1
|
Loomis T, Smith LR. Thrown for a loop: fibro-adipogenic progenitors in skeletal muscle fibrosis. Am J Physiol Cell Physiol 2023; 325:C895-C906. [PMID: 37602412 DOI: 10.1152/ajpcell.00245.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Fibro-adipogenic progenitors (FAPs) are key regulators of skeletal muscle regeneration and homeostasis. However, dysregulation of these cells leads to fibro-fatty infiltration across various muscle diseases. FAPs are the key source of extracellular matrix (ECM) deposition in muscle, and disruption to this process leads to a pathological accumulation of ECM, known as fibrosis. The replacement of contractile tissue with fibrotic ECM functionally impairs the muscle and increases muscle stiffness. FAPs and fibrotic muscle form a progressively degenerative feedback loop where, as a muscle becomes fibrotic, it induces a fibrotic FAP phenotype leading to further development of fibrosis. In this review, we summarize FAPs' role in fibrosis in terms of their activation, heterogeneity, contributions to fibrotic degeneration, and role across musculoskeletal diseases. We also discuss current research on potential therapeutic avenues to attenuate fibrosis by targeting FAPs.
Collapse
Affiliation(s)
- Taryn Loomis
- Biomedical Engineering Graduate Group, University of California, Davis, California, United States
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
- Department of Physical Medicine and Rehabilitation, University of California, Davis, California, United States
| |
Collapse
|
2
|
Ahmad N, de la Serna IL, Marathe HG, Fan X, Dube P, Zhang S, Haller ST, Kennedy DJ, Pestov NB, Modyanov NN. Eutherian-Specific Functions of BetaM Acquired through Atp1b4 Gene Co-Option in the Regulation of MyoD Expression. Life (Basel) 2023; 13:414. [PMID: 36836771 PMCID: PMC9962273 DOI: 10.3390/life13020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Vertebrate ATP1B4 genes represent a rare instance of orthologous gene co-option, resulting in radically different functions of the encoded BetaM proteins. In lower vertebrates, BetaM is a Na, K-ATPase β-subunit that is a component of ion pumps in the plasma membrane. In placental mammals, BetaM lost its ancestral role and, through structural alterations of the N-terminal domain, became a skeletal and cardiac muscle-specific protein of the inner nuclear membrane, highly expressed during late fetal and early postnatal development. We previously determined that BetaM directly interacts with the transcriptional co-regulator SKI-interacting protein (SKIP) and is implicated in the regulation of gene expression. This prompted us to investigate a potential role for BetaM in the regulation of muscle-specific gene expression in neonatal skeletal muscle and cultured C2C12 myoblasts. We found that BetaM can stimulate expression of the muscle regulatory factor (MRF), MyoD, independently of SKIP. BetaM binds to the distal regulatory region (DRR) of MyoD, promotes epigenetic changes associated with activation of transcription, and recruits the SWI/SNF chromatin remodeling subunit, BRG1. These results indicate that eutherian BetaM regulates muscle gene expression by promoting changes in chromatin structure. These evolutionarily acquired new functions of BetaM might be very essential and provide evolutionary advantages to placental mammals.
Collapse
Affiliation(s)
- Nisar Ahmad
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ivana L. de la Serna
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Himangi G. Marathe
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Xiaoming Fan
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Prabhatchandra Dube
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Shungang Zhang
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Steven T. Haller
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - David J. Kennedy
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Nikolay B. Pestov
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Nikolai N. Modyanov
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
3
|
Sulforaphane Enhanced Proliferation of Porcine Satellite Cells via Epigenetic Augmentation of SMAD7. Animals (Basel) 2022; 12:ani12111365. [PMID: 35681828 PMCID: PMC9179638 DOI: 10.3390/ani12111365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Satellite cells take an indispensable place in skeletal muscle regeneration, maintenance, and growth. However, only limited works have investigated effects of dietary compounds on the proliferation of porcine satellite cells (PSCs) and related mechanisms. Sulforaphane (SFN) at multiple levels was applied to PSCs. The PSCs’ viability and HDAC activity were measured with a WST-1 cell proliferation kit and Color-de-Lys® HDAC colorimetric activity assay kit. Gene expression and epigenetics modification were tested with qRT-PCR, Western blot, bisulfite sequencing, and ChIP-qPCR. This study found that SFN enhanced PSC proliferation and altered mRNA expression levels of myogenic regulatory factors. In addition, SFN inhibited histone deacetylase (HDAC) activity, disturbed mRNA levels of HDAC family members, and elevated acetylated histone H3 and H4 abundance in PSCs. Furthermore, both mRNA and protein levels of the Smad family member 7 (SMAD7) in PSCs were upregulated after SFN treatment. Finally, it was found that SFN increased the acetylation level of histone H4 in the SMAD7 promoter, decreased the expression of microRNAs, including ssc-miR-15a, ssc-miR-15b, ssc-miR-92a, ssc-miR-17-5p, ssc-miR-20a-5p, and ssc-miR-106a, targeting SMAD7, but did not impact on the SMAD7 promoter’s methylation status in PSCs. In summary, SFN was found to boost PSC proliferation and epigenetically increase porcine SMAD7 expression, which indicates a potential application of SFN in modulation of skeletal muscle growth.
Collapse
|
4
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
5
|
Tripathi S, Miyake T, Kelebeev J, McDermott JC. TAZ exhibits phase separation properties and interacts with Smad7 and β-catenin to repress skeletal myogenesis. J Cell Sci 2021; 135:273968. [PMID: 34859820 DOI: 10.1242/jcs.259097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Hippo signaling in Drosophila and mammals is prominent in regulating cell proliferation, death and differentiation. Hippo signaling effectors (YAP/TAZ) exhibit crosstalk with transforming growth factor-β (TGF-β)-Smad and Wnt-β-catenin pathways. Previously, we implicated Smad7 and β-catenin in myogenesis. Therefore, we assessed a potential role of TAZ on theSmad7/β-catenin complex in muscle cells. Here, we document functional interactions between Smad7, TAZ and β-catenin in myogenic cells. Ectopic TAZ expression resulted in repression of the muscle-specific creatine kinase muscle (ckm) gene promoter and its corresponding protein level. Depletion of endogenous TAZ enhanced ckm promoter activation. Ectopic TAZ, while potently active on a TEAD reporter (HIP-HOP), repressed myogenin and myod enhancer regions and Myogenin protein level. Additionally, a Wnt/β-catenin readout (TOP flash) demonstrated TAZ inhibition of β-catenin activity. In myoblasts, TAZ is predominantly localized in nuclear speckles, while in differentiation conditions TAZ is hyperphosphorylated at Ser 89 leading to enhanced cytoplasmic sequestration. Finally, live cell imaging indicates that TAZ exhibits properties of liquid-liquid phase separation (LLPS). These observations indicate that TAZ, as an effector of Hippo signaling, supresses the myogenic differentiation machinery.
Collapse
Affiliation(s)
- Soma Tripathi
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Jonathan Kelebeev
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada.,Centre for Research in Mass Spectrometry (CRMS), York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
6
|
Ramalingam V, Harshavardhan M, Hwang I. Titanium decorated iron oxide (Ti@Fe2O3) regulates the proliferation of bovine muscle satellite cells through oxidative stress. Bioorg Chem 2020; 105:104459. [DOI: 10.1016/j.bioorg.2020.104459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/12/2023]
|
7
|
Mesenchymal MACF1 Facilitates SMAD7 Nuclear Translocation to Drive Bone Formation. Cells 2020; 9:cells9030616. [PMID: 32143362 PMCID: PMC7140458 DOI: 10.3390/cells9030616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) is a large crosslinker that contributes to cell integrity and cell differentiation. Recent studies show that MACF1 is involved in multiple cellular functions such as neuron development and epidermal migration, and is the molecular basis for many degenerative diseases. MACF1 is highly abundant in bones, especially in mesenchymal stem cells; however, its regulatory role is still less understood in bone formation and degenerative bone diseases. In this study, we found MACF1 expression in mesenchymal stem cells (MSCs) of osteoporotic bone specimens was significantly lower. By conditional gene targeting to delete the mesenchymal Macf1 gene in mice, we observed in MSCs decreased osteogenic differentiation capability. During early stage bone development, the MACF1 conditional knockout (cKO) mice exhibit significant ossification retardation in skull and hindlimb, and by adulthood, mesenchymal loss of MACF1 attenuated bone mass, bone microarchitecture, and bone formation capability significantly. Further, we showed that MACF1 interacts directly with SMAD family member 7 (SMAD7) and facilitates SMAD7 nuclear translocation to initiate downstream osteogenic pathways. Hopefully these findings will expand the biological scope of the MACF1 gene, and provide an experimental basis for targeting MACF1 in degenerative bone diseases such as osteoporosis.
