lines, whereas both abilities were reduced in CDCP1-overexpressing cells. Gene set enrichment analysis showed that expression levels of CDCP1 were associated with tumor differentiation and metastasis, consistent with the result of clinicopathologic analyses. Finally, multivariate analysis revealed that the expression level of CDCP1 was an independent prognostic factor for survival. CONCLUSIONS Loss of CDCP1 expression may be a novel indicator for biological aggressiveness in ESCC.
Collapse
Affiliation(s)
- Genta Sawada
- Department of Surgery, Beppu Hospital, Kyushu University, Beppu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells. Cell Mol Bioeng 2013; 7:35-44. [PMID: 24575161 PMCID: PMC3923115 DOI: 10.1007/s12195-013-0313-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/26/2013] [Indexed: 12/11/2022] Open
Abstract
The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to suspended cells in culture is maintained at 7:3 (equilibrium ratio). The ratio was maintained even when we separate the two populations and culture them separately. After 8 h in culture the equilibrium was achieved only from either adherent or suspended population. The adherent cells were found to express less E-selectin binding glycans and demonstrated significantly weaker interaction with E-selectin under flow than the suspended cells. Manipulation of the epithelial–mesenchymal transition (EMT) markers β-catenin and E-cadherin expression, either by siRNA knockdown of β-catenin or incubation with E-cadherin antibody-coated microbeads, shifted the ratio of adherent to suspended cells to 9:1. Interestingly, human plasma supplemented media shifted the ratio of adherent to suspended cells in the opposite direction to 1:9, favoring the suspended state. The dynamic COLO 205 population switch presents unique differential phenotypes of their subpopulations and could serve as a good model for studying cell heterogeneity and the EMT process in vitro.
Collapse
|
18
|
Kollmorgen G, Bossenmaier B, Niederfellner G, Häring HU, Lammers R. Structural requirements for cub domain containing protein 1 (CDCP1) and Src dependent cell transformation. PLoS One 2012; 7:e53050. [PMID: 23300860 PMCID: PMC3534080 DOI: 10.1371/journal.pone.0053050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/23/2012] [Indexed: 12/11/2022] Open
Abstract
Cub domain containing protein 1 (CDCP1) is strongly expressed in tumors derived from lung, colon, ovary, or kidney. It is a membrane protein that is phosphorylated and then bound by Src family kinases. Although expression and phosphorylation of CDCP1 have been investigated in many tumor cell lines, the CDCP1 features responsible for transformation have not been fully evaluated. This is in part due to the lack of an experimental system in which cellular transformation depends on expression of exogenous CDCP1 and Src. Here we use retrovirus mediated co-overexpression of c-Src and CDCP1 to induce focus formation of NIH3T3 cells. Employing different mutants of CDCP1 we show that for a full transformation capacity, the intact amino- and carboxy-termini of CDCP1 are essential. Mutation of any of the core intracellular tyrosine residues (Y734, Y743, or Y762) abolished transformation, and mutation of a palmitoylation motif (C689,690G) strongly reduced it. Src kinase binding to CDCP1 was not required since Src with a defective SH2 domain generated even more CDCP1 dependent foci whereas Src myristoylation was necessary. Taken together, the focus formation assay allowed us to define structural requirements of CDCP1/Src dependent transformation and to characterize the interaction of CDCP1 and Src.
Collapse
Affiliation(s)
- Gwendlyn Kollmorgen
- Pharma Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Birgit Bossenmaier
- Pharma Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Hans-Ulrich Häring
- Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
| | - Reiner Lammers
- Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
19
|
Spassov DS, Wong CH, Wong SY, Reiter JF, Moasser MM. Trask loss enhances tumorigenic growth by liberating integrin signaling and growth factor receptor cross-talk in unanchored cells. Cancer Res 2012; 73:1168-79. [PMID: 23243018 DOI: 10.1158/0008-5472.can-12-2496] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cell surface glycoprotein Trask/CDCP1 is phosphorylated during anchorage loss in epithelial cells in which it inhibits integrin clustering, outside-in signaling, and cell adhesion. Its role in cancer has been difficult to understand, because of the lack of a discernible pattern in its various alterations in cancer cells. To address this issue, we generated mice lacking Trask function. Mammary tumors driven by the PyMT oncogene and skin tumors driven by the SmoM2 oncogene arose with accelerated kinetics in Trask-deficient mice, establishing a tumor suppressing function for this gene. Mechanistic investigations in mammary tumor cell lines derived from wild-type or Trask-deficient mice revealed a derepression of integrin signaling and an enhancement of integrin-growth factor receptor cross-talk, specifically in unanchored cell states. A similar restrictive link between anchorage and growth in untransformed epithelial cells was observed and disrupted by elimination of Trask. Together our results establish a tumor-suppressing function in Trask that restricts epithelial cell growth to the anchored state.
