1
|
St Amant J, Michaud J, Hinds D, Coyle M, Pozzi A, Clark AL. Depleting transforming growth factor beta receptor 2 signalling in the cartilage of itga1-null mice attenuates spontaneous knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100399. [PMID: 37649532 PMCID: PMC10462827 DOI: 10.1016/j.ocarto.2023.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Objectives Integrin α1β1 protects against osteoarthritis (OA) when it is upregulated in the superficial zone of cartilage in the early stages of disease. However, the mechanism behind this protection is unknown. Integrin α1β1 moderates transforming growth factor β receptor II (TGFBR2) signalling, a critical regulator of chondrocyte anabolic activity. To this end, mice lacking integrin α1β1 have increased baseline activation of TGFBR2 signalling and overall fibrosis. The purpose of this study was to evaluate the interplay between integrin α1β1 and TGFBR2 in the development of spontaneous OA. We hypothesized that dampening TGFBR2 signalling in the cartilage of itga1-null mice would attenuate OA. Methods Behavioural and histological manifestations of spontaneous knee OA were measured at 4, 8, 12 and 16 months in mice with and without a ubiquitous itga1 deletion and with and without a tamoxifen-induced cartilage specific TGFBR2 depletion. Results Knee cartilage degeneration, collateral ligament ossification and pain responses increased with age. Itga1-null mice with intact TGFBR2 signalling developed earlier and more severe OA compared to controls. In agreement with our hypothesis, depleting TGFBR2 signalling in the cartilage of itga1-null mice attenuated OA progression. Conclusion Intact TGFBR2 signalling drives early and worse knee OA in itga1-null mice. This result supports the hypothesis that the increased expression of integrin α1β1 by superficial zone chondrocytes early in OA development dampens TGFBR2 signalling and thus protects against degeneration.
Collapse
Affiliation(s)
- Jennifer St Amant
- Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Jana Michaud
- Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Daniel Hinds
- Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Madison Coyle
- Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs, Nashville, TN, USA
| | - Andrea L. Clark
- Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Black AL, Haskins J, Pozzi A, Clark AL. Sexual dimorphism in reactive oxygen species production and a role for integrin α1β1 in estrogen receptor α and β expression in articular cartilage. J Orthop Surg Res 2023; 18:170. [PMID: 36879303 PMCID: PMC9987067 DOI: 10.1186/s13018-023-03655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a debilitating disease involving cartilage degradation. A need remains for the discovery of new molecular targets in cartilage for pharmaceutical intervention of OA. One potential target is integrin α1β1 that protects against OA when it is upregulated by chondrocytes early in the disease process. Integrin α1β1 offers this protection by dampening epidermal growth factor receptor (EGFR) signaling, and its effects are more robust in females compared to males. The aim of this study, therefore, was to measure the impact of itga1 on chondrocyte EGFR activity and downstream reactive oxygen species (ROS) production in male and female mice. Furthermore, chondrocyte expression of estrogen receptor (ER) α and ERβ was measured to investigate the mechanism for sexual dimorphism in the EGFR/integrin α1β1 signaling axis. We hypothesized that integrin α1β1 would decrease ROS production and pEGFR and 3-nitrotyrosine expression, with this effect being greater in females. We further hypothesized that chondrocyte expression of ERα and ERβ would be greater in females compared to males, with a greater effect seen in itga1-null compared to wild-type mice. MATERIALS AND METHODS Femoral and tibial cartilage of male and female, wild-type and itga1-null mice were processed for ex vivo confocal imaging of ROS, immunohistochemical analysis of 3-nitrotyrosine, or immunofluorescence of pEGFR and ERα and ERβ. RESULTS We show that ROS-producing chondrocytes are more abundant in female itga1-null compared to wild-type mice ex vivo; however, itga1 had limited influence on the percent of chondrocytes stained positively for 3-nitrotyrosine or pEGFR in situ. In addition, we found that itga1 influenced ERα and ERβ expression in femoral cartilage from female mice, and that ERα and ERβ were coexpressed as well as colocalized in chondrocytes. Finally, we show sexual dimorphism in ROS and 3-nitrotyrosine production, but surprisingly not in pEGFR expression. CONCLUSIONS Together these data highlight sexual dimorphism in the EGFR/integrin α1β1 signaling axis and underline the need for further investigation into the role of ERs in this biological paradigm. Understanding the molecular mechanisms underlying the development of OA is essential for the development of individualized, sex-specific treatments in this age of personalized medicine.
Collapse
Affiliation(s)
- Alicia L Black
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - James Haskins
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs, Nashville, TN, USA
| | - Andrea L Clark
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
Lee J, Lee J, Sim W, Kim JH. Soluble TGFBI aggravates the malignancy of cholangiocarcinoma through activation of the ITGB1 dependent PPARγ signalling pathway. Cell Oncol (Dordr) 2022; 45:275-291. [PMID: 35357655 DOI: 10.1007/s13402-022-00668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma is a devastating cancer with a poor prognosis. Previous reports have presented conflicting results on the role of transforming growth factor-β-induced protein (TGFBI) in malignant cancers. Currently, our understanding of the role of TGFBI in cholangiocarcinoma is ambiguous. The aim of the present study was to investigate the role of TGFBI in human cholangiocarcinoma. METHODS Iterative patient partitioning (IPP) scoring and consecutive elimination methods were used to select prognostic biomarkers. mRNA and protein expression levels were determined using Gene Expression Omnibus (GEO), Western blot and ELISA analyses. Biological activities of selected biomarkers were examined using both in vitro and in vivo assays. Prognostic values were assessed using Kaplan-Meier and Liptak's z score analyses. RESULTS TGFBI was selected as a candidate cholangiocarcinoma biomarker. GEO database analysis revealed significantly higher TGFBI mRNA expression levels in cholangiocarcinoma tissues compared to matched normal tissues. TGFBI protein was specifically detected in a soluble form in vitro and in vivo. TGFBI silencing evoked significant anti-cancer effects in vitro. Soluble TGFBI treatment aggravated the malignancy of cholangiocarcinoma cells both in vitro and in vivo through activation of the integrin beta-1 (ITGB1) dependent PPARγ signalling pathway. High TGFBI expression was associated with a poor prognosis in patients with cholangiocarcinoma. CONCLUSIONS Our data suggest that TGFBI may serve as a promising prognostic biomarker and therapeutic target for cholangiocarcinoma.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Biotechnology, College of Applied Life Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Republic of Korea.
