1
|
Marasco M, Kumar D, Seale T, Borrego SG, Kaplun E, Aricescu I, Cole S, Qeriqi B, Qiu J, Chen X, Bahr A, Fidele D, Hofmann MH, Gerlach D, Savarese F, Merghoub T, Wolchok JD, Yao Z, de Stanchina E, Solit D, Misale S, Rosen N. Concurrent SOS1 and MEK suppression inhibits signaling and growth of NF1-null melanoma. Cell Rep Med 2024:101818. [PMID: 39488215 DOI: 10.1016/j.xcrm.2024.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/29/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Neurofibromin (NF1) is a negative regulator of RAS signaling, frequently mutated in cancer. NF1-mutant melanoma is a highly malignant tumor for which targeted therapies are lacking. Here, we use biochemical and pharmacological assays on patient-derived models and isogenic cell lines to identify potential pharmacologic targets, revealing that NF1-null melanomas are dependent on RAS activation and that MEK inhibition relieves ERK-dependent negative feedback, increasing RAS signaling. MEK inhibition with avutometinib abrogates the adaptive rebound in ERK signaling, but the antitumor effects are limited. However, concurrent inhibition of MEK and SOS1 abrogates ERK activation, induces cell death, and suppresses tumor growth. In contrast to the NF1-deficient setting, concurrent SOS1 and SOS2 depletion is required to completely inhibit RAS signaling in NF1 wild-type cells. In sum, our data provide a mechanistic rationale for enhancing the therapeutic efficacy of MEK inhibitors by exploiting the lower residual SOS activity in NF1-null tumor cells.
Collapse
Affiliation(s)
- Michelangelo Marasco
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dinesh Kumar
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tessa Seale
- Department of Oncology, Cancer Genetics and Epigenetics Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Santiago Garcia Borrego
- Department of Oncology, Cancer Genetics and Epigenetics Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esther Kaplun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ilinca Aricescu
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Soren Cole
- Department of Oncology, Cancer Genetics and Epigenetics Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Besnik Qeriqi
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Qiu
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaoping Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amber Bahr
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deborah Fidele
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Jedd D Wolchok
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Zhan Yao
- Mechanistic Biology, Loxo Oncology at Lilly, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sandra Misale
- Department of Oncology, Cancer Genetics and Epigenetics Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Sudhakar N, Yan L, Qiryaqos F, Engstrom LD, Laguer J, Calinisan A, Hebbert A, Waters L, Moya K, Bowcut V, Vegar L, Ketcham JM, Ivetac A, Smith CR, Lawson JD, Rahbaek L, Clarine J, Nguyen N, Saechao B, Parker C, Elliott AJ, Vanderpool D, He L, Hover LD, Fernandez-Banet J, Coma S, Pachter JA, Hallin J, Marx MA, Briere DM, Christensen JG, Olson P, Haling J, Khare S. The SOS1 Inhibitor MRTX0902 Blocks KRAS Activation and Demonstrates Antitumor Activity in Cancers Dependent on KRAS Nucleotide Loading. Mol Cancer Ther 2024; 23:1418-1430. [PMID: 38904222 PMCID: PMC11443210 DOI: 10.1158/1535-7163.mct-23-0870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
KRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway. MRTX0902 augmented the antitumor activity of the KRAS G12C inhibitor adagrasib when dosed in combination in eight out of 12 KRAS G12C-mutant human non-small cell lung cancer and colorectal cancer xenograft models. Pharmacogenomic profiling in preclinical models identified cell cycle genes and the SOS2 homolog as genetic co-dependencies and implicated tumor suppressor genes (NF1 and PTEN) in resistance following combination treatment. Lastly, combined vertical inhibition of RTK/MAPK pathway signaling by MRTX0902 with inhibitors of EGFR or RAF/MEK led to greater downregulation of pathway signaling and improved antitumor responses in KRAS-MAPK pathway-mutant models. These studies demonstrate the potential clinical application of dual inhibition of SOS1 and KRAS G12C and additional SOS1 combination strategies that will aide in the understanding of SOS1 and RTK/MAPK biology in targeted cancer therapy.
