1
|
Zhou C, Lv M, Wang P, Guo C, Ni Z, Bao H, Tang Y, Cai H, Lu J, Deng W, Yang X, Xia G, Wang H, Wang C, Kong S. Sequential activation of uterine epithelial IGF1R by stromal IGF1 and embryonic IGF2 directs normal uterine preparation for embryo implantation. J Mol Cell Biol 2021; 13:646-661. [PMID: 34097060 PMCID: PMC8648386 DOI: 10.1093/jmcb/mjab034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Embryo implantation in both humans and rodents is initiated by the attachment of a blastocyst to the uterine epithelium. For blastocyst attachment, the uterine epithelium needs to transform at both the structural and molecular levels first, and then initiate the interaction with trophectoderm. Any perturbation during this process will result in implantation failure or long-term adverse pregnancy outcomes. Endocrine steroid hormones, which function through nuclear receptors, combine with the local molecules produced by the uteri or embryo to facilitate implantation. The insulin-like growth factor (IGF) signaling has been reported to play a vital role during pregnancy. However, its physiological function during implantation remains elusive. This study revealed that mice with conditional deletion of Igf1r gene in uteri suffered from subfertility, mainly due to the disturbed uterine receptivity and abnormal embryo implantation. Mechanistically, we uncovered that in response to the nidatory estrogen on D4 of pregnancy, the epithelial IGF1R, stimulated by the stromal cell-produced IGF1, facilitated epithelial STAT3 activation to modulate the epithelial depolarity. Furthermore, embryonic derived IGF2 could activate both the epithelial ERK1/2 and STAT3 signaling through IGF1R, which was critical for the transcription of Cox2 and normal attachment reaction. In brief, our data revealed that epithelial IGF1R was sequentially activated by the uterine stromal IGF1 and embryonic IGF2 to guarantee normal epithelium differentiation during the implantation process.
Collapse
Affiliation(s)
- Chan Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Meiying Lv
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Peike Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Chuanhui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangli Ni
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yedong Tang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoyu Yang
- Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Park M, Park SH, Park H, Kim HR, Lim HJ, Song H. ADAMTS-1: a novel target gene of an estrogen-induced transcription factor, EGR1, critical for embryo implantation in the mouse uterus. Cell Biosci 2021; 11:155. [PMID: 34348778 PMCID: PMC8336340 DOI: 10.1186/s13578-021-00672-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, we demonstrated that estrogen (E2) induces early growth response 1 (Egr1) to mediate its actions on the uterine epithelium by controlling progesterone receptor signaling for successful embryo implantation. EGR1 is a transcription factor that regulates the spectrum of target genes in many different tissues, including the uterus. E2-induced EGR1 regulates a set of genes involved in epithelial cell remodeling during embryo implantation in the uterus. However, only few target genes of EGR1 in the uterus have been identified. RESULT The expression of ADAM metallopeptidase with thrombospondin type 1 motif 1 (Adamts-1) was significantly downregulated in the uteri of E2-treated ovariectomized (OVX) Egr1(-/-) mice. Immunostaining of ADAMTS-1 revealed its exclusive expression in the uterine epithelium of OVX wild-type but not Egr1(-/-) mice treated with E2. The expression profiles of Adamts-1 and Egr1 were similar in the uteri of E2-treated OVX mice at various time points tested. Pre-treatment with ICI 182, 780, a nuclear estrogen receptor (ER) antagonist, effectively inhibited the E2-dependent induction of Egr1 and Adamts-1. Pharmacologic inhibition of E2-induced ERK1/2 or p38 phosphorylation interfered with the induction of EGR1 and ADAMTS-1. Furthermore, ADAMTS-1, as well as EGR1, was induced in stroma cells surrounding the implanting blastocyst during embryo implantation. Transient transfection with EGR1 expression vectors significantly induced the expression of ADAMTS-1. Luciferase activity of the Adamts-1 promoter containing EGR1 binding sites (EBSs) was increased by EGR1 in a dose-dependent manner, suggesting functional regulation of Adamts-1 transcription by EGR1. Site-directed mutagenesis of EBS on the Adamts-1 promoter demonstrated that EGR1 directly binds to the EBS at -1151/-1134 among four putative EBSs. CONCLUSIONS Collectively, we have demonstrated that Adamts-1 is a novel target gene of E2-ER-MAPK-EGR1, which is critical for embryo implantation in the mouse uterus during early pregnancy.