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Woogwang Sim
- Department of Anatomy, University of California,, San Francisco, CA, 94143, USA
| | - Jae-Hoon Kim
- Department of Biotechnology, College of Applied Life Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Republic of Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju-si, Jeju-do, 690-756, Republic of Korea.
| |
Collapse
|
4
|
Chiusa M, Hu W, Zienkiewicz J, Chen X, Zhang MZ, Harris RC, Vanacore RM, Bentz JA, Remuzzi G, Benigni A, Fogo AB, Luo W, Mili S, Wilson MH, Zent R, Hawiger J, Pozzi A. EGF receptor-mediated FUS phosphorylation promotes its nuclear translocation and fibrotic signaling. J Cell Biol 2021; 219:151955. [PMID: 32678881 PMCID: PMC7480104 DOI: 10.1083/jcb.202001120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/13/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive accumulation of collagen leads to fibrosis. Integrin α1β1 (Itgα1β1) prevents kidney fibrosis by reducing collagen production through inhibition of the EGF receptor (EGFR) that phosphorylates cytoplasmic and nuclear proteins. To elucidate how the Itgα1β1/EGFR axis controls collagen synthesis, we analyzed the levels of nuclear tyrosine phosphorylated proteins in WT and Itgα1-null kidney cells. We show that the phosphorylation of the RNA-DNA binding protein fused in sarcoma (FUS) is higher in Itgα1-null cells. FUS contains EGFR-targeted phosphorylation sites and, in Itgα1-null cells, activated EGFR promotes FUS phosphorylation and nuclear translocation. Nuclear FUS binds to the collagen IV promoter, commencing gene transcription that is reduced by inhibiting EGFR, down-regulating FUS, or expressing FUS mutated in the EGFR-targeted phosphorylation sites. Finally, a cell-penetrating peptide that inhibits FUS nuclear translocation reduces FUS nuclear content and collagen IV transcription. Thus, EGFR-mediated FUS phosphorylation regulates FUS nuclear translocation and transcription of a major profibrotic collagen gene. Targeting FUS nuclear translocation offers a new antifibrotic therapy.
Collapse
Affiliation(s)
- Manuel Chiusa
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Wen Hu
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Jozef Zienkiewicz
- Department of Veterans Affairs, Nashville, TN.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ming-Zhi Zhang
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Raymond C Harris
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Roberto M Vanacore
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | | | - Giuseppe Remuzzi
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Agnes B Fogo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Wentian Luo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Matthew H Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Roy Zent
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Jacek Hawiger
- Department of Veterans Affairs, Nashville, TN.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| |
Collapse
|
5
|
Maldonado H, Hagood JS. Cooperative signaling between integrins and growth factor receptors in fibrosis. J Mol Med (Berl) 2021; 99:213-224. [DOI: 10.1007/s00109-020-02026-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
|
6
|
Plosa EJ, Benjamin JT, Sucre JM, Gulleman PM, Gleaves LA, Han W, Kook S, Polosukhin VV, Haake SM, Guttentag SH, Young LR, Pozzi A, Blackwell TS, Zent R. β1 Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 2020; 5:129259. [PMID: 31873073 PMCID: PMC7098727 DOI: 10.1172/jci.insight.129259] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
Integrins, the extracellular matrix receptors that facilitate cell adhesion and migration, are necessary for organ morphogenesis; however, their role in maintaining adult tissue homeostasis is poorly understood. To define the functional importance of β1 integrin in adult mouse lung, we deleted it after completion of development in type 2 alveolar epithelial cells (AECs). Aged β1 integrin-deficient mice exhibited chronic obstructive pulmonary disease-like (COPD-like) pathology characterized by emphysema, lymphoid aggregates, and increased macrophage infiltration. These histopathological abnormalities were preceded by β1 integrin-deficient AEC dysfunction such as excessive ROS production and upregulation of NF-κB-dependent chemokines, including CCL2. Genetic deletion of the CCL2 receptor, Ccr2, in mice with β1 integrin-deficient type 2 AECs impaired recruitment of monocyte-derived macrophages and resulted in accelerated inflammation and severe premature emphysematous destruction. The lungs exhibited reduced AEC efferocytosis and excessive numbers of inflamed type 2 AECs, demonstrating the requirement for recruited monocytes/macrophages in limiting lung injury and remodeling in the setting of a chronically inflamed epithelium. These studies support a critical role for β1 integrin in alveolar homeostasis in the adult lung.
Collapse
Affiliation(s)
| | | | | | | | - Linda A. Gleaves
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Wei Han
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | | | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Scott M. Haake
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | | - Lisa R. Young
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ambra Pozzi
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Molecular Physiology and Biophysics, and
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roy Zent
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Role of Caveolin-1 in Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9761539. [PMID: 32082483 PMCID: PMC7007939 DOI: 10.1155/2020/9761539] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
It is estimated that in 2017 there were 451 million people with diabetes worldwide. These figures are expected to increase to 693 million by 2045; thus, innovative preventative programs and treatments are a necessity to fight this escalating pandemic disorder. Caveolin-1 (CAV1), an integral membrane protein, is the principal component of caveolae in membranes and is involved in multiple cellular functions such as endocytosis, cholesterol homeostasis, signal transduction, and mechanoprotection. Previous studies demonstrated that CAV1 is critical for insulin receptor-mediated signaling, insulin secretion, and potentially the development of insulin resistance. Here, we summarize the recent progress on the role of CAV1 in diabetes and diabetic complications.