Collapse
Affiliation(s)
- Danislav S Spassov
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
20
|
Casar B, Rimann I, Kato H, Shattil SJ, Quigley JP, Deryugina EI. In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated β1 integrin and induction of FAK/PI3K/Akt motility signaling. Oncogene 2012. [PMID: 23208492 DOI: 10.1038/onc.2012.547] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specific cleavage of the transmembrane molecule, CUB domain-containing protein-1 (CDCP1), by plasmin-like serine proteases induces outside-in signal transduction that facilitates early stages of spontaneous metastasis leading to tumor cell intravasation, namely cell escape from the primary tumor, stromal invasion and transendothelial migration. We identified active β1 integrin as a biochemical and functional partner of the membrane-retained 70-kDa CDCP1 fragment, newly generated from its full-length 135-kDa precursor though proteolytic cleavage by serine proteases. Both in cell cultures and in live animals, active β1 integrin complexed preferentially with functionally activated, phosphorylated 70-kDa CDCP1. Complexing of β1 integrin the 70-kDa with CDCP1 fragment induced intracellular phosphorylation signaling, involving focal adhesion kinase-1 (FAK) and PI3 kinase (PI3K)-dependent Akt activation. Thus, inhibition of FAK/PI3K activities by specific inhibitors as well as short-hairpin RNA downregulation of β1 integrin significantly reduced FAK/Akt phosphorylation under conditions where CDCP1 was processed by serine proteases, indicating that FAK/PI3K/Akt pathway operates downstream of cleaved CDCP1 complexed with β1 integrin. Furthermore, this complex-dependent signaling correlated positively with high levels of tumor cell intravasation and dissemination. Correspondingly, abrogation in vivo of CDCP1 cleavage either by unique cleavage-blocking monoclonal antibody 10-D7 or by inhibition of proteolytic activity of plasmin-like serine proteases with aprotinin prevented β1 integrin/CDCP1 complexing and downstream FAK/Akt signaling concomitant with significant reduction of stromal invasion and spontaneous metastasis. Therefore, β1 integrin appears to serve as a motility-regulating partner mediating cross-talk between proteolytically cleaved, membrane-retained CDCP1 and members of FAK/PI3K/Akt pathway. This CDCP1 cleavage-induced signaling cascade constitutes a unique mechanism, independent of extracellular matrix remodeling, whereby a proteolytically cleaved CDCP1 regulates in vivo locomotion and metastasis of tumor cells through β1 integrin partnering. Our findings indicate that CDCP1 cleavage, occurring at the apex of a β1 integrin/FAK/PI3K/Akt signaling cascade, may represent a therapeutic target for CDCP1-positive cancers.