Collapse
Affiliation(s)
- Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - So Hee Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hyunsun Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hyunjung J Lim
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
3
|
Kiser JN, Keuter EM, Seabury CM, Neupane M, Moraes JGN, Dalton J, Burns GW, Spencer TE, Neibergs HL. Validation of 46 loci associated with female fertility traits in cattle. BMC Genomics 2019; 20:576. [PMID: 31299913 PMCID: PMC6624949 DOI: 10.1186/s12864-019-5935-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background Subfertility is one challenge facing the dairy industry as the average Holstein heifer conception rate (HCR), the proportion of heifers that conceive and maintain a pregnancy per breeding, is estimated at 55–60%. Of the loci associated with HCR, few have been validated in an independent cattle population, limiting their usefulness for selection or furthering our understanding of the mechanisms involved in successful pregnancy. Therefore, the objectives here were to identify loci associated with HCR: 1) to the first artificial insemination (AI) service (HCR1), 2) to repeated AI services required for a heifer to conceive (TBRD) and 3) to validate loci previously associated with fertility. Breeding and health records from 3359 Holstein heifers were obtained after heifers were bred by AI at observed estrus, with pregnancy determined at day 35 via palpation. Heifer DNA was genotyped using the Illumina BovineHD BeadChip, and genome-wide association analyses (GWAA) were performed with additive, dominant and recessive models using the Efficient Mixed Model Association eXpedited (EMMAX) method with a relationship matrix for two phenotypes. The HCR1 GWAA compared heifers that were pregnant after the first AI service (n = 497) to heifers that were open following the first AI service (n = 405), which included those that never conceived. The TBRD GWAA compared only those heifers which did conceive, across variable numbers of AI service (n = 712). Comparison of loci previously associated with fertility, HCR1 or TBRD were considered the same locus for validation when in linkage disequilibrium (D’ > 0.7). Results The HCR1 GWAA identified 116, 187 and 28 loci associated (P < 5 × 10− 8) in additive, dominant and recessive models, respectively. The TBRD GWAA identified 235, 362, and 69 QTL associated (P < 5 × 10− 8) with additive, dominant and recessive models, respectively. Loci previously associated with fertility were in linkage disequilibrium with 22 loci shared with HCR1 and TBRD, 5 HCR1 and 19 TBRD loci. Conclusions Loci associated with HCR1 and TBRD that have been identified and validated can be used to improve HCR through genomic selection, and to better understand possible mechanisms associated with subfertility. Electronic supplementary material The online version of this article (10.1186/s12864-019-5935-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer N Kiser
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Elizabeth M Keuter
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Christopher M Seabury
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Mahesh Neupane
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Joseph Dalton
- Department of Animal and Veterinary Sciences, University of Idaho, Caldwell, ID, USA
| | - Gregory W Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Holly L Neibergs
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
4
|
Kim HR, Kim YS, Yoon JA, Yang SC, Park M, Seol DW, Lyu SW, Jun JH, Lim HJ, Lee DR, Song H. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation. FASEB J 2018; 32:1184-1195. [PMID: 29092905 DOI: 10.1096/fj.201700854rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The harmonized actions of ovarian E2 and progesterone (P4) regulate the proliferation and differentiation of uterine cells in a spatiotemporal manner. Imbalances between these hormones often lead to infertility and gynecologic diseases. Whereas numerous factors that are involved in P4 signaling have been identified, few local factors that mediate E2 actions in the uterus have been revealed. Here, we demonstrate that estrogen induces the transcription factor, early growth response 1 ( Egr1), to fine-tune its actions in uterine epithelial cells (ECs) that are responsible for uterine receptivity for embryo implantation. In the presence of exogenous gonadotrophins, ovulation, fertilization, and embryonic development normally occur in Egr1-/- mice, but these animals experience the complete failure of embryo implantation with reduced artificial decidualization. Although serum levels of E2 and P4 were comparable between Egr1+/+ and Egr1-/- mice on d 4 of pregnancy, aberrantly reduced levels of progesterone receptor in Egr1-/- uterine ECs caused enhanced E2 activity and impaired P4 response. Ultrastructural analyses revealed that Egr1-/- ECs are not fully able to provide proper uterine receptivity. Uterine mRNA landscapes in Egr1-/- mice revealed that EGR1 controls the expression of a subset of E2-regulated genes. In addition, P4 signaling was unable to modulate estrogen actions, including those that are involved in cell-cycle progression, in ECs that were deficient in EGR1. Furthermore, primary coculture of Egr1-/- ECs with Egr1+/+ stromal cells, and vice versa, supported the notion that Egr1 is required to modulate E2 actions on ECs to prepare the uterine environment for embryo implantation. In contrast to its role in ECs, loss of Egr1 in stroma significantly reduced stromal cell proliferation. Collectively, our results demonstrate that E2 induces EGR1 to streamline its actions for the preparation of uterine receptivity for embryo implantation in mice.-Kim, H.-R., Kim, Y. S., Yoon, J. A., Yang, S. C., Park, M., Seol, D.-W., Lyu, S. W., Jun, J. H., Lim, H. J., Lee, D. R., Song, H. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation.