Collapse
Affiliation(s)
- Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
8
|
Huang H, Du W, Brekken RA. Extracellular Matrix Induction of Intracellular Reactive Oxygen Species. Antioxid Redox Signal 2017; 27:774-784. [PMID: 28791881 DOI: 10.1089/ars.2017.7305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is the noncellular component secreted by cells and is present within all tissues and organs. The ECM provides the structural support required for tissue integrity and also contributes to diseases, including cancer. Many diseases rich in ECM are characterized by changes in reactive oxygen species (ROS) levels that have been shown to have important context-dependent functions. Recent Advances: Many studies have found that the ECM affects ROS production through integrins. The activation of integrins by ECM ligands results in stimulation of multiple pathways that can generate ROS. Furthermore, control of ECM-integrin interaction by matricellular proteins is an underappreciated pathway that functions as an ROS rheostat in remodeling tissues. CRITICAL ISSUES A better understanding of how the ECM affects the generation of intracellular ROS is required for advances in the development of therapeutic strategies that affect or exploit oxidative stress. FUTURE DIRECTIONS Targeting ROS generation can be therapeutic or can promote disease progression in a context-dependent manner. Many ECM proteins can impact ROS generation. However, given the breadth of different proteins that constitute the ECM and the cell surface receptors that interact with ECM proteins, there are likely many tissue and microenvironmental-specific ROS-generating pathways that have yet to be investigated in depth. Identifying canonical pathways of ECM-induced ROS generation should be a priority for the field. Antioxid. Redox Signal. 27, 774-784.
Collapse
Affiliation(s)
- Huocong Huang
- 1 Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research , Dallas, Texas
| | - Wenting Du
- 1 Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research , Dallas, Texas
| | - Rolf A Brekken
- 1 Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research , Dallas, Texas.,2 Department of Pharmacology, UT Southwestern, Dallas, Texas
| |
Collapse
|
9
|
Wang Y, Terrell AM, Riggio BA, Anand D, Lachke SA, Duncan MK. β1-Integrin Deletion From the Lens Activates Cellular Stress Responses Leading to Apoptosis and Fibrosis. Invest Ophthalmol Vis Sci 2017; 58:3896-3922. [PMID: 28763805 PMCID: PMC5539801 DOI: 10.1167/iovs.17-21721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/30/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose Previous research showed that the absence of β1-integrin from the mouse lens after embryonic day (E) 13.5 (β1MLR10) leads to the perinatal apoptosis of lens epithelial cells (LECs) resulting in severe microphthalmia. This study focuses on elucidating the molecular connections between β1-integrin deletion and this phenotype. Methods RNA sequencing was performed to identify differentially regulated genes (DRGs) in β1MLR10 lenses at E15.5. By using bioinformatics analysis and literature searching, Egr1 (early growth response 1) was selected for further study. The activation status of certain signaling pathways (focal adhesion kinase [FAK]/Erk, TGF-β, and Akt signaling) was studied via Western blot and immunohistochemistry. Mice lacking both β1-integrin and Egr1 genes from the lenses were created (β1MLR10/Egr1-/-) to study their relationship. Results RNA sequencing identified 120 DRGs that include candidates involved in the cellular stress response, fibrosis, and/or apoptosis. Egr1 was investigated in detail, as it mediates cellular stress responses in various cell types, and is recognized as an upstream regulator of numerous other β1MLR10 lens DRGs. In β1MLR10 mice, Egr1 levels are elevated shortly after β1-integrin loss from the lens. Further, pErk1/2 and pAkt are elevated in β1MLR10 LECs, thus providing the potential signaling mechanism that causes Egr1 upregulation in the mutant. Indeed, deletion of Egr1 from β1MLR10 lenses partially rescues the microphthalmia phenotype. Conclusions β1-integrin regulates the appropriate levels of Erk1/2 and Akt phosphorylation in LECs, whereas its deficiency results in the overexpression of Egr1, culminating in reduced cell survival. These findings provide insight into the molecular mechanism underlying the microphthalmia observed in β1MLR10 mice.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Anne M. Terrell
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Brittany A. Riggio
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
10
|
Nguyen KCT, Cho KA. Versatile Functions of Caveolin-1 in Aging-related Diseases. Chonnam Med J 2017; 53:28-36. [PMID: 28184336 PMCID: PMC5299127 DOI: 10.4068/cmj.2017.53.1.28] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) is a trans-membrane protein that is a major component of the caveolae structure on the plasma membrane. Cav-1 is involved in the regulation of various cellular processes, including cell growth, differentiation, endocytosis, and in particular it has been implied in cellular senescence. Here we review current knowledge about Cav-1 in cellular signaling and discuss the role of Cav-1 in aging-related diseases.
Collapse
Affiliation(s)
- Kim Cuc Thi Nguyen
- Deparment of Life Science, ThaiNguyen University of Science, TanThinh Ward, ThaiNguyen, VietNam
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
11
|
Bianconi D, Unseld M, Prager GW. Integrins in the Spotlight of Cancer. Int J Mol Sci 2016; 17:ijms17122037. [PMID: 27929432 PMCID: PMC5187837 DOI: 10.3390/ijms17122037] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Integrins are heterodimeric cell surface receptors that bind to different extracellular ligands depending on their composition and regulate all processes which enable multicellular life. In cancer, integrins trigger and play key roles in all the features that were once described as the Hallmarks of Cancer. In this review, we will discuss the contribution of integrins to these hallmarks, including uncontrolled and limitless proliferation, invasion of tumor cells, promotion of tumor angiogenesis and evasion of apoptosis and resistance to growth suppressors, by highlighting the latest findings. Further on, given the paramount role of integrins in cancer, we will present novel strategies for integrin inhibition that are starting to emerge, promising a hopeful future regarding cancer treatment.