Collapse
|
8
|
Maintenance of the Undifferentiated State in Myogenic Progenitor Cells by TGFβ Signaling is Smad Independent and Requires MEK Activation. Int J Mol Sci 2020; 21:ijms21031057. [PMID: 32033454 PMCID: PMC7038076 DOI: 10.3390/ijms21031057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a pluripotent cytokine and regulates a myriad of biological processes. It has been established that TGFβ potently inhibits skeletal muscle differentiation; however, the molecular mechanism is not clearly defined. Previously, we reported that inhibition of the TGFβ canonical pathway by an inhibitory Smad, Smad7, does not reverse this effect on differentiation, suggesting that activation of receptor Smads (R-Smads) by TGFβ is not responsible for repression of myogenesis. In addition, pharmacological blockade of Smad3 activation by TGFβ did not reverse TGFβ's inhibitory effect on myogenesis. In considering other pathways, we observed that TGFβ potently activates MEK/ERK, and a pharmacological inhibitor of MEK reversed TGFβ's inhibitory effect on myogenesis, as indicated by a myogenin promoter-reporter gene, sarcomeric myosin heavy chain accumulation, and phenotypic myotube formation. Furthermore, we found that c-Jun, a known potent repressor of myogenesis, which is coincidently also a down-stream target of MEK/ERK signaling, was phosphorylated and accumulates in the nucleus in response to TGFβ activation. Taken together, these observations support a model in which TGFβ activates a MEK/ERK/c-Jun pathway to repress skeletal myogenesis, maintaining the pluripotent undifferentiated state in myogenic progenitors.
Collapse
|
9
|
Smad7:β-catenin complex regulates myogenic gene transcription. Cell Death Dis 2019; 10:387. [PMID: 31097718 PMCID: PMC6522533 DOI: 10.1038/s41419-019-1615-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/30/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Recent reports indicate that Smad7 promotes skeletal muscle differentiation and growth. We previously documented a non-canonical role of nuclear Smad7 during myogenesis, independent of its role in TGF-β signaling. Here further characterization of the myogenic function of Smad7 revealed β-catenin as a Smad7 interacting protein. Biochemical analysis identified a Smad7 interaction domain (SID) between aa575 and aa683 of β-catenin. Reporter gene analysis and chromatin immunoprecipitation demonstrated that Smad7 and β-catenin are cooperatively recruited to the extensively characterized ckm promoter proximal region to facilitate its muscle restricted transcriptional activation in myogenic cells. Depletion of endogenous Smad7 and β-catenin in muscle cells reduced ckm promoter activity indicating their role during myogenesis. Deletion of the β-catenin SID substantially reduced the effect of Smad7 on the ckm promoter and exogenous expression of SID abolished β-catenin function, indicating that SID functions as a trans dominant-negative regulator of β-catenin activity. β-catenin interaction with the Mediator kinase complex through its Med12 subunit led us to identify MED13 as an additional Smad7-binding partner. Collectively, these studies document a novel function of a Smad7-MED12/13-β-catenin complex at the ckm locus, indicating a key role of this complex in the program of myogenic gene expression underlying skeletal muscle development and regeneration.
Collapse
|
10
|
Song C, Wang J, Ma Y, Yang Z, Dong D, Li H, Yang J, Huang Y, Plath M, Ma Y, Chen H. Linc-smad7 promotes myoblast differentiation and muscle regeneration via sponging miR-125b. Epigenetics 2018; 13:591-604. [PMID: 29912619 DOI: 10.1080/15592294.2018.1481705] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in the regulation of skeletal muscle development. In the present study, differentially expressed lncRNAs were identified from RNA-seq data derived from myoblasts and myotubes. We conducted studies to elucidate the function and molecular mechanism of action of Linc-smad7 during skeletal muscle development. Our findings show that Linc-smad7 is upregulated during the early phase of myoblasts differentiation. In in vitro studies, we showed that overexpression of Linc-smad7 promoted the arrest of myoblasts in G1 phase, inhibited DNA replication, and induced myoblast differentiation. Our in vivo studies suggest that Linc-smad7 stimulates skeletal muscle regeneration in cardiotoxin-induced muscle injury. Mechanistically, Linc-smad7 overexpression increased smad7 and IGF2 protein levels. On the contrary, overexpression of miR-125b reduced smad7 and IGF2 protein levels. Results of RNA immunoprecipitation analysis and biotin-labeled miR-125b capture suggest that Linc-smad7 could act as a competing endogenous RNA (ceRNA) for miRNA-125b. Taken together, our findings suggest that the novel noncoding regulator Linc-smad7 regulates skeletal muscle development.
Collapse
Affiliation(s)
- Chengchuang Song
- a College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , China
| | - Jian Wang
- a College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , China
| | - Yilei Ma
- a College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , China
| | - Zhaoxin Yang
- a College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , China
| | - Dong Dong
- a College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , China
| | - Hui Li
- a College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , China
| | - Jiameng Yang
- a College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , China
| | - Yongzhen Huang
- a College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , China
| | - Martin Plath
- a College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , China
| | - Yun Ma
- b Xinyang Normal University , Xinyang , Henan , China
| | - Hong Chen
- a College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , China
| |
Collapse
|
11
|
Lim R, Barker G, Lappas M. SMAD7 regulates proinflammatory and prolabor mediators in amnion and myometrium. Biol Reprod 2018; 97:288-301. [PMID: 29044425 DOI: 10.1093/biolre/iox080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Preterm birth continues to be a significant public health problem. Infection (bacterial and or viral) and inflammation, by stimulating proinflammatory cytokines, adhesion molecules, and matrix metalloproteinase 9 (MMP9), play a central role in the rupture of membranes and myometrial contractions. SMAD7 has been implicated in regulating the inflammatory response; however, no studies have been performed with regard to human labor. In this study, we determined the effect of spontaneous human labor and prolabor mediators on SMAD7 expression in myometrium and fetal membranes. Functional studies were employed to investigate the effect of siRNA knockdown of SMAD7 (siSMAD7) in regulating infection and inflammation-induced prolabor mediators. SMAD7 mRNA and protein expression were significantly higher with spontaneous term labor, compared to no labor, in myometrium and fetal membranes. SMAD7 expression was also significantly higher in amnion from women with preterm chorioamnionitis. The proinflammatory cytokines IL1B and TNF, the bacterial product fsl-1, and the viral dsRNA analog poly(I:C) significantly increased SMAD7 in myometrial cells and amnion cells. In myometrial cells, siSMAD7 cells significantly decreased cytokine (IL6) and chemokine (CXCL1, CXCL8, CCL2 are also known as GRO-alpha, interleukin (IL)-8 and monocyte chemotactic protein-1 (MCP-1)) production induced by IL1B, TNF, and fsl-1. There was also a decrease in the expression of adhesion molecules intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) in siSMAD7 cells, and MMP9 expression. In amnion, siSMAD7 cells treated with IL1B also decreased cytokine and chemokine production, ICAM1 and MMP9 expression. In conclusion, we report a proinflammatory role for SMAD7 in human gestational tissues, with SMAD7 silencing attenuating the inflammatory response.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