Collapse
Affiliation(s)
- Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Dong-Won Seol
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Sang Woo Lyu
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, Graduate School of Health Science, Eulji University, Seongnam, Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
5
|
Hernandez-Encinas E, Aguilar-Morante D, Morales-Garcia JA, Gine E, Sanz-SanCristobal M, Santos A, Perez-Castillo A. Complement component 3 (C3) expression in the hippocampus after excitotoxic injury: role of C/EBPβ. J Neuroinflammation 2016; 13:276. [PMID: 27769255 PMCID: PMC5073972 DOI: 10.1186/s12974-016-0742-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
Background The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor implicated in the control of proliferation, differentiation, and inflammatory processes mainly in adipose tissue and liver; although more recent results have revealed an important role for this transcription factor in the brain. Previous studies from our laboratory indicated that CCAAT/enhancer-binding protein β is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. More recently, we have shown that the complement component 3 gene (C3) is a downstream target of CCAAT/enhancer-binding protein β and it could be a mediator of the proinflammatory effects of this transcription factor in neural cells. Methods Adult male Wistar rats (8–12 weeks old) were used throughout the study. C/EBPβ+/+ and C/EBPβ–/– mice were generated from heterozygous breeding pairs. Animals were injected or not with kainic acid, brains removed, and brain slices containing the hippocampus analyzed for the expression of both CCAAT/enhancer-binding protein β and C3. Results In the present work, we have further extended these studies and show that CCAAT/enhancer-binding protein β and C3 co-express in the CA1 and CA3 regions of the hippocampus after an excitotoxic injury. Studies using CCAAT/enhancer-binding protein β knockout mice demonstrate a marked reduction in C3 expression after kainic acid injection in these animals, suggesting that indeed this protein is regulated by C/EBPβ in the hippocampus in vivo. Conclusions Altogether these results suggest that CCAAT/enhancer-binding protein β could regulate brain disorders, in which excitotoxic and inflammatory processes are involved, at least in part through the direct regulation of C3. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0742-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Present Address: Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla, IBiS, (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), 41013, Sevilla, Spain
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Elena Gine
- Departamento de Biología Celular, Facultad de Medicina, UCM, 28040, Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, 28040, Madrid, Spain.
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
6
|
Marchildon F, Fu D, Lala-Tabbert N, Wiper-Bergeron N. CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia. Cell Death Dis 2016; 7:e2109. [PMID: 26913600 PMCID: PMC4849162 DOI: 10.1038/cddis.2016.4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 12/28/2022]
Abstract
CCAAT/enhancer binding protein beta (C/EBPβ), a transcription factor expressed in muscle satellite cells (SCs), inhibits the myogenic program and is downregulated early in differentiation. In a conditional null model in which C/EBPβ expression is knocked down in paired box protein 7+ (Pax7+) SCs, cardiotoxin (CTX) injury is poorly repaired, although muscle regeneration is efficient in control littermates. While myoblasts lacking C/EBPβ can differentiate efficiently in culture, after CTX injury poor regeneration was attributed to a smaller than normal Pax7+ population, which was not due to a failure of SCs to proliferate. Rather, the percentage of apoptotic SCs was increased in muscle lacking C/EBPβ. Given that an injury induced by BaCl2 is repaired with greater efficiency than controls in the absence of C/EBPβ, we investigated the inflammatory response following BaCl2 and CTX injury and found that the levels of interleukin-1β (IL-1β), a proinflammatory cytokine, were robustly elevated following CTX injury and could induce C/EBPβ expression in myoblasts. High levels of C/EBPβ expression in myoblasts correlated with resistance to apoptotic stimuli, while its loss increased sensitivity to thapsigargin-induced cell death. Using cancer cachexia as a model for chronic inflammation, we found that C/EBPβ expression was increased in SCs and myoblasts of tumor-bearing cachectic animals. Further, in cachectic conditional knockout animals lacking C/EBPβ in Pax7+ cells, the SC compartment was reduced because of increased apoptosis, and regeneration was impaired. Our findings indicate that the stimulation of C/EBPβ expression by IL-1β following muscle injury and in cancer cachexia acts to promote SC survival, and is therefore a protective mechanism for SCs and myoblasts in the face of inflammation.