Collapse
Affiliation(s)
- Daniela Bianconi
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Matthias Unseld
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerald W Prager
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
12
|
Shin SY, Pozzi A, Boyd SK, Clark AL. Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor signalling. Osteoarthritis Cartilage 2016; 24:1795-1806. [PMID: 27211864 DOI: 10.1016/j.joca.2016.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/06/2016] [Accepted: 05/11/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the role of integrin α1β1 in the progression of post-traumatic osteoarthritis (PTOA), and elucidate the contribution of epidermal growth factor receptor (EGFR) signalling to the mechanism by which integrin α1β1 might control PTOA. We hypothesised that integrin α1β1 plays a protective role in the course of PTOA and that the effect of PTOA (e.g., synovitis, loss of cartilage and growth of osteophytes) would be exacerbated in mice lacking integrin α1β1 at every time point post destabilisation of medial meniscus (DMM). METHODS DMM or sham surgery was performed on integrin α1-null and wild type (WT) mice and the progression of PTOA analysed at 2, 4, 8 and 12 weeks post-surgery (PS) using micro-computed tomography (microCT), histology, and immunohistochemistry. In addition, the effects of EGFR blockade were examined by treating the mice with the EGFR inhibitor erlotinib. RESULTS Integrin α1-null female, but not male, mice showed earlier cartilage degradation post DMM surgery compared to WT controls. Furthermore, erlotinib treatment resulted in significantly less cartilage damage in integrin α1-null but not WT mice. Independent of genotype, erlotinib treatment significantly mitigated the effects of PTOA on many tissues of female mice including meniscal and fabella bone volume, subchondral bone thickness and density and cartilage degradation. In contrast, reduced EGFR signalling had little effect on signs of PTOA in male mice. CONCLUSION Integrin α1β1 protects against PTOA-induced cartilage degradation in female mice partially via the reduction of EGFR signalling. Furthermore, reduction of EGFR signalling protects against the development of PTOA in female, but not male mice.
Collapse
Affiliation(s)
- S Y Shin
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - A Pozzi
- Department of Medicine, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Veterans Affairs Hospital, Nashville, TN, USA
| | - S K Boyd
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - A L Clark
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada; Department of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
13
|
Gu X, Reagan AM, McClellan ME, Elliott MH. Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res 2016; 56:84-106. [PMID: 27664379 DOI: 10.1016/j.preteyeres.2016.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function.
Collapse
Affiliation(s)
- Xiaowu Gu
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alaina M Reagan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark E McClellan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
14
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Contribution of collagen adhesion receptors to tissue fibrosis. Cell Tissue Res 2016; 365:521-38. [DOI: 10.1007/s00441-016-2440-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
|
16
|
Andrews AM, Rizzo V. Microparticle-Induced Activation of the Vascular Endothelium Requires Caveolin-1/Caveolae. PLoS One 2016; 11:e0149272. [PMID: 26891050 PMCID: PMC4758735 DOI: 10.1371/journal.pone.0149272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/30/2016] [Indexed: 12/29/2022] Open
Abstract
Microparticles (MPs) are small membrane fragments shed from normal as well as activated, apoptotic or injured cells. Emerging evidence implicates MPs as a causal and/or contributing factor in altering normal vascular cell phenotype through initiation of proinflammatory signal transduction events and paracrine delivery of proteins, mRNA and miRNA. However, little is known regarding the mechanism by which MPs influence these events. Caveolae are important membrane microdomains that function as centers of signal transduction and endocytosis. Here, we tested the concept that the MP-induced pro-inflammatory phenotype shift in endothelial cells (ECs) depends on caveolae. Consistent with previous reports, MP challenge activated ECs as evidenced by upregulation of intracellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 upregulation was mediated by activation of NF-κB, Poly [ADP-ribose] polymerase 1 (PARP-1) and the epidermal growth factor receptor (EGFR). This response was absent in ECs lacking caveolin-1/caveolae. To test whether caveolae-mediated endocytosis, a dynamin-2 dependent process, is a feature of the proinflammatory response, EC’s were pretreated with the dynamin-2 inhibitor dynasore. Similar to observations in cells lacking caveolin-1, inhibition of endocytosis significantly attenuated MPs effects including, EGFR phosphorylation, activation of NF-κB and upregulation of ICAM-1 expression. Thus, our results indicate that caveolae play a role in mediating the pro-inflammatory signaling pathways which lead to EC activation in response to MPs.
Collapse
Affiliation(s)
- Allison M. Andrews
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Victor Rizzo
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zeltz C, Gullberg D. The integrin-collagen connection--a glue for tissue repair? J Cell Sci 2016; 129:653-64. [PMID: 26857815 DOI: 10.1242/jcs.180992] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The α1β1, α2β1, α10β1 and α11β1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins α1β1 and α2β1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (α2β1), vascular cells (α1β1, α2β1), epithelial cells (α1β1, α2β1) and fibroblasts (α1β1, α2β1). Integrin α10β1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin α11β1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events--such as wound healing--where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily--integrins α10β1 and α11β1.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| |
Collapse
|
18
|
Mickiewicz B, Shin SY, Pozzi A, Vogel HJ, Clark AL. Serum Metabolite Profiles Are Altered by Erlotinib Treatment and the Integrin α1-Null Genotype but Not by Post-Traumatic Osteoarthritis. J Proteome Res 2016; 15:815-25. [PMID: 26784366 DOI: 10.1021/acs.jproteome.5b00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The risk of developing post-traumatic osteoarthritis (PTOA) following joint injury is high. Furthering our understanding of the molecular mechanisms underlying PTOA and/or identifying novel biomarkers for early detection may help to improve treatment outcomes. Increased expression of integrin α1β1 and inhibition of epidermal growth factor receptor (EGFR) signaling protect the knee from spontaneous OA; however, the impact of the integrin α1β1/EGFR axis on PTOA is currently unknown. We sought to determine metabolic changes in serum samples collected from wild-type and integrin α1-null mice that underwent surgery to destabilize the medial meniscus and were treated with the EGFR inhibitor erlotinib. Following (1)H nuclear magnetic resonance spectroscopy, we generated multivariate statistical models that distinguished between the metabolic profiles of erlotinib- versus vehicle-treated mice and the integrin α1-null versus wild-type mouse genotype. Our results show the sex-dependent effects of erlotinib treatment and highlight glutamine as a metabolite that counteracts this treatment. Furthermore, we identified a set of metabolites associated with increased reactive oxygen species production, susceptibility to OA, and regulation of TRP channels in α1-null mice. Our study indicates that systemic pharmacological and genetic factors have a greater effect on serum metabolic profiles than site-specific factors such as surgery.