12
|
Wang Y, Ding X, Tan Z, Ning C, Xing K, Yang T, Pan Y, Sun D, Wang C. Genome-Wide Association Study of Piglet Uniformity and Farrowing Interval. Front Genet 2017; 8:194. [PMID: 29234349 PMCID: PMC5712316 DOI: 10.3389/fgene.2017.00194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/15/2017] [Indexed: 02/04/2023] Open
Abstract
Piglet uniformity (PU) and farrowing interval (FI) are important reproductive traits related to production and economic profits in the pig industry. However, the genetic architecture of the longitudinal trends of reproductive traits still remains elusive. Herein, we performed a genome-wide association study (GWAS) to detect potential genetic variation and candidate genes underlying the phenotypic records at different parities for PU and FI in a population of 884 Large White pigs. In total, 12 significant SNPs were detected on SSC1, 3, 4, 9, and 14, which collectively explained 1–1.79% of the phenotypic variance for PU from parity 1 to 4, and 2.58–4.11% for FI at different stages. Of these, seven SNPs were located within 16 QTL regions related to swine reproductive traits. One QTL region was associated with birth body weight (related to PU) and contained the peak SNP MARC0040730, and another was associated with plasma FSH concentration (related to FI) and contained the SNP MARC0031325. Finally, some positional candidate genes for PU and FI were identified because of their roles in prenatal skeletal muscle development, fetal energy substrate, pre-implantation, and the expression of mammary gland epithelium. Identification of novel variants and candidate genes will greatly advance our understanding of the genetic mechanisms of PU and FI, and suggest a specific opportunity for improving marker assisted selection or genomic selection in pigs.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Tan
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Xing
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting Yang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongjie Pan
- Beijing Shunxin Agriculture Co., Ltd., Beijing, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Khatibi S, Babon J, Wagner J, Manton JH, Tan CW, Zhu HJ, Wormald S, Burgess AW. TGF-β and IL-6 family signalling crosstalk: an integrated model. Growth Factors 2017; 35:100-124. [PMID: 28948853 DOI: 10.1080/08977194.2017.1363746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mathematical models for TGF-β and IL-6 signalling have been linked, providing a platform for analyzing the crosstalk between the systems. An integrated IL-6:TGF-β model was developed via a reduced set of reaction equations which incorporate both feedback loops and appropriate time-delays for transcription and translation processes. The model simulates stable, robust and realistic responses to both ligands. Pulsatile (multiple pulses) inputs for both TGF-β and IL-6 have been simulated to investigate the effects of each ligand on the sensitivity, equilibrium and dynamic responses of the integrated signalling system. In our simulations the crosstalk between constant IL-6 and TGF-β signalling via SMAD7 does not appear to be sufficient to render the cells resistant to TGF-β inhibition. However, the simulations predict that pulsatile IL-6 stimulation would increase SMAD7 levels substantially and consequentially, lead to resistance to TGF-β. The model also allows the prediction of the integrated signalling pathway responses to the mutation of key components, e.g. Gp130 F/F.
Collapse
Affiliation(s)
- Shabnam Khatibi
- a Department of Electrical and Electronic Engineering , University of Melbourne , Parkville , VIC , Australia
- b Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research (WEHI) , Parkville , VIC , Australia
| | - Jeff Babon
- b Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research (WEHI) , Parkville , VIC , Australia
| | - John Wagner
- a Department of Electrical and Electronic Engineering , University of Melbourne , Parkville , VIC , Australia
- c IBM Researchtreetience , Carlton , Australia
- d Department of Medical Biology , University of Melbourne , Parkville , VIC , Australia
| | - Jonathan H Manton
- a Department of Electrical and Electronic Engineering , University of Melbourne , Parkville , VIC , Australia
| | - Chin Wee Tan
- b Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research (WEHI) , Parkville , VIC , Australia
- e IBM Research Collaboratory for Life Sciences Research , Victorian Life Sciences Computation Initiative , Carlton , VIC , Australia
| | - Hong-Jian Zhu
- f Department of Surgery (RMH) , University of Melbourne , Parkville , VIC , Australia
| | - Sam Wormald
- g Division of Cancer and Haematology , The Walter and Eliza Hall Institute of Medical Research (WEHI) , Parkville , VIC , Australia
| | - Antony W Burgess
- b Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research (WEHI) , Parkville , VIC , Australia
- e IBM Research Collaboratory for Life Sciences Research , Victorian Life Sciences Computation Initiative , Carlton , VIC , Australia
| |
Collapse
|
14
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Hua C, Wang Z, Zhang J, Peng X, Hou X, Yang Y, Li K, Tang Z. SMAD7, an antagonist of TGF-beta signaling, is a candidate of prenatal skeletal muscle development and weaning weight in pigs. Mol Biol Rep 2016; 43:241-51. [DOI: 10.1007/s11033-016-3960-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022]
|
17
|
Cohen TV, Kollias HD, Liu N, Ward CW, Wagner KR. Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. J Physiol 2015; 593:2479-97. [PMID: 25854148 DOI: 10.1113/jp270201] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Smad7 is an intracellular antagonist of transforming growth factor-β signalling pathways and modulates muscle growth in vivo. Loss of Smad7 results in decreased muscle mass, reduced force generation, fibre type switching from glycolytic towards oxidative type and delayed recovery from injury. Upregulated Smad2/3 signalling in Smad7(-/-) muscle results in reduced myoblast proliferation and differentiation. Smad7 is an important regulator of muscle growth and may be a potential intracellular therapeutic target for muscle disorders. ABSTRACT The transforming growth factor-β (TGF-β) family of growth factors plays an essential role in mediating cellular growth and differentiation. Myostatin is a muscle-specific member of the TGF-β superfamily and a negative regulator of muscle growth. Myostatin inhibitors are currently being pursued as therapeutic options for muscle disorders. Smad7 inhibits intracellular myostatin signalling via Smad2/3, and thus presents a means of regulating myostatin and potentiating muscle growth. We investigated the functional loss of Smad7 on muscle in vivo by examining muscle growth and differentiation in mice deficient in Smad7 (Smad7(-/-) ). Smad7(-/-) mice showed reduced muscle mass, hypotrophy and hypoplasia of muscle fibres, as well as an increase in oxidative fibre types. Examination of muscle strength showed reduced force generation in vivo and ex vivo compared to wild-type controls. Analysis of muscle regeneration showed a delay in recovery, probably as a result of decreased activation, proliferation and differentiation of satellite cells, as confirmed in vitro. Additionally, myostatin expression was upregulated in Smad7(-/-) muscle. Our findings suggest that increased Smad2/3 signalling in the absence of Smad7 inhibition impedes muscle growth and regeneration. Taken together, our experiments demonstrate that Smad7 is an important mediator of muscle growth in vivo. Our studies enhance our understanding of in vivo TGF-β pathway modulation and suggest that Smad7 may be an important therapeutic target for muscle disorders.