Collapse
Affiliation(s)
- F Marchildon
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - D Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - N Lala-Tabbert
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - N Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Abstract
Estrogen receptor alpha (ERα) is a critical player in development and function of the female reproductive system. Perturbations in ERα response can affect wide-ranging aspects of health in humans as well as in livestock and wildlife. Because of its long-known and broad impact, ERα mechanisms of action continue to be the focus on cutting-edge research efforts. Consequently, novel insights have greatly advanced understanding of every aspect of estrogen signaling. In this review, we attempt to briefly outline the current understanding of ERα mediated mechanisms in the context of the female reproductive system.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Wipawee Winuthayanon
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Kenneth S Korach
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
8
|
Ren YA, Liu Z, Mullany LK, Fan CM, Richards JS. Growth Arrest Specific-1 (GAS1) Is a C/EBP Target Gene That Functions in Ovulation and Corpus Luteum Formation in Mice. Biol Reprod 2016; 94:44. [PMID: 26740594 PMCID: PMC4787628 DOI: 10.1095/biolreprod.115.133058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
Ovulation and luteinization are initiated in preovulatory follicles by the luteinizing hormone (LH) surge; however, the signaling events that mediate LH actions in these follicles remain incompletely defined. Two key transcription factors that are targets of LH surge are C/EBPalpha and C/EBPbeta, and their depletion in granulosa cells results in complete infertility. Microarray analyses of these mutant mice revealed altered expression of a number of genes, including growth arrest specific-1 (Gas1). To investigate functions of Gas1 in ovulation- and luteinization-related processes, we crossed Cyp19a1-Cre and Gas1flox/flox mice to conditionally delete Gas1 in granulosa and cumulus cells. While expression of Gas1 is dramatically increased in granulosa and cumulus cells around 12–16 h post-human chorionic gonadotropin (hCG) stimulation in wild-type mice, this increase is abolished in Cebpa/b double mutant and in Gas1 mutant mice. GAS1 is also dynamically expressed in stromal cells of the ovary independent of C/EBPalpha/beta. Female Gas1 mutant mice are fertile, exhibit enhanced rates of ovulation, increased fertility, and higher levels of Areg and Lhcgr mRNA in granulosa cells. The morphological appearance and vascularization of corpora lutea appeared normal in these mutant females. Interestingly, levels of mRNA for a number of genes (Cyp11a1, Star, Wnt4, Prlr, Cd52, and Sema3a) associated with luteinization are decreased in corpora lutea of Gas1 mutant mice as compared with controls at 24 h post-hCG; these differences were no longer detectable by 48 h post-hCG. The C/EBP target Gas1 is induced in granulosa cells and is associated with ovulation and luteinization.
Collapse
Affiliation(s)
- Yi A Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Zhilin Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Lisa K Mullany
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Padmanabhan RA, Laloraya M. Estrogen-Initiated Protein Interactomes During Embryo Implantation. Am J Reprod Immunol 2015; 75:256-62. [DOI: 10.1111/aji.12455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Renjini A. Padmanabhan
- Division of Molecular Reproduction; Female Reproduction and Metabolic syndromes laboratory; Rajiv Gandhi Centre for Biotechnology; Poojappura Thiruvananthapuram Kerala India
| | - Malini Laloraya
- Division of Molecular Reproduction; Female Reproduction and Metabolic syndromes laboratory; Rajiv Gandhi Centre for Biotechnology; Poojappura Thiruvananthapuram Kerala India
| |
Collapse
|
10
|
Tarulli GA, Laven-Law G, Shakya R, Tilley WD, Hickey TE. Hormone-sensing mammary epithelial progenitors: emerging identity and hormonal regulation. J Mammary Gland Biol Neoplasia 2015; 20:75-91. [PMID: 26390871 DOI: 10.1007/s10911-015-9344-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/07/2015] [Indexed: 12/13/2022] Open
Abstract
The hormone-sensing mammary epithelial cell (HS-MEC-expressing oestrogen receptor-alpha (ERα) and progesterone receptor (PGR)) is often represented as being terminally differentiated and lacking significant progenitor activity after puberty. Therefore while able to profoundly influence the proliferation and function of other MEC populations, HS-MECs are purported not to respond to sex hormone signals by engaging in significant cell proliferation during adulthood. This is a convenient and practical simplification that overshadows the sublime, and potentially critical, phenotypic plasticity found within the adult HS-MEC population. This concept is exemplified by the large proportion (~80 %) of human breast cancers expressing PGR and/or ERα, demonstrating that HS-MECs clearly proliferate in the context of breast cancer. Understanding how HS-MEC proliferation and differentiation is driven could be key to unraveling the mechanisms behind uncontrolled HS-MEC proliferation associated with ERα- and/or PGR-positive breast cancers. Herein we review evidence for the existence of a HS-MEC progenitor and the emerging plasticity of the HS-MEC population in general. This is followed by an analysis of hormones other than oestrogen and progesterone that are able to influence HS-MEC proliferation and differentiation: androgens, prolactin and transforming growth factor-beta1.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Reshma Shakya