Collapse
Affiliation(s)
| | | | - Ambra Pozzi
- Department of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States.,Department of Medicine, Veterans Affairs Hospital , Nashville, Tennessee 37232, United States
| | | | - Andrea L Clark
- Department of Surgery, Cumming School of Medicine, University of Calgary , Calgary T2N 4N1, AB, Canada
| |
Collapse
|
19
|
Wang H, Chen X, Su Y, Paueksakon P, Hu W, Zhang MZ, Harris RC, Blackwell TS, Zent R, Pozzi A. p47(phox) contributes to albuminuria and kidney fibrosis in mice. Kidney Int 2015; 87:948-62. [PMID: 25565313 PMCID: PMC4425591 DOI: 10.1038/ki.2014.386] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 09/03/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) have an important pathogenic role in the development of many diseases, including kidney disease. Major ROS generators in the glomerulus of the kidney are the p47(phox)-containing NAPDH oxidases NOX1 and NOX2. The cytosolic p47(phox) subunit is a key regulator of the assembly and function of NOX1 and NOX2 and its expression and phosphorylation are upregulated in the course of renal injury, and have been shown to exacerbate diabetic nephropathy. However, its role in nondiabetic-mediated glomerular injury is unclear. To address this, we subjected p47(phox)-null mice to either adriamycin-mediated or partial renal ablation-mediated glomerular injury. Deletion of p47(phox) protected the mice from albuminuria and glomerulosclerosis in both injury models. Integrin α1-null mice develop more severe glomerulosclerosis compared with wild-type mice in response to glomerular injury mainly due to increased production of ROS. Interestingly, the protective effects of p47(phox) knockout were more profound in p47(phox)/integrin α1 double knockout mice. In vitro analysis of primary mesangial cells showed that deletion of p47(phox) led to reduced basal levels of superoxide and collagen IV production. Thus, p47(phox)-dependent NADPH oxidases are a major glomerular source of ROS, contribute to kidney injury, and are potential targets for antioxidant therapy in fibrotic disease.
Collapse
Affiliation(s)
- Hongtao Wang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Xiwu Chen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Yan Su
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Paisit Paueksakon
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Wen Hu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Raymond C Harris
- 1] Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA [2] Department of Medicine, Veterans Affairs Hospitals, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Roy Zent
- 1] Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA [2] Department of Medicine, Veterans Affairs Hospitals, Nashville, Tennessee, USA
| | - Ambra Pozzi
- 1] Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA [2] Department of Medicine, Veterans Affairs Hospitals, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Borza CM, Chen X, Zent R, Pozzi A. Cell Receptor-Basement Membrane Interactions in Health and Disease: A Kidney-Centric View. CURRENT TOPICS IN MEMBRANES 2015; 76:231-53. [PMID: 26610916 PMCID: PMC4913201 DOI: 10.1016/bs.ctm.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-extracellular matrix (ECM) interactions are essential for tissue development, homeostasis, and response to injury. Basement membranes (BMs) are specialized ECMs that separate epithelial or endothelial cells from stromal components and interact with cells via cellular receptors, including integrins and discoidin domain receptors. Disruption of cell-BM interactions due to either injury or genetic defects in either the ECM components or cellular receptors often lead to irreversible tissue injury and loss of organ function. Animal models that lack specific BM components or receptors either globally or in selective tissues have been used to help with our understanding of the molecular mechanisms whereby cell-BM interactions regulate organ function in physiological and pathological conditions. We review recently published works on animal models that explore how cell-BM interactions regulate kidney homeostasis in both health and disease.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Xiwu Chen
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Roy Zent
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Medicine, Veterans Administration Hospital, Nashville, TN, 37232
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Medicine, Veterans Administration Hospital, Nashville, TN, 37232
| |
Collapse
|
21
|
Chen X, Wang H, Liao HJ, Hu W, Gewin L, Mernaugh G, Zhang S, Zhang ZY, Vega-Montoto L, Vanacore RM, Fässler R, Zent R, Pozzi A. Integrin-mediated type II TGF-β receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. J Clin Invest 2014; 124:3295-310. [PMID: 24983314 DOI: 10.1172/jci71668] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 05/21/2014] [Indexed: 12/20/2022] Open
Abstract
Tubulointerstitial fibrosis underlies all forms of end-stage kidney disease. TGF-β mediates both the development and the progression of kidney fibrosis through binding and activation of the serine/threonine kinase type II TGF-β receptor (TβRII), which in turn promotes a TβRI-mediated SMAD-dependent fibrotic signaling cascade. Autophosphorylation of serine residues within TβRII is considered the principal regulatory mechanism of TβRII-induced signaling; however, there are 5 tyrosine residues within the cytoplasmic tail that could potentially mediate TβRII-dependent SMAD activation. Here, we determined that phosphorylation of tyrosines within the TβRII tail was essential for SMAD-dependent fibrotic signaling within cells of the kidney collecting duct. Conversely, the T cell protein tyrosine phosphatase (TCPTP) dephosphorylated TβRII tail tyrosine residues, resulting in inhibition of TβR-dependent fibrotic signaling. The collagen-binding receptor integrin α1β1 was required for recruitment of TCPTP to the TβRII tail, as mice lacking this integrin exhibited impaired TCPTP-mediated tyrosine dephosphorylation of TβRII that led to severe fibrosis in a unilateral ureteral obstruction model of renal fibrosis. Together, these findings uncover a crosstalk between integrin α1β1 and TβRII that is essential for TβRII-mediated SMAD activation and fibrotic signaling pathways.