Collapse
Affiliation(s)
- Tatiana V Cohen
- Centre for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA.,Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Helen D Kollias
- Centre for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
| | - Naili Liu
- Centre for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
| | - Christopher W Ward
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Kathryn R Wagner
- Centre for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA.,Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA.,The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Lamarche É, Lala-Tabbert N, Gunanayagam A, St-Louis C, Wiper-Bergeron N. Retinoic acid promotes myogenesis in myoblasts by antagonizing transforming growth factor-beta signaling via C/EBPβ. Skelet Muscle 2015; 5:8. [PMID: 25878769 PMCID: PMC4397812 DOI: 10.1186/s13395-015-0032-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/18/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The effects of transforming growth factor-beta (TGFβ) are mediated by the transcription factors Smad2 and Smad3. During adult skeletal myogenesis, TGFβ signaling inhibits the differentiation of myoblasts, and this can be reversed by treatment with retinoic acid (RA). In mesenchymal stem cells and preadipocytes, RA treatment can function in a non-classical manner by stimulating the expression of Smad3. Smad3 can bind to and prevent the bzip transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) from binding DNA response elements in target promoters, thereby affecting cell differentiation. In skeletal muscle, C/EBPβ is highly expressed in satellite cells and myoblasts and is downregulated during differentiation. Persistent expression of C/EBPβ in myoblasts inhibits their differentiation. METHODS Using both C2C12 myoblasts and primary myoblasts, we examined the regulation of C/EBPβ expression and activity following treatment with TGFβ and RA. RESULTS We demonstrate that treatment with RA upregulates Smad3, but not Smad2 expression in myoblasts, and can partially rescue the block of differentiation induced by TGFβ. RA treatment reduces C/EBPβ occupancy of the Pax7 and Smad2 promoters and decreased their expression. RA also inhibits the TGFβ-mediated phosphorylation of Smad2, which may also contribute to its pro-myogenic activities. TGFβ treatment of C2C12 myoblasts stimulates C/EBPβ expression, which in turn can stimulate Pax7 and Smad2 expression, and inhibits myogenesis. Loss of C/EBPβ expression in myoblasts partially restores differentiation in the presence of TGFβ. CONCLUSIONS TGFβ acts, at least in part, to inhibit myogenesis by upregulating the expression of C/EBPβ, as treatment with RA or loss of C/EBPβ can partially rescue differentiation in TGFβ-treated cells. This work identifies a pro-myogenic role for Smad3, through the inhibition of C/EBPβ's actions in myoblasts, and reveals mechanisms of crosstalk between RA and TGFβ signaling pathways.
Collapse
Affiliation(s)
- Émilie Lamarche
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada
| | - Neena Lala-Tabbert
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada
| | - Angelo Gunanayagam
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada
| | - Catherine St-Louis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada
| |
Collapse
|
19
|
Xu P, Bailey-Bucktrout S, Xi Y, Xu D, Du D, Zhang Q, Xiang W, Liu J, Melton A, Sheppard D, Chapman HA, Bluestone JA, Derynck R. Innate antiviral host defense attenuates TGF-β function through IRF3-mediated suppression of Smad signaling. Mol Cell 2014; 56:723-37. [PMID: 25526531 PMCID: PMC4273650 DOI: 10.1016/j.molcel.2014.11.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/02/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023]
Abstract
TGF-β signaling is essential in many processes, including immune surveillance, and its dysregulation controls various diseases, including cancer, fibrosis, and inflammation. Studying the innate host defense, which functions in most cell types, we found that RLR signaling represses TGF-β responses. This regulation is mediated by activated IRF3, using a dual mechanism of IRF3-directed suppression. Activated IRF3 interacts with Smad3, thus inhibiting TGF-β-induced Smad3 activation and, in the nucleus, disrupts functional Smad3 transcription complexes by competing with coregulators. Consequently, IRF3 activation by innate antiviral signaling represses TGF-β-induced growth inhibition, gene regulation and epithelial-mesenchymal transition, and the generation of Treg effector lymphocytes from naive CD4(+) lymphocytes. Conversely, silencing IRF3 expression enhances epithelial-mesenchymal transition, TGF-β-induced Treg cell differentiation upon virus infection, and Treg cell generation in vivo. We present a mechanism of regulation of TGF-β signaling by the antiviral defense, with evidence for its role in immune tolerance and cancer cell behavior.
Collapse
Affiliation(s)
- Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA.
| | - Samantha Bailey-Bucktrout
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Ying Xi
- Department of Medicine and Cardiovascular Research Institute, University of California at San Francisco, CA 94143, USA
| | - Daqi Xu
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Dan Du
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA
| | - Qian Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weiwen Xiang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Liu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA
| | - Andrew Melton
- Lung Biology Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Dean Sheppard
- Lung Biology Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Harold A Chapman
- Department of Medicine and Cardiovascular Research Institute, University of California at San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Rik Derynck
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Kawaguchi N. Stem cells for cardiac regeneration and possible roles of the transforming growth factor-β superfamily. Biomol Concepts 2014; 3:99-106. [PMID: 25436527 DOI: 10.1515/bmc.2011.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 10/25/2011] [Indexed: 11/15/2022] Open
Abstract
Abstract Heart failure is a leading cause of death worldwide. Studies of stem cell biology are essential for developing efficient treatments. Recently, we established and characterized c-kit-positive cardiac stem cells from the adult rat heart. Using a MethoCult culture system with a methyl-cellulose-based medium, stem-like left-atrium-derived pluripotent cells could be regulated to differentiate into skeletal/cardiac myocytes or adipocytes with almost 100% purity. Microarray and pathway analyses of these cells showed that transforming growth factor-β1 (TGF-β1) and noggin were significantly involved in the differentiation switch. Furthermore, TGF-β1 may act as a regulator for this switch because it simultaneously inhibits adipogenesis and activates myogenesis in a dose-dependent manner. However, the effect of TGF-β varies with developmental stage, dosage, and timing of treatment. In the present review, the findings of recent studies, in particular the use of c-kit-positive cardiac stem cells, are discussed. The effects of the TGF-β superfamily on differentiation, especially on adipogenesis and/or myogenesis, have important implications for future regenerative medicine.
Collapse
|
21
|
Zhao B, Chen YG. Regulation of TGF-β Signal Transduction. SCIENTIFICA 2014; 2014:874065. [PMID: 25332839 PMCID: PMC4190275 DOI: 10.1155/2014/874065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/02/2014] [Indexed: 05/30/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity, and migration. TGF-β signaling can be mediated by Smad proteins or other signaling proteins such as MAP kinases and Akt. TGF-β signaling is tightly regulated at different levels along the pathways to ensure its proper physiological functions in different cells and tissues. Deregulation of TGF-β signaling has been associated with various kinds of diseases, such as cancer and tissue fibrosis. This paper focuses on our recent work on regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Bing Zhao
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Yin Yang 1 (YY1) synergizes with Smad7 to inhibit TGF-β signaling in the nucleus. SCIENCE CHINA-LIFE SCIENCES 2013; 57:128-36. [PMID: 24369345 DOI: 10.1007/s11427-013-4581-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022]
Abstract
As a prototype of the TGF-β superfamily cytokines, TGF-β is well known for its diverse roles in embryogenesis and adult tissue homeostasis. TGF-β evokes cellular responses by signaling mainly through cell membrane receptors and transcription factor R-Smads and Co-Smad (Smad4), while an inhibitory Smad, Smad7, acts as a critical negative regulator of TGF-β signaling. Smad7 antagonizes TGF-β signaling by regulating the stability or activity of the receptors or blocking the DNA binding of the functional R-Smad-Smad4 complex in the nucleus. However, the function of Smad7 in the nucleus is not fully understood. Yin Yang 1 (YY1) is a ubiquitously expressed transcription factor with multiple functions. It has been reported that YY1 can inhibit Smad-dependent transcriptional responses and TGF-β/BMP-induced cell differentiation independently of its DNA binding ability. In this study, we found that Smad7 interacts with YY1 and the interaction is attenuated by TGF-β signaling. Reporter assays and target gene expression analyses revealed that Smad7 and YY1 act in concert to inhibit TGF-β-induced transcription in the nucleus. Furthermore, Smad7 could enhance the interaction of YY1 with the histone deacetylase HDAC1. Consistently, YY1 and HDAC1 augmented the transcription repression activity of Smad7 in Gal4-luciferase reporter analysis. Therefore, our findings define a novel mechanism of Smad7 and YY1 to antagonize TGF-β signaling.