- Breast Cancer Genetics Laboratory, Centre for Personalised Cancer Medicine, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
11
|
Zhen YH, Wang L, Riaz H, Wu JB, Yuan YF, Han L, Wang YL, Zhao Y, Dan Y, Huo LJ. Knockdown of CEBPβ by RNAi in porcine granulosa cells resulted in S phase cell cycle arrest and decreased progesterone and estradiol synthesis. J Steroid Biochem Mol Biol 2014; 143:90-8. [PMID: 24607812 DOI: 10.1016/j.jsbmb.2014.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
Abstract
Cultured ovarian granulosa cells (GCs) are essential models to study molecular mechanisms of gene regulation during folliculogenesis. CCAAT enhancer binding proteins β (CEBPβ) has been identified in the ovary and is critical for follicular growth, ovulation and luteinization in mice. In the present study, hormonal treatment indicated that luteinizing hormone (LH) and exogenous human chorionic gonadotropins (hCG) significantly increased the expression of CEBPβ in porcine GCs. By RNAi-Ready pSIREN-RetroQ-ZsGreen Vector mediated recombinant pshRNA vectors, CEBPβ gene was successfully knocked down in porcine GCs, confirmed by mRNA and protein level analyzed by real time PCR and western blot, respectively. We further found that knockdown of CEBPβ significantly increased the expression of p-ERK1/2. Furthermore, CEBPβ knockdown arrested the GCs at S phase of cell cycle, but had no effects on cell apoptosis. More importantly, it markedly down regulated the concentration of estradiol (E2) and progesterone (P4) in the culture medium. To uncover the regulatory mechanism of CEBPβ knockdown on cell cycle and steroids synthesis, we found that the mRNA expression of bcl-2 (anti-apoptosis), StAR and Runx2 (steroid hormone synthesis) was up-regulated, while genes related to apoptosis (Caspase-3 and p53), hormonal synthesis (CYP11A1) and cell cycle (cyclinA1, cyclinB1, cyclinD1) were down-regulated, suggesting that knockdown of CEBPβ may inhibit apoptosis, regulate cell cycle and hormone secretions at the transcriptional level in porcine GCs. Furthermore, knockdown of CEBPβ significantly increased the expression of PTGS2 and decreased the expression of IGFBP4, Has2 and PTGFR which are important for folliculogenesis in porcine GCs. In conclusion, this study reveals that CEBPβ is a key regulator of porcine GCs through modulation of cell cycle, apoptosis, steroid synthesis, and other regulators of folliculogenesis.
Collapse
Affiliation(s)
- Yan-Hong Zhen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Li Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Hasan Riaz
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Jia-Bin Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yi-Feng Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Li Han
- College of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yan-Ling Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yi Dan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
12
|
Pawar S, Hantak AM, Bagchi IC, Bagchi MK. Minireview: Steroid-regulated paracrine mechanisms controlling implantation. Mol Endocrinol 2014; 28:1408-22. [PMID: 25051170 DOI: 10.1210/me.2014-1074] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Implantation is an essential process during establishment of pregnancy in mammals. It is initiated with the attachment of the blastocyst to a receptive uterine epithelium followed by its invasion into the stromal tissue. These events are profoundly regulated by the steroid hormones 17β-estradiol and progesterone. During the past several years, mouse models harboring conditional gene knockout mutations have become powerful tools for determining the functional roles of cellular factors involved in various aspects of implantation biology. Studies using these genetic models as well as primary cultures of human endometrial cells have established that the estrogen receptor α, the progesterone receptor, and their downstream target genes critically regulate uterine growth and differentiation, which in turn control embryo-endometrial interactions during early pregnancy. These studies have uncovered a diverse array of molecular cues, which are produced under the influence of estrogen receptor α and progesterone receptor and exchanged between the epithelial and stromal compartments of the uterus during the progressive phases of implantation. These paracrine signals are critical for acquisition of uterine receptivity and functional interactions with the embryo. This review highlights recent work describing paracrine mechanisms that govern steroid-regulated uterine epithelial-stromal dialogue during implantation and their roles in fertility and disease.