Collapse
|
22
|
Moreno-Layseca P, Streuli CH. Signalling pathways linking integrins with cell cycle progression. Matrix Biol 2014; 34:144-53. [DOI: 10.1016/j.matbio.2013.10.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
|
23
|
An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci Rep 2014; 4:3751. [PMID: 24435043 PMCID: PMC3894557 DOI: 10.1038/srep03751] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/24/2013] [Indexed: 12/17/2022] Open
Abstract
While it is increasingly recognized that three-dimensional (3D) cell culture models recapitulate drug responses of human cancers with more fidelity than monolayer cultures, a lack of quantitative analysis methods limit their implementation for reliable and routine assessment of emerging therapies. Here, we introduce an approach based on computational analysis of fluorescence image data to provide high-content readouts of dose-dependent cytotoxicity, growth inhibition, treatment-induced architectural changes and size-dependent response in 3D tumour models. We demonstrate this approach in adherent 3D ovarian and pancreatic multiwell extracellular matrix tumour overlays subjected to a panel of clinically relevant cytotoxic modalities and appropriately designed controls for reliable quantification of fluorescence signal. This streamlined methodology reads out the high density of information embedded in 3D culture systems, while maintaining a level of speed and efficiency traditionally achieved with global colorimetric reporters in order to facilitate broader implementation of 3D tumour models in therapeutic screening.
Collapse
|
24
|
Heino J. Cellular signaling by collagen-binding integrins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:143-55. [PMID: 25023173 DOI: 10.1007/978-94-017-9153-3_10] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The four collagen-binding αI domain integrins form their own subgroup among cell adhesion receptors. The signaling functions of α1β1 and α2β1 integrins have been analyzed in many experimental models, whereas less studies are available about the more recently found α10β1 and α11β1 heterodimers. Interestingly, collagen binding by α1β1 and α2β1 often generates opposite cellular responses. For example α1β1 has often been reported to promote cell proliferation and to suppress collagen synthesis, whereas α2β1 can in many model systems inhibit growth and promote collagen synthesis. There are obviously cell type dependent factors modifying the signaling. Additionally the structure and the organization of collagenous matrix play a critic role. Many recent studies have also stressed the importance of the crosstalk between the integrins and other cell surface receptors.
Collapse
Affiliation(s)
- Jyrki Heino
- Department of Biochemistry, University of Turku, 20014, Turku, Finland,
| |
Collapse
|
25
|
Ylilauri M, Mattila E, Nurminen EM, Käpylä J, Niinivehmas SP, Määttä JA, Pentikäinen U, Ivaska J, Pentikäinen OT. Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1988-97. [PMID: 23856547 DOI: 10.1016/j.bbapap.2013.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/28/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
Abstract
T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1β1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation. By combining several molecular modeling and biochemical techniques, we demonstrate that α1-peptide and mitoxantrone activate TCPTP via direct binding to the catalytic domain, whereas spermidine does not interact with the catalytic domain of TCPTP in vitro. Furthermore, we have identified a hydrophobic groove surrounded by negatively charged residues on the surface of TCPTP as a putative binding site for the α1-peptide and mitoxantrone. Importantly, these data have allowed us to identify a new molecule that binds to TCPTP, but interestingly cannot activate its phosphatase activity. Accordingly, we describe here mechanism of TCPTP activation by mitoxantrone, the cytoplasmic tail of α1-integrin, and a mitoxantrone-like molecule at the atomic level. These data provide invaluable insight into the development of novel TCPTP activators, and may facilitate the rational discovery of small-molecule cancer therapeutics.
Collapse
Affiliation(s)
- Mikko Ylilauri
- Department of Biological and Environmental Science & Nanoscience Center, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
A major hallmark of chronic kidney injury is fibrosis, which is characterized by increased accumulation of extracellular matrix components that replace the damaged tissue. Normally, the synthesis and degradation of extracellular matrix components are finely regulated; however, when matrix replacement goes unchecked, there is unwanted and irreversible tissue scarring with consequent organ damage, organ failure, and, in certain cases, death. Many factors, including cell-matrix interactions, play a role in the development of renal fibrosis. Cell-matrix interactions are made possible by integrins, a family of transmembrane receptors that, upon binding to the extracellular matrix, activate intracellular signaling. Thus, they control various cell functions, including survival, proliferation, migration, and matrix homeostasis. Genetic mutations in humans and the development of animal models lacking integrins in selective parts of the kidney have improved our understanding of molecular mechanisms and pathways controlling matrix remodeling in kidney disease. Here we outline the major integrins involved in kidney disease and some of the major molecular mechanisms whereby integrins contribute to kidney fibrosis.
Collapse
Affiliation(s)
- Ambra Pozzi
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 27232, USA.