Collapse
|
23
|
Stolfi C, Marafini I, De Simone V, Pallone F, Monteleone G. The dual role of Smad7 in the control of cancer growth and metastasis. Int J Mol Sci 2013; 14:23774-90. [PMID: 24317436 PMCID: PMC3876077 DOI: 10.3390/ijms141223774] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 02/07/2023] Open
Abstract
Smad7 was initially identified as an inhibitor of Transforming growth factor (TGF)-β due mainly to its ability to bind TGF-β receptor type I and prevent TGF-β-associated Smad signaling. More recently, it has been demonstrated that Smad7 can interact with other intracellular proteins and regulate also TGF-β-independent signaling pathways thus making a valid contribution to the neoplastic processes in various organs. In particular, data emerging from experimental studies indicate that Smad7 may differently modulate the course of various tumors depending on the context analyzed. These observations, together with the demonstration that Smad7 expression is deregulated in many cancers, suggest that therapeutic interventions around Smad7 can help interfere with the development/progression of human cancers. In this article we review and discuss the available data supporting the role of Smad7 in the modulation of cancer growth and progression.
Collapse
Affiliation(s)
- Carmine Stolfi
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (G.M.); Tel.: +39-6-7259-6150 (G.S.); Fax: +39-6-7259-6391 (G.S.)
| | | | | | | | - Giovanni Monteleone
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (G.M.); Tel.: +39-6-7259-6150 (G.S.); Fax: +39-6-7259-6391 (G.S.)
| |
Collapse
|
24
|
Wang E, Jin W, Duan W, Qiao B, Sun S, Huang G, Shi K, Jin L, Wang H. Association of two variants in SMAD7 with the risk of congenital heart disease in the Han Chinese population. PLoS One 2013; 8:e72423. [PMID: 24039762 PMCID: PMC3764115 DOI: 10.1371/journal.pone.0072423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
Abstract
SMAD7 is a general antagonist of TGF-β signaling and has been found to be involved in cardiogenesis in mouse models, but its role in human congenital heart disease (CHD) has yet to be investigated. To examine if SMAD7 is associated with CHD, we conducted a case-control study in the Han Chinese population. Exon1 and exon4 of SMAD7, which encode the functional MH1 and MH2 domains, were directly sequenced in 1,201 sporadic CHD patients and 1,116 control individuals. A total of 18 sequence variations were identified. Two common variants rs3809922 and rs3809923 are located at exon4 of SMAD7, and were found in strong linkage disequilibrium with each other (r² = 0.93). We analyzed the association of these two loci with CHD in 3 independent subgroup case-control studies, and found that in some subgroups, rs3809922 and rs3809923 were significantly associated with CHD through genetic model analysis. In the combined data set, TT genotype in rs3809922 significantly increased the risk of CHD compared with CC and CT, while GG genotype in rs3809923 significantly increased the risk of CHD compared with CC and CG, particularly in the recessive model. In addition, haplotype analyses showed that haplotype TG significantly increased the risk of CHD (P = 6.9×10⁻⁶); this finding supports the results from the analyses based on single locus. According to data from the 1000 Genomes Project, the frequencies of the two risk alleles varied greatly between populations worldwide, which indicate the identified associations might have a population difference. To our knowledge, this is the first report that genetic variants in SMAD7 influence susceptibility to CHD risk.
Collapse
Affiliation(s)
- Erli Wang
- Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- The State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenfei Jin
- Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenyuan Duan
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, Jinan, China
| | - Bin Qiao
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, Jinan, China
| | - Shuna Sun
- Children's Hospital of Fudan University, Shanghai, China
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai, China
| | - Kaihu Shi
- Second Hospital of Anhui Medical University, Hefei, China
| | - Li Jin
- Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- The State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (LJ); (HW)
| | - Hongyan Wang
- The State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- The Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (LJ); (HW)
| |
Collapse
|
25
|
Qu X, Li Q, Wang X, Yang X, Wang D. N-acetylcysteine attenuates cardiopulmonary bypass-induced lung injury in dogs. J Cardiothorac Surg 2013; 8:107. [PMID: 23607780 PMCID: PMC3639066 DOI: 10.1186/1749-8090-8-107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/12/2013] [Indexed: 01/16/2023] Open
Abstract
Background Cardiopulmonary bypass (CPB) is usually associated with inflammatory response that leads to various degrees of organ dysfunction in multiple systems, including lung injury. Our previous study showed that transforming growth factor beta1 (TGFβ1) was involved in CPB-induced lung injury. N-acetylcysteine (NAC) is an antioxidant and is able to prevent CPB-induced pneumocyte apoptosis through scavenging radical. Therefore, we investigated whether NAC may attenuate CPB-induced lung injury by inhibiting TGFβ1 expression. Methods Fifty-four 18 to 24-month-old mongrel dogs (15–16 kg) were randomly divided into control group, CPB group and NAC group (n = 18). Six dogs in each group were killed prior to, as well as 30 and 60 minutes after the operation (T0, T1 and T2). Lung injury was evaluated by hematoxylin and eosin (H&E) staining. Respiratory index (RI), oxygenation index (OI), malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in the lung were determined at each time point. TGFβ1 expression was determined using real time RT-PCR and immunohistochemistry. Results A serious lung injury was observed after CPB in dogs. RI and MDA content were increased significantly after CPB, whereas OI and SOD activity were decreased. H&E staining showed that NAC treatment obviously attenuated CPB-induced lung injury. NAC treatment upregulated OI and SOD activity and downregulated RI and MDA content in the lung tissues of dogs after CPB. Treatment with NAC significantly suppressed the TGFβ1 expression in the lung tissues at both mRNA and protein levels. Conclusion Our results suggest that NAC is a potent agent against CPB-induced acute lung injury through inhibiting TGFβ1 expression.
Collapse
|
26
|
Hernández-Hernández JM, Mallappa C, Nasipak BT, Oesterreich S, Imbalzano AN. The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state. Nucleic Acids Res 2013; 41:5704-16. [PMID: 23609547 PMCID: PMC3675494 DOI: 10.1093/nar/gkt285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The regulation of skeletal muscle gene expression during myogenesis is mediated by lineage-specific transcription factors in combination with numerous cofactors, many of which modify chromatin structure. However, the involvement of scaffolding proteins that organize chromatin and chromatin-associated regulatory proteins has not extensively been explored in myogenic differentiation. Here, we report that Scaffold attachment factor b1 (Safb1), primarily associated with transcriptional repression, functions as a positive regulator of myogenic differentiation. Knockdown of Safb1 inhibited skeletal muscle marker gene expression and differentiation in cultured C2C12 myoblasts. In contrast, over-expression resulted in the premature expression of critical muscle structural proteins and formation of enlarged thickened myotubes. Safb1 co-immunoprecipitated with MyoD and was co-localized on myogenic promoters. Upon Safb1 knockdown, the repressive H3K27me3 histone mark and binding of the Polycomb histone methyltransferase Ezh2 persisted at differentiation-dependent gene promoters. In contrast, the appearance of histone marks and regulators associated with myogenic gene activation, such as myogenin and the SWI/SNF chromatin remodelling enzyme ATPase, Brg1, was blocked. These results indicate that the scaffold protein Safb1 contributes to the activation of skeletal muscle gene expression during myogenic differentiation by facilitating the transition of promoter sequences from a repressive chromatin structure to one that is transcriptionally permissive.