Collapse
Affiliation(s)
- Sandeep Pawar
- Departments of Molecular and Integrative Physiology (S.P., A.M.H., M.K.B.) and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | | |
Collapse
|
13
|
Peña-Altamira E, Polazzi E, Moretto E, Lauriola M, Monti B. The transcription factor CCAAT enhancer-binding protein β protects rat cerebellar granule neurons from apoptosis through its transcription-activating isoforms. Eur J Neurosci 2013; 39:176-85. [PMID: 24438488 DOI: 10.1111/ejn.12407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 01/07/2023]
Abstract
CCAAT enhancer-binding protein β is a transcription factor that is involved in many brain processes, although its role in neuronal survival/death remains unclear. By using primary cultures of rat cerebellar granule neurons, we have shown here that CCAAT enhancer-binding protein β is present as all of its isoforms: the transcriptional activators liver activator proteins 1 and 2, and the transcriptional inhibitor liver inhibitory protein. We have also shown that liver activator protein 1 undergoes post-translational modifications, such as phosphorylation and sumoylation. These isoforms have different subcellular localizations, liver activator protein 2 being found in the cytosolic fraction only, liver inhibitory protein in the nucleus only, and liver activator protein 1 in both fractions. Through neuronal apoptosis induction by shifting mature cerebellar granule neurons to low-potassium medium, we have demonstrated that nuclear liver activator protein 1 expression decreases and its phosphorylation disappears, whereas liver inhibitory protein levels increase in the nuclear fraction, suggesting a pro-survival role for liver activator protein transcriptional activation and a pro-apoptotic role for liver inhibitory protein transcriptional inhibition. To confirm this, we transfected cerebellar granule neurons with plasmids expressing liver activator protein 1, liver activator protein 2, or liver inhibitory protein respectively, and observed that both liver activator proteins, which increase CCAAT-dependent transcription, but not liver inhibitory protein, counteracted apoptosis, thus demonstrating the pro-survival role of liver activator proteins. These data significantly improve our current understanding of the role of CCAAT enhancer-binding protein β in neuronal survival/apoptosis.
Collapse
Affiliation(s)
- Emiliano Peña-Altamira
- Department of Pharmacy and BioTechnology, University of Bologna, Ex-BES Building, Via Selmi 3, Bologna, 40126, Italy
| | | | | | | | | |
Collapse
|
14
|
Deng WB, Tian Z, Liang XH, Wang BC, Yang F, Yang ZM. Progesterone regulation of Na/K-ATPase β1 subunit expression in the mouse uterus during the peri-implantation period. Theriogenology 2013; 79:1196-203. [PMID: 23534996 DOI: 10.1016/j.theriogenology.2013.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/24/2013] [Accepted: 02/18/2013] [Indexed: 01/17/2023]
Abstract
Luminal closure and embryo apposition are essential for blastocyst attachment during early pregnancy. In our preliminary microarray results (unpublished data), sodium-potassium adenosine triphosphatase (Na/K-ATPase) β1 (Atp1b1) was highly expressed in mouse uterus on Days 3 and 4 of pregnancy. However, expression and regulation of Atp1b1 in the mammalian uterus during early pregnancy are unknown. Using in situ hybridization, a strong level of Atp1b1 mRNA was detected in luminal epithelial cells on Days 3 and 4 of pregnancy (Day 1 = day of vaginal plug). The expression pattern of FXYD domain-containing ion transport regulator 4 (Fxyd4) was similar to that of Atp1b1. Real-time reverse transcription polymerase chain reaction confirmed the high expression level of Atp1b1 mRNA. Compared with Day 1, the mRNA level of Atp1b1 on Days 3 and 4 increased by 3.5 ± 0.5 and 4.5 ± 0.5 fold, respectively. When the embryo invaded through epithelial cells into the maternal stromal compartment on day 5, Atp1b1 expression decreased to a basal level. Progesterone stimulated Atp1b1 expression by 2.8 ± 1 fold compared with oil in ovariectomized mice at 24 hours after treatment. Expression of Atp1b1 was further upregulated to 4 ± 0.4 fold by estrogen and progesterone. Based on time-course study, progesterone rapidly induced Atp1b1 expression at 6 and 12 hours (13.7 ± 0.5 and 16.6 ± 1.4, respectively); furthermore, this upregulation was blocked by RU486 (progesterone receptor antagonist). Transcription activity of the Atp1b1 promoter was (Day 1 = day of vaginal plug) stimulated by CCAAT/enhancer binding protein beta (Cebpb). In conclusion, Atp1b1 was highly expressed in luminal epithelium during peri-implantation and upregulated by progesterone.