| | | |
Collapse
|
27
|
Ramos PS, Marion MC, Langefeld CD, Buyon JP, Clancy RM. Brief report: enrichment of associations in genes with fibrosis, apoptosis, and innate immunity functions with cardiac manifestations of neonatal lupus. ACTA ACUST UNITED AC 2013; 64:4060-5. [PMID: 22886516 DOI: 10.1002/art.34663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/31/2012] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The proposed pathogenesis of the cardiac manifestations of neonatal lupus (cardiac-NL) involves maternal autoantibodies to the RNPs SSA/Ro and SSB/La, enhanced by as-yet-unknown factors that likely involve dysregulation of both inflammatory and fibrotic fetal responses. This study was designed to improve the power to detect specific associations in genes with candidate biologic functions. METHODS Using data from our genome-wide association study of 116 Caucasian children with cardiac-NL and 3,351 Caucasian controls, we tested for enrichment of single-nucleotide polymorphism (SNP) associations in genes with candidate biologic functions related to fibrosis, immune function, apoptosis, T cell function, cell infiltration, innate immune cell function, interferon, Toll-like receptors, and calcium channels. After linkage disequilibrium pruning and exclusion of the extended HLA region, a total of 15,103 SNPs in 3,068 genes remained. RESULTS A highly significant enrichment of P values was observed for genes related to fibrosis (P = 2.27 × 10(-9) ), apoptosis (P = 7.67 × 10(-7) ), and innate immune cell (P = 2.53 × 10(-6) ), immune (P = 5.01 × 10(-4) ), T cell (P = 2.23 × 10(-4) ), and interferon functions (P = 1.64 × 10(-3) ). The most significant non-HLA associations included the sialyltransferase gene ST8SIA2 (rs1487982; odds ratio 2.20 [95% confidence interval 1.52-3.19], P = 3.37 × 10(-5) ), the integrin gene ITGA1 (rs2432143; odds ratio 2.31 [95% confidence interval 1.54-3.45], P = 4.54 × 10(-5) ), and the complement regulator gene CSMD1 (rs7002001; odds ratio 2.41 [95% confidence interval 1.57-3.72], P = 6.33 × 10(-5) ). CONCLUSION This study identified novel candidate genes associated with cardiac-NL and highlights the value of studying this cohort for advancing knowledge regarding the genetic etiology of this syndrome. Identification of causal alleles is expected to provide critical insight into the molecular mechanisms responsible for linking maternal autoantibodies to cardiac scarring in these fetuses/neonates.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 912, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Shi M, Pedchenko V, Greer BH, Van Horn WD, Santoro SA, Sanders CR, Hudson BG, Eichman BF, Zent R, Pozzi A. Enhancing integrin α1 inserted (I) domain affinity to ligand potentiates integrin α1β1-mediated down-regulation of collagen synthesis. J Biol Chem 2012; 287:35139-35152. [PMID: 22888006 DOI: 10.1074/jbc.m112.358648] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin α1β1 binding to collagen IV, which is mediated by the α1-inserted (I) domain, down-regulates collagen synthesis. When unligated, a salt bridge between Arg(287) and Glu(317) is thought to keep this domain in a low affinity conformation. Ligand binding opens the salt bridge leading to a high-affinity conformation. How modulating integrin α1β1 affinity alters collagen homeostasis is unknown. To address this question, we utilized a thermolysin-derived product of the α1α2α1 network of collagen IV (α1α2α1(IV) truncated protomer) that selectively binds integrin α1β1. We show that an E317A substitution enhanced binding to the truncated protomer, consistent with a previous finding that this substitution eliminates the salt bridge. Surprisingly, we show that an R287A substitution did not alter binding, whereas R287E/E317R substitutions enhanced binding to the truncated protomer. NMR spectroscopy and molecular modeling suggested that eliminating the Glu(317) negative charge is sufficient to induce a conformational change toward the open state. Thus, the role played by Glu(317) is largely independent of the salt bridge. We further show that cells expressing E317A or R287E/E317R substitutions have enhanced down-regulation of collagen IV synthesis, which is mediated by the ERK/MAPK pathway. In conclusion, we have demonstrated that modulating the affinity of the extracellular α1 I domain to collagen IV enhances outside-in signaling by potentiating ERK activation and enhancing the down-regulation of collagen synthesis.
Collapse
Affiliation(s)
- Mingjian Shi
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232
| | - Vadim Pedchenko
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Briana H Greer
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232
| | - Wade D Van Horn
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Samuel A Santoro
- Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee 37232
| | - Charles R Sanders
- Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Billy G Hudson
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Brandt F Eichman
- Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Roy Zent
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Medicine, Veterans Affairs Medical Center, Nashville, Tennessee 37212
| | - Ambra Pozzi
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Medicine, Veterans Affairs Medical Center, Nashville, Tennessee 37212.
| |
Collapse
|
29
|
CD98 increases renal epithelial cell proliferation by activating MAPKs. PLoS One 2012; 7:e40026. [PMID: 22768207 PMCID: PMC3386947 DOI: 10.1371/journal.pone.0040026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/31/2012] [Indexed: 12/22/2022] Open
Abstract
CD98 heavy chain (CD98hc) is a multifunctional transmembrane spanning scaffolding protein whose extracellular domain binds with light chain amino acid transporters (Lats) to form the heterodimeric amino acid transporters (HATs). It also interacts with β1 and β3 integrins by its transmembrane and cytoplasmic domains. This interaction is proposed to be the mechanism whereby CD98 mediates cell survival and growth via currently undefined signaling pathways. In this study, we determined whether the critical function of CD98-dependent amino acid transport also plays a role in cell proliferation and defined the signaling pathways that mediate CD98-dependent proliferation of murine renal inner medullary collecting duct (IMCD) cells. We demonstrate that downregulating CD98hc expression resulted in IMCD cell death. Utilizing overexpression studies of CD98hc mutants that either lacked a cytoplasmic tail or were unable to bind to Lats we showed that CD98 increases serum-dependent cell proliferation by a mechanism that requires the CD98hc cytoplasmic tail. We further demonstrated that CD98-dependent amino acid transport increased renal tubular epithelial cell proliferation by a mechanism that does not require the CD98hc cytoplasmic tail. Both these mechanisms of increased renal tubular epithelial cell proliferation are mediated by Erk and p38 MAPK signaling. Although increased amino transport markedly activated mTor signaling, this pathway did not alter cell proliferation. Thus, these studies demonstrate that in IMCD cells, the cytoplasmic and extracellular domains of CD98hc regulate cell proliferation by distinct mechanisms that are mediated by common MAPK signaling pathways.
Collapse
|
30
|
Borza CM, Su Y, Chen X, Yu L, Mont S, Chetyrkin S, Voziyan P, Hudson BG, Billings PC, Jo H, Bennett JS, Degrado WF, Eckes B, Zent R, Pozzi A. Inhibition of integrin α2β1 ameliorates glomerular injury. J Am Soc Nephrol 2012; 23:1027-38. [PMID: 22440900 DOI: 10.1681/asn.2011040367] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mesangial cells and podocytes express integrins α1β1 and α2β1, which are the two major collagen receptors that regulate multiple cellular functions, including extracellular matrix homeostasis. Integrin α1β1 protects from glomerular injury by negatively regulating collagen production, but the role of integrin α2β1 in renal injury is unclear. Here, we subjected wild-type and integrin α2-null mice to injury with adriamycin or partial renal ablation. In both of these models, integrin α2-null mice developed significantly less proteinuria and glomerulosclerosis. In addition, selective pharmacological inhibition of integrin α2β1 significantly reduced adriamycin-induced proteinuria, glomerular injury, and collagen deposition in wild-type mice. This inhibitor significantly reduced collagen synthesis in wild-type, but not integrin α2-null, mesangial cells in vitro, demonstrating that its effects are integrin α2β1-dependent. Taken together, these results indicate that integrin α2β1 contributes to glomerular injury by positively regulating collagen synthesis and suggest that its inhibition may be a promising strategy to reduce glomerular injury and proteinuria.