Collapse
Affiliation(s)
- J. Manuel Hernández-Hernández
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA and Department of Pharmacology and Chemical Biology, Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Chandrashekara Mallappa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA and Department of Pharmacology and Chemical Biology, Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Brian T. Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA and Department of Pharmacology and Chemical Biology, Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Steffi Oesterreich
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA and Department of Pharmacology and Chemical Biology, Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA and Department of Pharmacology and Chemical Biology, Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- *To whom correspondence should be addressed. Tel: +1 508 856 1029; Fax: +1 508 856 5612;
| |
Collapse
|
27
|
IHG-1 must be localised to mitochondria to decrease Smad7 expression and amplify TGF-β1-induced fibrotic responses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1969-78. [PMID: 23567938 DOI: 10.1016/j.bbamcr.2013.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/28/2013] [Accepted: 03/26/2013] [Indexed: 01/15/2023]
Abstract
TGF-β1 is a prototypic profibrotic cytokine and major driver of fibrosis in the kidney and other organs. Induced in high glucose-1 (IHG-1) is a mitochondrial protein which we have recently reported to be associated with renal disease. IHG-1 amplifies responses to TGF-β1 and regulates mitochondrial biogenesis by stabilising the transcriptional co-activator peroxisome proliferator-activated receptor gamma coactivator-1-alpha. Here we report that the mitochondrial localisation of IHG-1 is pivotal in the amplification of TGF-β1 signalling. We demonstrate that IHG-1 expression is associated with repression of the endogenous TGF-β1 inhibitor Smad7. Intriguingly, expression of a non-mitochondrial deletion mutant of IHG-1 (Δmts-IHG-1) repressed TGF-β1 fibrotic signalling in renal epithelial cells. In cells expressing Δmts-IHG-1 fibrotic responses including CCN2/connective tissue growth factor, fibronectin and jagged-1 expression were reduced following stimulation with TGF-β1. Δmts-IHG-1 modulation of TGF-β1 signalling was associated with increased Smad7 protein expression. Δmts-IHG-1 modulated TGF-β1 activity by increasing Smad7 protein expression as it failed to inhibit TGF-β1 transcriptional responses when endogenous Smad7 expression was knocked down. These data indicate that mitochondria modulate TGF-β1 signal transduction and that IHG-1 is a key player in this modulation.
Collapse
|
28
|
Dionyssiou MG, Salma J, Bevzyuk M, Wales S, Zakharyan L, McDermott JC. Krüppel-like factor 6 (KLF6) promotes cell proliferation in skeletal myoblasts in response to TGFβ/Smad3 signaling. Skelet Muscle 2013; 3:7. [PMID: 23547561 PMCID: PMC3669038 DOI: 10.1186/2044-5040-3-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/15/2013] [Indexed: 11/21/2022] Open
Abstract
Background Krüppel-like factor 6 (KLF6) has been recently identified as a MEF2D target gene involved in neuronal cell survival. In addition, KLF6 and TGFβ have been shown to regulate each other’s expression in non-myogenic cell types. Since MEF2D and TGFβ also fulfill crucial roles in skeletal myogenesis, we wanted to identify whether KLF6 functions in a myogenic context. Methods KLF6 protein expression levels and promoter activity were analyzed using standard cellular and molecular techniques in cell culture. Results We found that KLF6 and MEF2D are co-localized in the nuclei of mononucleated but not multinucleated myogenic cells and, that the MEF2 cis element is a key component of the KLF6 promoter region. In addition, TGFβ potently enhanced KLF6 protein levels and this effect was repressed by pharmacological inhibition of Smad3. Interestingly, pharmacological inhibition of MEK/ERK (1/2) signaling resulted in re-activation of the differentiation program in myoblasts treated with TGFβ, which is ordinarily repressed by TGFβ treatment. Conversely, MEK/ERK (1/2) inhibition had no effect on TGFβ-induced KLF6 expression whereas Smad3 inhibition negated this effect, together supporting the existence of two separable arms of TGFβ signaling in myogenic cells. Loss of function analysis using siRNA-mediated KLF6 depletion resulted in enhanced myogenic differentiation whereas TGFβ stimulation of myoblast proliferation was reduced in KLF6 depleted cells. Conclusions Collectively these data implicate KLF6 in myoblast proliferation and survival in response to TGFβ with consequences for our understanding of muscle development and a variety of muscle pathologies.
Collapse
Affiliation(s)
- Mathew G Dionyssiou
- Department of Biology, York University; York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Alimperti S, Lei P, Tian J, Andreadis ST. A novel lentivirus for quantitative assessment of gene knockdown in stem cell differentiation. Gene Ther 2012; 19:1123-32. [PMID: 22241174 DOI: 10.1038/gt.2011.208] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 01/19/2023]
Abstract
Loss of gene function is a valuable tool for screening genes in cellular processes including stem cell differentiation differentiation. However, the criteria for evaluating gene knockdown are usually based on end-point analysis and real-time, dynamic information is lacking. To overcome these limitations, we engineered a shRNA encoding LentiViral Dual Promoter vector (shLVDP) that enabled real-time monitoring of mesenchymal stem (MSC) differentiation and simultaneous gene knockdown. In this vector, the activity of the alpha-smooth muscle actin (αSMA) promoter was measured by the expression of a destabilized green fluorescent protein, and was used as an indicator of myogenic differentiation; constitutive expression of discosoma red fluorescent protein was used to measure transduction efficiency and to normalize αSMA promoter activity; and shRNA was encoded by a doxycycline (Dox)-regulatable H1 promoter. Importantly, the normalized promoter activity was independent of lentivirus titer allowing quantitative assessment of gene knockdown. Using this vector, we evaluated 11 genes in the TGF-β1 or Rho signaling pathway on SMC maturation and on MSC differentiation along the myogenic lineage. As expected, knockdown of genes such as Smad2/3 or RhoA inhibited myogenic differentiation, while knocking down the myogenic differentiation inhibitor, Klf4, increased αSMA promoter activity significantly. Notably, some genes for example, Smad7 or KLF4 showed differential regulation of myogenic differentiation in MSC from different anatomic locations such as bone marrow and hair follicles. Finally, Dox-regulatable shRNA expression enabled temporal control of gene knockdown and provided dynamic information on the effect of different genes on myogenic phenotype. Our data suggests that shLVDP may be ideal for development of lentiviral microarrays to decipher gene regulatory networks of complex biological processes such as stem cell differentiation or reprogramming.
Collapse
Affiliation(s)
- S Alimperti
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14072, USA
| | | | | | | |
Collapse
|
30
|
Gahr SA, Weber GM, Rexroad CE. Identification and expression of Smads associated with TGF-β/activin/nodal signaling pathways in the rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1233-1244. [PMID: 22290475 DOI: 10.1007/s10695-012-9611-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/19/2012] [Indexed: 05/31/2023]
Abstract
The Smad proteins are essential components of the TGF-β/activin/nodal family signaling pathway. We report the identification and expression of transcripts representing three receptor Smads (Smad2a, Smad2b, and Smad3), two common Smads (Smad4a and Smad4b), and one inhibitory Smad (Smad7). Phylogenetic analysis suggests this gene family evolved through the combination of ancient and more recent salmonid genome duplication events. Tissue distribution, embryonic expression, and expression in growth hormone (GH) treated fish were assessed by reverse transcription PCR or qPCR. All six Smad transcripts were ubiquitously expressed in adult tissues. We observed the highest expression of the receptor Smads in unfertilized eggs, generally decreasing during early embryonic development and slightly increasing around 11 days post-fertilization (dpf). Smad7 expression was low for most of embryonic development, with a dramatic increase at the onset of muscle development (6 dpf), and at hatch (24 dpf). Smad4 expression was low during early embryonic development and increased after 14 dpf. The increased expression of Smad4 and Smad7 during late embryonic development may indicate modulation of gene expression by GH axis, which initiates activity during late embryonic development. These data were supported by the modulation of these Smads in the gill filament, stomach, and muscle following a GH treatment. Additionally, these changes are concurrent with the modulation of expression of TGF-β family members. Most significantly, the increased expression of Smad7 in the muscle is simultaneous with increased expression of MSTN1A and not MSTN1B during both embryonic development and following GH treatment. These data indicate a promyogenic role for Smad7 as previously identified in other non-fish species.