Collapse
Affiliation(s)
- Wen-Bo Deng
- College of Life Science, Xiamen University, Xiamen, China; Department of Biology, Shantou University, Shantou, China
| | | | | | | | | | | |
Collapse
|
15
|
Ramathal C, Wang W, Hunt E, Bagchi IC, Bagchi MK. Transcription factor CCAAT enhancer-binding protein beta (C/EBPbeta) regulates the formation of a unique extracellular matrix that controls uterine stromal differentiation and embryo implantation. J Biol Chem 2011; 286:19860-71. [PMID: 21471197 DOI: 10.1074/jbc.m110.191759] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During implantation, the uterine stromal cells undergo terminal differentiation into decidual cells, which support the proper progression of maternal-embryo interactions to successful establishment of pregnancy. The decidual cells synthesize extracellular matrix (ECM) components, such as laminins and collagens, which assemble into a unique basal lamina-like network that surrounds these cells. The functional significance of this matrix during implantation is unknown. We previously showed that the transcription factor CCAAT enhancer-binding protein β (C/EBPβ) critically regulates decidualization in the mouse. We now provide evidence that C/EBPβ directly controls the Lamc1 gene, which encodes a predominant laminin constituent of the ECM produced by the decidual cells. Suppression of Lamc1 expression in mouse primary endometrial stromal cells prevented the assembly of this ECM and impaired stromal differentiation. Attenuation of expression of integrin β1, a major constituent of the integrin receptors targeted by decidual laminins, also inhibited this differentiation process. Disruption of laminin-integrin interactions led to impaired activation of the focal adhesion kinase, an integrin-mediated regulator of cytoskeletal remodeling during decidualization. To further analyze the role of the decidual ECM in modulating maternal-embryo interactions, we monitored trophoblast invasion into differentiating uterine stromal monolayers, using a co-culture system. Silencing of stromal Lamc1 expression, which prevented formation of the basal lamina-like matrix, resulted in marked reduction in trophoblast outgrowth. Collectively, our findings identified C/EBPβ as a critical regulator of the unique ECM that controls decidual cell architecture and differentiation, and it provided new insights into the mechanisms by which the uterine stromal microenvironment controls the progression of embryo implantation.
Collapse
Affiliation(s)
- Cyril Ramathal
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
16
|
Fan HY, Liu Z, Johnson PF, Richards JS. CCAAT/enhancer-binding proteins (C/EBP)-α and -β are essential for ovulation, luteinization, and the expression of key target genes. Mol Endocrinol 2010; 25:253-68. [PMID: 21177758 DOI: 10.1210/me.2010-0318] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
LH activation of the epidermal growth factor receptor/RAS/ERK1/2 pathway is essential for ovulation and luteinization because granulosa cell (GC) depletion of ERK1/2 (ERK1/2(gc)(-/-) mice) renders mice infertile. As mediators of ERK1/2-dependent GC differentiation, the CCAAT/enhancer-binding proteins, (C/EBP)α and C/EBPβ, were also disrupted. Female Cebpb(gc)(-/-) mutant mice, but not Cebpa(gc)(-/-) mice, were subfertile whereas Cebpa/b(gc)(-/-) double-mutant females were sterile. Follicles failed to ovulate, ovaries were devoid of corpora lutea, luteal cell marker genes (Lhcgr, Prlr, Ptgfr, Cyp11a1, and Star) were absent, and serum progesterone levels were low. Microarray analyses identified numerous C/EBPα/β target genes in equine chorionic gonadotropin (eCG)-human (h)CG-treated mice. At 4 h post-hCG, a subset (19%) of genes altered in the Cebpa/b-depleted cells was also altered in ERK1/2-depleted cells; hence they are common effectors of ERK1/2. Additional genes down-regulated in the Cebpa/b-depleted cells at 8 and 24 h post-hCG include known (Akr1b7, Runx2, Star, Saa3) and novel (Abcb1b, Apln, Igfbp4, Prlr, Ptgfr Timp4) C/EBP targets and effectors of luteal and vascular cell development. Bhmt, a gene controlling methionine metabolism and thought to be expressed exclusively in liver and kidney, was high in wild-type luteal cells but totally absent in Cebpa/b mutant cells. Because numerous genes potentially associated with vascular development were suppressed in the mutant cells, C/EBPα/β appear to dictate the luteinization process by also controlling genes that regulate the formation of the extensive vascular network required to sustain luteal cells. Thus, C/EBPα/β mediate the terminal differentiation of GCs during the complex process of luteinization.