Collapse
Affiliation(s)
- B Casar
- The Cell Biology Department, The Scripps Research Institute, La Jolla, CA, USA
| | - I Rimann
- The Cell Biology Department, The Scripps Research Institute, La Jolla, CA, USA
| | - H Kato
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - S J Shattil
- 1] Department of Medicine, University of California San Diego, La Jolla, CA, USA [2] Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - J P Quigley
- The Cell Biology Department, The Scripps Research Institute, La Jolla, CA, USA
| | - E I Deryugina
- The Cell Biology Department, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
21
|
Boyer AP, Collier TS, Vidavsky I, Bose R. Quantitative proteomics with siRNA screening identifies novel mechanisms of trastuzumab resistance in HER2 amplified breast cancers. Mol Cell Proteomics 2012; 12:180-93. [PMID: 23105007 DOI: 10.1074/mcp.m112.020115] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HER2 is a receptor tyrosine kinase that is overexpressed in 20% to 30% of human breast cancers and which affects patient prognosis and survival. Treatment of HER2-positive breast cancer with the monoclonal antibody trastuzumab (Herceptin) has improved patient survival, but the development of trastuzumab resistance is a major medical problem. Many of the known mechanisms of trastuzumab resistance cause changes in protein phosphorylation patterns, and therefore quantitative proteomics was used to examine phosphotyrosine signaling networks in trastuzumab-resistant cells. The model system used in this study was two pairs of trastuzumab-sensitive and -resistant breast cancer cell lines. Using stable isotope labeling, phosphotyrosine immunoprecipitations, and online TiO(2) chromatography utilizing a dual trap configuration, ~1700 proteins were quantified. Comparing quantified proteins between the two cell line pairs showed only a small number of common protein ratio changes, demonstrating heterogeneity in phosphotyrosine signaling networks across different trastuzumab-resistant cancers. Proteins showing significant increases in resistant versus sensitive cells were subjected to a focused siRNA screen to evaluate their functional relevance to trastuzumab resistance. The screen revealed proteins related to the Src kinase pathway, such as CDCP1/Trask, embryonal Fyn substrate, and Paxillin. We also identify several novel proteins that increased trastuzumab sensitivity in resistant cells when targeted by siRNAs, including FAM83A and MAPK1. These proteins may present targets for the development of clinical diagnostics or therapeutic strategies to guide the treatment of HER2+ breast cancer patients who develop trastuzumab resistance.
Collapse
Affiliation(s)
- Alaina P Boyer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
22
|
Casar B, He Y, Iconomou M, Hooper JD, Quigley JP, Deryugina EI. Blocking of CDCP1 cleavage in vivo prevents Akt-dependent survival and inhibits metastatic colonization through PARP1-mediated apoptosis of cancer cells. Oncogene 2011; 31:3924-38. [PMID: 22179830 DOI: 10.1038/onc.2011.555] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CUB domain-containing protein-1 (CDCP1) is a transmembrane molecule that has recently been implicated in cancer progression. In this study we have established a novel mechanism for initiation of CDCP1-mediated signaling in vivo and demonstrated that specific 135→70-kDa processing of cell-surface CDCP1 by extracellular serine proteases is a prerequisite for CDCP1-dependent survival of cancer cells during metastasis. The in vivo cleavage of CDCP1 triggers a survival program involving recruitment of Src and PKCδ, Src-mediated phosphorylation of cell-surface-retained 70-kDa CDCP1, activation of Akt and suppression of PARP1-induced apoptosis. We demonstrate in vivo that phosphorylated Src, PKCδ and Akt all constitute activated elements of a CDCP1-signaling axis during tissue colonization of tumor cells. Preventing in vivo cleavage of CDCP1 with unique anti-CDCP1 antibodies, serine protease inhibitors or genetic modulation of the cleavage site in the CDCP1 molecule completely abrogated survival signaling associated with the 70-kDa CDCP1, and induced PARP1 cleavage and PARP1-mediated apoptosis, ultimately resulting in substantial inhibition of tissue colonization by tumor cells. The lack of CDCP1 cleavage in the lung tissue of plasminogen-knockout mice along with a coordinated reduction in tumor cell survival in a lung retention model, and importantly rescue of both by in vivo supplied plasmin, indicated that plasmin is the crucial serine protease executing in vivo cleavage of cell-surface CDCP1 during early stages of lung colonization. Together, our findings indicate that in vivo blocking of CDCP1 cleavage upstream from CDCP1-induced pro-survival signaling provides a potential mechanism for therapeutic intervention into metastatic disease.
Collapse
Affiliation(s)
- B Casar
- The Cell Biology Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wortmann A, He Y, Christensen ME, Linn M, Lumley JW, Pollock PM, Waterhouse NJ, Hooper JD. Cellular settings mediating Src Substrate switching between focal adhesion kinase tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) tyrosine 734. J Biol Chem 2011; 286:42303-42315. [PMID: 21994943 DOI: 10.1074/jbc.m111.227462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase Cδ, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression.