Collapse
Affiliation(s)
- Scott A Gahr
- Biology Department, St. Vincent College, 300 Fraser Purchase Rd., Latrobe, PA 15650, USA.
| | | | | |
Collapse
|
31
|
Xu P, Liu J, Derynck R. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett 2012; 586:1871-84. [PMID: 22617150 DOI: 10.1016/j.febslet.2012.05.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 01/17/2023]
Abstract
TGF-β family signaling through Smads is conceptually a simple and linear signaling pathway, driven by sequential phosphorylation, with type II receptors activating type I receptors, which in turn activate R-Smads. Nevertheless, TGF-β family proteins induce highly complex programs of gene expression responses that are extensively regulated, and depend on the physiological context of the cells. Regulation of TGF-β signaling occurs at multiple levels, including TGF-β activation, formation, activation and destruction of functional TGF-β receptor complexes, activation and degradation of Smads, and formation of Smad transcription complexes at regulatory gene sequences that cooperate with a diverse set of DNA binding transcription factors and coregulators. Here we discuss recent insights into the roles of post-translational modifications and molecular interaction networks in the functions of receptors and Smads in TGF-β signal responses. These layers of regulation demonstrate how a simple signaling system can be coopted to exert exquisitely regulated, complex responses.
Collapse
Affiliation(s)
- Pinglong Xu
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
32
|
Mansouri S, Kutky M, Hudak KA. Pokeweed antiviral protein increases HIV-1 particle infectivity by activating the cellular mitogen activated protein kinase pathway. PLoS One 2012; 7:e36369. [PMID: 22563495 PMCID: PMC3341375 DOI: 10.1371/journal.pone.0036369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/05/2012] [Indexed: 11/18/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a plant-derived N-glycosidase that exhibits antiviral activity against several viruses. The enzyme removes purine bases from the messenger RNAs of the retroviruses Human immunodeficiency virus-1 and Human T-cell leukemia virus-1. This depurination reduces viral protein synthesis by stalling elongating ribosomes at nucleotides with a missing base. Here, we transiently expressed PAP in cells with a proviral clone of HIV-1 to examine the effect of the protein on virus production and quality. PAP reduced virus production by approximately 450-fold, as measured by p24 ELISA of media containing virions, which correlated with a substantial decline in virus protein synthesis in cells. However, particles released from PAP-expressing cells were approximately 7-fold more infectious, as determined by single-cycle infection of 1G5 cells and productive infection of MT2 cells. This increase in infectivity was not likely due to changes in the processing of HIV-1 polyproteins, RNA packaging efficiency or maturation of virus. Rather, expression of PAP activated the ERK1/2 MAPK pathway to a limited extent, resulting in increased phosphorylation of viral p17 matrix protein. The increase in infectivity of HIV-1 particles produced from PAP-expressing cells was compensated by the reduction in virus number; that is, virus production decreased upon de novo infection of cells over time. However, our findings emphasize the importance of investigating the influence of heterologous protein expression upon host cells when assessing their potential for antiviral applications.
Collapse
Affiliation(s)
- Sheila Mansouri
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Meherzad Kutky
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Katalin A. Hudak
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Emori T, Kitamura K, Okazaki K. Nuclear Smad7 Overexpressed in Mesenchymal Cells Acts as a Transcriptional Corepressor by Interacting with HDAC-1 and E2F to Regulate Cell Cycle. Biol Open 2012; 1:247-60. [PMID: 23213415 PMCID: PMC3507285 DOI: 10.1242/bio.2012463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Smad family proteins are essential intracellular mediators that regulate transforming growth factor-β (TGF-β) ligand signaling. In response to diverse stimuli, Smad7 is rapidly expressed and acts as a cytoplasmic inhibitor that selectively interferes with signals elicited from TGF-β family receptors. In addition, earlier works have indicated that retrovirally transduced Smad7 induces long-lasting cell proliferation arrest in a variety of mesenchymal cells through down-regulation of G1 cyclins. However, the molecular mechanisms underlying the cytostatic effects of Smad7 remain unknown. We show here that Smad7 can form a complex with endogenous histone deacetylase proteins HDAC-1 and HDAC-3 in NIH 3T3 mouse fibroblast cells. By contrast, forced expression of a dominant-negative variant of HDAC-1 efficiently protected cells against Smad7 proliferation inhibition, suggesting that Smad7 depends on the deacetylase activity of its associated HDAC-1 to arrest the cell cycle. Furthermore, Smad7 caused HDAC-1 bind to E2F-1 to form a ternary complex on chromosomal DNA containing an E2F-binding motif and leading to repression in the activity of the E2F target genes. Smad7 mutations that prevented its binding to either HDAC-1 or E2F-1 resulted in a significant decrease in Smad7-mediated inhibition of cell proliferation. The present results strongly suggest that nuclear Smad7 is a transcriptional corepressor for E2F, providing a molecular basis for the Smad7-induced arrest of the cell cycle.
Collapse
Affiliation(s)
- Takashi Emori
- Present address: Department of Immunology and Inflammatory Diseases, Institute for Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | | | | |
Collapse
|
34
|
Miyake T, McDermott JC, Gramolini AO. A method for the direct identification of differentiating muscle cells by a fluorescent mitochondrial dye. PLoS One 2011; 6:e28628. [PMID: 22174849 PMCID: PMC3235136 DOI: 10.1371/journal.pone.0028628] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/11/2011] [Indexed: 11/18/2022] Open
Abstract
Identification of differentiating muscle cells generally requires fixation, antibodies directed against muscle specific proteins, and lengthy staining processes or, alternatively, transfection of muscle specific reporter genes driving GFP expression. In this study, we examined the possibility of using the robust mitochondrial network seen in maturing muscle cells as a marker of cellular differentiation. The mitochondrial fluorescent tracking dye, MitoTracker, which is a cell-permeable, low toxicity, fluorescent dye, allowed us to distinguish and track living differentiating muscle cells visually by epi-fluorescence microscopy. MitoTracker staining provides a robust and simple detection strategy for living differentiating cells in culture without the need for fixation or biochemical processing.
Collapse
Affiliation(s)
- Tetsuaki Miyake
- Department of Physiology, University of Toronto, Best Institute Medical Research, Toronto, Canada
- * E-mail: (AOG); (TM)
| | | | - Anthony O. Gramolini
- Department of Physiology, University of Toronto, Best Institute Medical Research, Toronto, Canada
- * E-mail: (AOG); (TM)
| |
Collapse
|
35
|
Isolation and characterization of BetaM protein encoded by ATP1B4 – a unique member of the Na,K-ATPase β-subunit gene family. Biochem Biophys Res Commun 2011; 412:543-8. [DOI: 10.1016/j.bbrc.2011.07.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 11/21/2022]
|
36
|
Role of Smads in TGFβ signaling. Cell Tissue Res 2011; 347:21-36. [PMID: 21643690 DOI: 10.1007/s00441-011-1190-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/10/2011] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-β (TGFβ) is the prototype for a large family of pleiotropic factors that signal via heterotetrameric complexes of type I and type II serine/threonine kinase receptors. Important intracellular mediators of TGFβ signaling are members of the Smad family. Smad2 and 3 are activated by C-terminal receptor-mediated phosphorylation, whereafter they form complexes with Smad4 and are translocated to the nucleus where they, in cooperation with other transcription factors, co-activators and co-repressors, regulate the transcription of specific genes. Smads have key roles in exerting TGFβ-induced programs leading to cell growth arrest and epithelial-mesenchymal transition. The activity and stability of Smad molecules are carefully regulated by a plethora of post-translational modifications, including phosphorylation, ubiquitination, sumoylation, acetylation and poly(ADP)-ribosylation. The Smad function has been shown to be perturbed in certain diseases such as cancer.