Collapse
Affiliation(s)
| | - Larry Yan
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Jade Laguer
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Laura Waters
- Mirati Therapeutics, Inc., San Diego, California
| | - Krystal Moya
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Laura Vegar
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | | | - Lisa Rahbaek
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | - Cody Parker
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Leo He
- Monoceros Biosciences LLC, San Diego, California
| | | | | | | | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| | - Jacob Haling
- Mirati Therapeutics, Inc., San Diego, California
| | - Shilpi Khare
- Mirati Therapeutics, Inc., San Diego, California
| |
Collapse
|
3
|
Wu J, Li X, Wu C, Wang Y, Zhang J. Current advances and development strategies of targeting son of sevenless 1 (SOS1) in drug discovery. Eur J Med Chem 2024; 268:116282. [PMID: 38430853 DOI: 10.1016/j.ejmech.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The Son of Sevenless 1 (SOS1) guanine nucleotide exchange factor, prevalent across eukaryotic species, plays a pivotal role in facilitating the attachment of RAS protein to GTP, thereby regulating the activation of intracellular RAS proteins. This regulation is part of a feedback mechanism involving SOS1, which allows both activators and inhibitors of SOS1 to exert control over downstream signaling pathways, demonstrating potential anti-tumor effects. Predominantly, small molecule modulators that target SOS1 focus on a hydrophobic pocket within the CDC25 protein domain. The effectiveness of these modulators largely depends on their ability to interact with specific amino acids, notably Phe890 and Tyr884. This interaction is crucial for influencing the protein-protein interaction (PPI) between RAS and the catalytic domain of SOS1. Currently, most small molecule modulators targeting SOS1 are in the preclinical research phase, with a few advancing to clinical trials. This progression raises safety concerns, making the assurance of drug safety a primary consideration alongside the enhancement of efficacy in the development of SOS1 modulators. This review encapsulates recent advancements in the chemical categorization of SOS1 inhibitors and activators. It delves into the evolution of small molecule modulation targeting SOS1 and offers perspectives on the design of future generations of selective SOS1 small molecule modulators.
Collapse
Affiliation(s)
- Jialin Wu
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengyong Wu
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Smith CR, Chen D, Christensen JG, Coulombe R, Féthière J, Gunn RJ, Hollander J, Jones B, Ketcham JM, Khare S, Kuehler J, Lawson JD, Marx MA, Olson P, Pearson KE, Ren C, Tsagris D, Ulaganathan T, Van’t Veer I, Wang X, Ivetac A. Discovery of Five SOS2 Fragment Hits with Binding Modes Determined by SOS2 X-Ray Cocrystallography. J Med Chem 2024; 67:774-781. [PMID: 38156904 PMCID: PMC10788894 DOI: 10.1021/acs.jmedchem.3c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
SOS1 and SOS2 are guanine nucleotide exchange factors that mediate RTK-stimulated RAS activation. Selective SOS1:KRAS PPI inhibitors are currently under clinical investigation, whereas there are no reports to date of SOS2:KRAS PPI inhibitors. SOS2 activity is implicated in MAPK rebound when divergent SOS1 mutant cell lines are treated with the SOS1 inhibitor BI-3406; therefore, SOS2:KRAS inhibitors are of therapeutic interest. In this report, we detail a fragment-based screening strategy to identify X-ray cocrystal structures of five diverse fragment hits bound to SOS2.
Collapse
Affiliation(s)
| | - Dan Chen
- ZoBio
BV, J.H. Oortweg 19, Leiden 2333 CH, Netherlands
| | | | - René Coulombe
- Inixium, 3000-275 Armand Frappier, Laval, Quebec H7V 4A7, Canada
| | - James Féthière
- Inixium, 3000-275 Armand Frappier, Laval, Quebec H7V 4A7, Canada
| | - Robin J. Gunn
- Mirati
Therapeutics, San Diego, California 92130, United States
| | | | - Benjamin Jones
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - John M. Ketcham
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Shilpi Khare
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Jon Kuehler
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - J. David Lawson
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Matthew A. Marx
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Peter Olson
- Mirati
Therapeutics, San Diego, California 92130, United States
| | | | - Cynthia Ren
- Mirati
Therapeutics, San Diego, California 92130, United States
| | | | | | | | - Xiaolun Wang
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Anthony Ivetac
- Mirati
Therapeutics, San Diego, California 92130, United States
| |
Collapse
|
5
|
Baltanás FC, García-Navas R, Rodríguez-Ramos P, Calzada N, Cuesta C, Borrajo J, Fuentes-Mateos R, Olarte-San Juan A, Vidaña N, Castellano E, Santos E. Critical requirement of SOS1 for tumor development and microenvironment modulation in KRAS G12D-driven lung adenocarcinoma. Nat Commun 2023; 14:5856. [PMID: 37730692 PMCID: PMC10511506 DOI: 10.1038/s41467-023-41583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
The impact of genetic ablation of SOS1 or SOS2 is evaluated in a murine model of KRASG12D-driven lung adenocarcinoma (LUAD). SOS2 ablation shows some protection during early stages but only SOS1 ablation causes significant, specific long term increase of survival/lifespan of the KRASG12D mice associated to markedly reduced tumor burden and reduced populations of cancer-associated fibroblasts, macrophages and T-lymphocytes in the lung tumor microenvironment (TME). SOS1 ablation also causes specific shrinkage and regression of LUAD tumoral masses and components of the TME in pre-established KRASG12D LUAD tumors. The critical requirement of SOS1 for KRASG12D-driven LUAD is further confirmed by means of intravenous tail injection of KRASG12D tumor cells into SOS1KO/KRASWT mice, or of SOS1-less, KRASG12D tumor cells into wildtype mice. In silico analyses of human lung cancer databases support also the dominant role of SOS1 regarding tumor development and survival in LUAD patients. Our data indicate that SOS1 is critically required for development of KRASG12D-driven LUAD and confirm the validity of this RAS-GEF activator as an actionable therapeutic target in KRAS mutant LUAD.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain.