Collapse
Affiliation(s)
- Heng-Yu Fan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
17
|
Uterine epithelial estrogen receptor α is dispensable for proliferation but essential for complete biological and biochemical responses. Proc Natl Acad Sci U S A 2010; 107:19272-7. [PMID: 20974921 DOI: 10.1073/pnas.1013226107] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Female fertility requires estrogen to specifically stimulate estrogen receptor α (ERα)-dependent growth of the uterine epithelium in adult mice, while immature females show proliferation in both stroma and epithelium. To address the relative roles of ERα in mediating estrogen action in uterine epithelium versus stroma, a uterine epithelial-specific ERα knockout (UtEpiαERKO) mouse line was generated by crossing Esr mice with Wnt7a-Cre mice. Expression of Wnt7a directed Cre activity generated selective deletion of ERα in uterine epithelium, and female UtEpiαERKO are infertile. Herein, we demonstrate that 17β-estradiol (E(2))-induced uterine epithelial proliferation was independent of uterine epithelial ERα because DNA synthesis and up-regulation of mitogenic mediators were sustained in UtEpiαERKO uteri after E(2) treatment. IGF-1 treatment resulted in ligand-independent ER activation in both wild-type (WT) and UtEpiαERKO and mimicked the E(2) stimulatory effect on DNA synthesis in uterine epithelium. Uterine epithelial ERα was necessary to induce lactoferrin, an E(2)-regulated secretory protein selectively synthesized in the uterine epithelium. However, loss of uterine epithelial ERα did not alter the E(2)-dependent progesterone receptor (PR) down-regulation in epithelium. Strikingly, the uterine epithelium of UtEpiαERKO had robust evidence of apoptosis after 3 d of E(2) treatment. Therefore, we surmise that estrogen induced uterine hyperplasia involves a dispensable role for uterine epithelial ERα in the proliferative response, but ERα is required subsequent to proliferation to prevent uterine epithelial apoptosis assuring the full uterine epithelial response, illustrating the differential cellular roles for ERα in uterine tissue and its contribution during pregnancy.
Collapse
|
18
|
Wang W, Li Q, Bagchi IC, Bagchi MK. The CCAAT/enhancer binding protein beta is a critical regulator of steroid-induced mitotic expansion of uterine stromal cells during decidualization. Endocrinology 2010; 151:3929-40. [PMID: 20501671 PMCID: PMC2940513 DOI: 10.1210/en.2009-1437] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During early pregnancy, the concerted actions of the maternal steroid hormones, estrogen and progesterone, promote a unique process known as decidualization, which involves extensive proliferation and differentiation of uterine stromal cells. The molecular pathways underlying this hormonally induced cellular transformation, an essential prerequisite for embryo implantation, remain poorly understood. We previously identified CCAAT/enhancer binding protein beta (C/EBPbeta) as a target of steroid regulation in the uterus. Uteri of mice lacking C/EBPbeta failed to undergo decidualization. In the present study, analyses of C/EBPbeta-null uteri indicated that loss of this factor leads to a block in stromal cell proliferation in response to a decidual stimulation. The mutant stromal cells entered S phase of the cell cycle and completed DNA synthesis but were unable to execute mitosis. Further analysis revealed that C/EBPbeta facilitates the transition of these cells into mitosis by binding directly to the cyclin B2 promoter to regulate its expression. The expression of cdc25C, a phosphatase that maintains the active state of the cyclin B-cyclin-dependent kinase complex during mitosis, is also strongly suppressed in C/EBPbeta-null stromal cells. Furthermore, the expression of the tumor suppressor p53 and the cell cycle inhibitors p21 and p27 was markedly elevated in C/EBPbeta-null stromal cells before the mitotic phase, uncovering additional mechanisms by which C/EBPbeta controls G2 to M transition. Collectively, these results revealed that C/EBPbeta mediates the effects of steroid hormones during decidualization by modulating the expression of multiple key cell cycle regulatory factors that control the G2 to M transition of the proliferating uterine stromal cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|