Collapse
Affiliation(s)
- Andreas Wortmann
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059
| | - Yaowu He
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101
| | - Melinda E Christensen
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101
| | - MayLa Linn
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059
| | - John W Lumley
- Wesley Medical Centre, Auchenflower, Queensland 4066, Australia
| | - Pamela M Pollock
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059
| | - Nigel J Waterhouse
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101
| | - John D Hooper
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101.
| |
Collapse
|
24
|
The SRC-associated protein CUB Domain-Containing Protein-1 regulates adhesion and motility. Oncogene 2011; 31:653-63. [PMID: 21725358 DOI: 10.1038/onc.2011.262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple SRC-family kinases (SFKs) are commonly activated in carcinoma and appear to have a role in metastasis through incompletely understood mechanisms. Recent studies have shown that CDCP1 (CUB (complement C1r/C1s, Uegf, Bmp1) Domain-Containing Protein-1) is a transmembrane protein and an SRC substrate potentially involved in metastasis. Here we show that increased SFK and CDCP1 tyrosine phosphorylation is, surprisingly, associated with a decrease in FAK phosphorylation. This appears to be true in human tumors as shown by our correlation analysis of a mass spectrometric data set of affinity-purified phosphotyrosine peptides obtained from normal and cancer lung tissue samples. Induction of tyrosine phosphorylation of CDCP1 in cell culture, including by a mAb that binds to its extracellular domain, promoted changes in SFK and FAK tyrosine phosphorylation, as well as in PKC(TM), a protein known to associate with CDCP1, and these changes are accompanied by increases in adhesion and motility. Thus, signaling events that accompany the CDCP1 tyrosine phosphorylation observed in cell lines and human lung tumors may explain how the CDCP1/SFK complex regulates motility and adhesion.
Collapse
|
25
|
Abstract
Trask/CDCP1 is a transmembrane glycoprotein widely expressed in epithelial tissues whose functions are just beginning to be understood, but include a role as an anti-adhesive effector of Src kinases. Early studies looking at RNA transcript levels seemed to suggest overexpression in some cancers, but immunostaining studies are now providing more accurate analyses of its expression. In an immuno-histochemical survey of human cancer specimens, we find that Trask expression is retained, reduced or sometimes lost in some tumors compared with their normal epithelial tissue counterparts. A survey of human cancer cell lines also show a similar wide variation in the expression of Trask, including some cell types with the loss of Trask expression, and additional cell types that have lost the physiological detachment-induced phosphorylation of Trask. Three experimental models were established to interrogate the role of Trask in tumor progression, including two gain-of-function models with tet-inducible expression of Trask in tumor cells lacking Trask expression, and one loss-of-function model to suppress Trask expression in tumor cells with abundant Trask expression. The induction of Trask expression and phosphorylation in MCF-7 cells and in 3T3v-src cells was associated with a reduction in tumor metastases while the shRNA-induced knockdown of Trask in L3.6pl cancer cells was associated with increased tumor metastases. The results from these three models are consistent with a tumor-suppressing role for Trask. These data identify Trask as one of several potential candidates for functionally relevant tumor suppressors on the 3p21.3 region of the genome frequently lost in human cancers.
Collapse
|
26
|
Spassov DS, Wong CH, Moasser MM. Trask phosphorylation defines the reverse mode of a phosphotyrosine signaling switch that underlies cell anchorage state. Cell Cycle 2011; 10:1225-32. [PMID: 21490433 DOI: 10.4161/cc.10.8.15343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphotyrosine signaling in anchored epithelial cells constitutes a spacially ordained signaling program that largely functions to promote integrin-linked focal adhesion complexes, serving to secure cell anchorage to matrix and as a bidirectional signaling hub that coordinates the physical state of the cell and its environment with cellular functions including proliferation and survival. Cells release their adhesions during processes such as mitosis, migration, or tumorigenesis, but the fate of signaling through tyrosine phosphorylation in unanchored cells remains poorly understood. In an examination of epithelial cells in the unanchored state, we find abundant phosphotyrosine signaling, largely recommitted to an anti-adhesive function mediated through the Src family phosphorylation of their transmembrane substrate Trask/CDCP1/gp140. Src-Trask phosphorylation inhibits integrin clustering and focal adhesion assembly and signaling, defining an active phosphotyrosine signaling program underlying the unanchored state. Src-Trask signaling and Src-focal adhesion signaling inactivate each other, constituting two opposing modes of phosphotyrosine signaling that define a switch underline cell anchorage state. Src kinases are prominent drivers of both signaling modes, identifying their position at the helm of adhesion signaling capable of specifying anchorage state through substrate selection. These experimental studies along with concurring phylogenetic evidence suggest that phosphorylation on tyrosine is a signaling function fundamentally linked with the regulation of integrins.
Collapse
Affiliation(s)
- Danislav S Spassov
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|