- Institute of Biomedicine of Seville (IBiS)/"Virgen del Rocío" University Hospital/CSIC/University of Seville and Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.
| | - Rósula García-Navas
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Pablo Rodríguez-Ramos
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Nuria Calzada
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Cristina Cuesta
- Lab 5. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Javier Borrajo
- Departament of Biomedical Sciences and Diagnostic, University of Salamanca, 37007, Salamanca, Spain
| | - Rocío Fuentes-Mateos
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Andrea Olarte-San Juan
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Nerea Vidaña
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Esther Castellano
- Lab 5. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Eugenio Santos
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Lin Q, Qiu M, Wei X, Xiang Z, Zhou Z, Ji I, Liang X, Zhou X, Wen Q, Liu Y, Yu H. Genetic variants of SOS2, MAP2K1 and RASGRF2 in the RAS pathway genes predict survival of HBV-related hepatocellular carcinoma patients. Arch Toxicol 2023; 97:1599-1611. [PMID: 37029817 DOI: 10.1007/s00204-023-03469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/16/2023] [Indexed: 04/09/2023]
Abstract
The RAS pathway participates in the cascade of proliferation and cell division process, and the activated RAS pathway can lead to tumorigenesis including hepatocellular carcinoma (HCC). However, few studies have explored the effects of genetic variants in the RAS pathway-related genes on the survival of patients with HBV-related HCC. In the present study, we assessed the associations between 11,658 single-nucleotide polymorphisms (SNPs) in 62 RAS pathway genes and the overall survival (OS) of 866 HBV-related HCC individuals, which were randomly split (1:1) into discovery and validation datasets. As a result, three potentially functional SNPs were identified, based on multivariable cox proportional hazards regression analyses, in SOS Ras/Rho guanine nucleotide exchange factor 2 (SOS2, rs4632055 A > G), Ras protein-specific guanine nucleotide releasing factor 2 (RASGRF2, rs26418A > G) and mitogen-activated protein kinase 1 (MAP2K1,rs57120695 C > T), which were significantly and independently associated with OS of HBV-related HCC patients [adjusted hazards ratios (HRs) of 1.42, 1.32 and 1.50, respectively; 95% confidence intervals (CI), 1.14 to 1.76, 1.15 to 1.53 and 1.15 to 1.97, respectively; P = 0.001, < 0.001 and 0.003, respectively]. Additionally, the joint effects as the unfavorable genotypes of these three SNPs showed a significant association with the poor survival of HCC (trend test P < 0.001). The expression quantitative trait loci (eQTL) analysis further revealed that the rs4632055 G allele and the rs26418 A allele were associated with lower mRNA expression levels of SOS2 and RASGRF2, respectively. Collectively, these potentially functional SNPs of RASGRF2, SOS2 and M2PAK1 may become potential prognostic biomarkers for HBV-related HCC after hepatectomy.