Collapse
Affiliation(s)
- Corina M Borza
- Departments of Medicine and Cancer Biology, Division of Nephrology and Hypertension, Vanderbilt University, Medical Center North, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Borza CM, Pozzi A. The role of cell-extracellular matrix interactions in glomerular injury. Exp Cell Res 2012; 318:1001-10. [PMID: 22417893 DOI: 10.1016/j.yexcr.2012.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/24/2012] [Indexed: 01/09/2023]
Abstract
Glomerulosclerosis is characterized by excessive deposition of extracellular matrix within the glomeruli of the kidney, glomerular cell death, and subsequent loss of functional glomeruli. While in physiological situations the levels of extracellular matrix components are kept constant by a tight balance between formation and degradation, in the case of injury that results in fibrosis there is increased matrix deposition relative to its breakdown. Multiple factors control matrix synthesis and degradation, thus contributing to the development of glomerulosclerosis. This review focuses primarily on the role of cell-matrix interactions, which play a critical role in governing glomerular cell cues in both healthy and diseased kidneys. Cell-extracellular matrix interactions are made possible by various cellular receptors including integrins, discoidin domain receptors, and dystroglycan. Upon binding to a selective extracellular matrix protein, these receptors activate intracellular signaling pathways that can either downregulate or upregulate matrix synthesis and deposition. This, together with the observation that changes in the expression levels of matrix receptors have been documented in glomerular disease, clearly emphasizes the contribution of cell-matrix interactions in glomerular injury. Understanding the molecular mechanisms whereby extracellular matrix receptors regulate matrix homeostasis in the course of glomerular injury is therefore critical for devising more effective therapies to treat and ideally prevent glomerulosclerosis.
Collapse
Affiliation(s)
- Corina M Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
32
|
Yu L, Su Y, Paueksakon P, Cheng H, Chen X, Wang H, Harris RC, Zent R, Pozzi A. Integrin α1/Akita double-knockout mice on a Balb/c background develop advanced features of human diabetic nephropathy. Kidney Int 2012; 81:1086-97. [PMID: 22297672 PMCID: PMC3345314 DOI: 10.1038/ki.2011.474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Animal models that mimic human diabetic nephropathy are useful to identify key factors in pathogenesis of this disease, as well as the development of new therapies. Several mouse models of diabetes have features of human diabetic nephropathy, yet none of these completely fulfill the Animal Models of Diabetes Complications Consortium criteria and completely reproduce pathological and functional features of the human disease. The Akita mouse carries a mutation in the insulin-2 gene and, to date, only survives as heterozygotes that develop spontaneous type 1 diabetes. Here we show that Akita mice with mutation of both insulin-2 alleles (Akita knockout (KO)) survive if crossed onto the Balb/c background. These mice develop hyperglycemia, more severe albuminuria, and mesangial sclerosis compared with heterozygous mice on the same genetic background. Interestingly, crossing these AkitaKO mice with integrin α1KO mice, a model of exacerbated glomerulosclerosis after injury and also on the Balb/c background, resulted in a 16-fold increase in albuminuria, significant mesangial matrix expansion, nodular and diffuse glomerulosclerosis, and a 2-fold increase in glomerular basement membrane thickening when compared with nondiabetic mice. Moreover, a significant decline in glomerular filtration was evident in the α1KOAkitaKO mice at 6 months of age. Thus, the integrin α1KOAkitaKO Balb/c mouse represents a promising model presenting with most features of human diabetic nephropathy.
Collapse
Affiliation(s)
- Ling Yu
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:423-67. [PMID: 22077552 DOI: 10.1146/annurev-pathol-011811-120856] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Caveolins are a family of membrane-bound scaffolding proteins that compartmentalize and negatively regulate signal transduction. Recent studies have implicated a loss of caveolin-1 (Cav-1) expression in the pathogenesis of human cancers. Loss of Cav-1 expression in cancer-associated fibroblasts results in an activated tumor microenvironment, thereby driving early tumor recurrence, metastasis, and poor clinical outcome in breast and prostate cancers. We describe various paracrine signaling mechanism(s) by which the loss of stromal Cav-1 promotes tumor progression, including fibrosis, extracellular matrix remodeling, and the metabolic/catabolic reprogramming of cancer-associated fibroblast, to fuel the growth of adjacent tumor cells. It appears that oxidative stress is the root cause of initiation of the loss of stromal Cav-1 via autophagy, which provides further impetus for the use of antioxidants in anticancer therapy. Finally, we discuss the functional role of Cav-1 in epithelial cancer cells.
Collapse
Affiliation(s)
- Federica Sotgia
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | |
Collapse
|
34
|
The Ras inhibitors caveolin-1 and docking protein 1 activate peroxisome proliferator-activated receptor γ through spatial relocalization at helix 7 of its ligand-binding domain. Mol Cell Biol 2011; 31:3497-510. [PMID: 21690289 DOI: 10.1128/mcb.01421-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that promotes differentiation and cell survival in the stomach. PPARγ upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPARγ is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPARγ signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPARγ and enhanced nuclear translocation and ligand-independent transcription of PPARγ target genes. In contrast, Cav1 overexpression sequestered PPARγ in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPARγ's ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPARγ and to inhibit cell proliferation. Ligand-activated PPARγ also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPARγ regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPARγ to ligands, limiting proliferation of gastric epithelial cells.
Collapse
|
35
|
Borza CM, Chen X, Mathew S, Mont S, Sanders CR, Zent R, Pozzi A. Integrin {alpha}1{beta}1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase. J Biol Chem 2010; 285:40114-24. [PMID: 20940300 DOI: 10.1074/jbc.m110.156729] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury.
Collapse
Affiliation(s)
- Corina M Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee 37212-2372, USA.
| | | | | | | | | | | | | |
Collapse
|