Collapse
|
37
|
Shalom-Feuerstein R, Lena AM, Zhou H, De La Forest Divonne S, Van Bokhoven H, Candi E, Melino G, Aberdam D. ΔNp63 is an ectodermal gatekeeper of epidermal morphogenesis. Cell Death Differ 2011; 18:887-96. [PMID: 21127502 PMCID: PMC3131930 DOI: 10.1038/cdd.2010.159] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/28/2010] [Accepted: 10/28/2010] [Indexed: 11/08/2022] Open
Abstract
p63, a member of p53 family, has a significant role in the development and maintenance of stratified epithelia. However, a persistent dispute remained over the last decade concerning the interpretation of the severe failure of p63-null embryos to develop stratified epithelia. In this study, by investigating both p63-deficient strains, we demonstrated that p63-deficient epithelia failed to develop beyond ectodermal stage as they remained a monolayer of non-proliferating cells expressing K8/K18. Importantly, in the absence of p63, corneal-epithelial commitment (which occurs at embryonic day 12.5 of mouse embryogenesis) was hampered 3 weeks before corneal stem cell renewal (that begins at P14). Taken together, these data illustrate the significant role of p63 in epithelial embryogenesis, before and independently of other functions of p63 in adult stem cells regulation. Transcriptome analysis of laser captured-embryonic tissues confirmed the latter hypothesis, demonstrating that a battery of epidermal genes that were activated in wild-type epidermis remained silent in p63-null tissues. Furthermore, we defined a subset of novel bona fide p63-induced genes orchestrating first epidermal stratification and a subset of p63-repressed mesodermal-specific genes. These data highlight the earliest recognized action of ΔNp63 in the induction epidermal morphogenesis at E11.5. In the absence of p63, a mesodermal program is activated while epidermal morphogenesis does not initiate.
Collapse
Affiliation(s)
- R Shalom-Feuerstein
- INSERM U898, Nice 06107, France
- University of Nice-Sophia Antipolis, Nice 06107, France
- INSERTECH, Bruce Rappaport Institute, Technion, Haifa, Israel
| | - A M Lena
- Biochemistry Laboratory IDI-IRCCS, University of Rome ‘Tor Vergata', Rome 00133, Italy
| | - H Zhou
- Radbound University Nijmegen Medical Centre, NCMLS, Nijmegen 6525GA, The Netherlands
| | | | - H Van Bokhoven
- Radbound University Nijmegen Medical Centre, NCMLS, Nijmegen 6525GA, The Netherlands
| | - E Candi
- Biochemistry Laboratory IDI-IRCCS, University of Rome ‘Tor Vergata', Rome 00133, Italy
| | - G Melino
- Biochemistry Laboratory IDI-IRCCS, University of Rome ‘Tor Vergata', Rome 00133, Italy
| | - D Aberdam
- INSERM U898, Nice 06107, France
- University of Nice-Sophia Antipolis, Nice 06107, France
- INSERTECH, Bruce Rappaport Institute, Technion, Haifa, Israel
| |
Collapse
|
38
|
Abstract
TGF-β (transforming growth factor-β) is a pleiotropic cytokine regulating diverse cellular processes. It signals through membrane-bound receptors, downstream Smad proteins and/or other signalling mediators. Smad7 has been well established to be a key negative regulator of TGF-β signalling. It antagonizes TGF-β signalling through multiple mechanisms in the cytoplasm and in the nucleus. Smad7 can be transcriptionally induced by TGF-β and other growth factors and serves as an important cross-talk mediator of the TGF-β signalling pathway with other signalling pathways. Accordingly, it plays pivotal roles in embryonic development and adult homoeostasis, and altered expression of Smad7 is often associated with human diseases, such as cancer, tissue fibrosis and inflammatory diseases.
Collapse
|
39
|
Chan CYX, Masui O, Krakovska O, Belozerov VE, Voisin S, Ghanny S, Chen J, Moyez D, Zhu P, Evans KR, McDermott JC, Siu KWM. Identification of differentially regulated secretome components during skeletal myogenesis. Mol Cell Proteomics 2011; 10:M110.004804. [PMID: 21343469 DOI: 10.1074/mcp.m110.004804] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myogenesis is a well-characterized program of cellular differentiation that is exquisitely sensitive to the extracellular milieu. Systematic characterization of the myogenic secretome (i.e. the ensemble of secreted proteins) is, therefore, warranted for the identification of novel secretome components that regulate both the pluripotency of these progenitor mesenchymal cells, and also their commitment and passage through the differentiation program. Previously, we have successfully identified 26 secreted proteins in the mouse skeletal muscle cell line C2C12 (1). In an effort to attain a more comprehensive picture of the regulation of myogenesis by its extracellular milieu, quantitative profiling employing stable isotope labeling by amino acids in cell culture was implemented in conjunction with two parallel high throughput online reverse phase liquid chromatography-tandem mass spectrometry systems. In summary, 34 secreted proteins were quantified, 30 of which were shown to be differentially expressed during muscle development. Intriguingly, our analysis has revealed several novel up- and down-regulated secretome components that may have critical biological relevance for both the maintenance of pluripotency and the passage of cells through the differentiation program. In particular, the altered regulation of secretome components, including follistatin-like protein-1, osteoglycin, spondin-2, and cytokine-induced apoptosis inhibitor-1, along with constitutively expressed factors, such as fibulin-2, illustrate dynamic changes in the secretome that take place when differentiation to a specific lineage occurs.
Collapse
Affiliation(s)
- C Y X'avia Chan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kawaguchi N. Adult cardiac-derived stem cells: differentiation and survival regulators. VITAMINS AND HORMONES 2011; 87:111-25. [PMID: 22127240 DOI: 10.1016/b978-0-12-386015-6.00041-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
At present, heart failure is one of the most concerning diseases worldwide. To develop efficient treatments, it is necessary to gain a better understanding of the biological characteristics of stem cells in the heart. We recently established and characterized c-kit-positive cardiac stem cells obtained from adult rats. Moreover, we established left atrium-derived pluripotent cells that can differentiate either into skeletal/cardiac myocytes or adipocytes in a methylcellulose-based Methocult medium with almost 100% purity. Microarray and signaling pathway analyses showed that transforming growth factor (TGF)-β is a key molecule in the regulation of the differentiation switch. Indeed, TGF-β1 simultaneously inhibits adipogenesis and activates myogenesis in a dose-dependent manner. However, the effect of TGF-β varies with the developmental stage, dosage, and timing of the treatment.
Collapse
Affiliation(s)
- Nanako Kawaguchi
- Department of Patriotic Cardiology, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
41
|
Gardner S, Alzhanov D, Knollman P, Kuninger D, Rotwein P. TGF-β inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II. Mol Endocrinol 2010; 25:128-37. [PMID: 21106882 DOI: 10.1210/me.2010-0292] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle differentiation and regeneration are regulated by interactions between exogenous hormone- and growth factor-activated signaling cascades and endogenous muscle-specific transcriptional programs. IGF-I and IGF-II can promote muscle differentiation in vitro and can enhance muscle maintenance and repair in vivo. In contrast, members of the TGF-β superfamily prominently inhibit muscle differentiation and regeneration. In this study, we have evaluated functional interactions between IGF- and TGF-β-regulated signaling pathways during skeletal muscle differentiation. In the mouse C2 muscle cell line and in human myoblasts in primary culture, addition of TGF-β1 blocked differentiation in a dose-dependent way, inhibited expression of muscle-specific mRNAs and proteins, and impaired myotube formation. TGF-β1 also diminished stimulation of IGF-II gene expression in myoblasts, decreased IGF-II secretion, and reduced IGF-I receptor activation. To test the hypothesis that TGF-β1 prevents muscle differentiation primarily by blocking IGF-II production, we examined effects of IGF analogues on TGF-β actions in myoblasts. Although both IGF-I and IGF-II restored muscle gene and protein expression, and stimulated myotube formation in the presence of TGF-β1, they did not reduce TGF-β1-stimulated signaling, as measured by no decline in phosphorylation of SMA and mothers against decapentaplegic homolog (Smad)3, or in induction of TGF-β-activated target genes, including a Smad-dependent promoter-reporter plasmid. Our results demonstrate that TGF-β disrupts an IGF-II-stimulated autocrine amplification cascade that is necessary for muscle differentiation in vitro. Because this inhibitory pathway can be overcome by exogenous IGFs, our observations point toward potential strategies to counteract disorders that reduce muscle mass and strength.
Collapse
Affiliation(s)
- Samantha Gardner
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|