Collapse
Affiliation(s)
- Qiuling Lin
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Moqin Qiu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xueyan Wei
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhouyun Xiang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Zihan Zhou
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Iiangyan Ji
- Department of Scientific Research Dept, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiumei Liang
- Department of Disease Process Management, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianguo Zhou
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qiuping Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yingchun Liu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
- Key Cultivated Laboratory of Cancer Molecular Medicine, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
- Key Cultivated Laboratory of Cancer Molecular Medicine, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China.
| |
Collapse
|
7
|
Luo G, Wang B, Hou Q, Wu X. Development of Son of Sevenless Homologue 1 (SOS1) Modulators To Treat Cancers by Regulating RAS Signaling. J Med Chem 2023; 66:4324-4341. [PMID: 36987571 DOI: 10.1021/acs.jmedchem.2c01729] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Son of sevenless homologue 1 (SOS1) protein is universally expressed in cells and plays an important role in the RAS signaling pathway. Specifically, this protein interacts with RAS in response to upstream stimuli to promote guanine nucleotide exchange in RAS and activates the downstream signaling pathways. Thus, targeting SOS1 is a new approach for treating RAS-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of SOS1 and focus on recent advances in the discovery of activators, inhibitors, and PROTACs that target SOS1. This review aims to provide a timely and updated overview on the strategies for targeting SOS1 in cancer therapy.
Collapse
Affiliation(s)
- Guangmei Luo
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Bingrui Wang
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
CircRNA-Based Cervical Cancer Prognosis Model, Immunological Validation and Drug Prediction. Curr Oncol 2022; 29:7994-8018. [PMID: 36354693 PMCID: PMC9689098 DOI: 10.3390/curroncol29110633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is a common cancer in female, which is associated with problems like poor prognosis. Circular RNA (circRNA) is a kind of competing endogenous RNA (ceRNA) that has an important role in regulating microRNA (miRNA) in many cancers. The regulatory mechanisms of CC immune microenvironment and the transcriptome level remain to be fully explored. METHODS In this study, we constructed the ceRNA network through the interaction data and expression matrix of circRNA, miRNA and mRNA. Meanwhile, based on the gene expression matrix, CIBERSORT algorithm was used to reveal contents of tumor-infiltrating immune cells (TIICs). Then, we screened prognostic markers based on ceRNA network and immune infiltration and constructed two nomograms. In order to find immunological differences between the high- and low-risk CC samples, we examined multiple immune checkpoints and predicted the effect of PD-L1 ICI immunotherapy. In addition, the sensitive therapeutics for high-risk patients were screened, and the potential agents with anti-CC activity were predicted by Connective Map (CMap). RESULTS We mapped a ceRNA network including 5 circRNAs, 17 miRNAs and 129 mRNAs. From the mRNA nodes of the network six genes and two kind of cells were identified as prognostic makers for CC. Among them, there was a significant positive correlation between CD8+ T cells and SNX10 gene. The results of TIDE and single sample GSEA (ssGSEA) showed that T cells CD8 do play a key role in inhibiting tumor progression. Further, our study screened 24 drugs that were more sensitive to high-risk CC patients and several potential therapeutic agents for reference. CONCLUSIONS Our study identified several circRNA-miRNA-mRNA regulatory axes and six prognostic genes based on the ceRNA network. In addition, through TIIC, survival analysis and a series of immunological analyses, T cells were proved to be good prognostic markers, besides play an important role in the immune process. Finally, we screened 24 potentially more effective drugs and multiple potential drug compounds for high- and low-risk patients.
Collapse
|
9
|
Bajia D, Bottani E, Derwich K. Effects of Noonan Syndrome-Germline Mutations on Mitochondria and Energy Metabolism. Cells 2022; 11:cells11193099. [PMID: 36231062 PMCID: PMC9563972 DOI: 10.3390/cells11193099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome (NS) and related Noonan syndrome with multiple lentigines (NSML) contribute to the pathogenesis of human diseases in the RASopathy family. This family of genetic disorders constitute one of the largest groups of developmental disorders with variable penetrance and severity, associated with distinctive congenital disabilities, including facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was first clinically described decades ago, and several genes have since been identified, providing a molecular foundation to understand their physiopathology and identify targets for therapeutic strategies. These genes encode proteins that participate in, or regulate, RAS/MAPK signalling. The RAS pathway regulates cellular metabolism by controlling mitochondrial homeostasis, dynamics, and energy production; however, little is known about the role of mitochondrial metabolism in NS and NSML. This manuscript comprehensively reviews the most frequently mutated genes responsible for NS and NSML, covering their role in the current knowledge of cellular signalling pathways, and focuses on the pathophysiological outcomes on mitochondria and energy metabolism.
Collapse
Affiliation(s)
- Donald Bajia
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| |
Collapse
|
10
|
Gómez C, Garcia-Navas R, Baltanás FC, Fuentes-Mateos R, Fernández-Medarde A, Calzada N, Santos E. Critical Requirement of SOS1 for Development of BCR/ABL-Driven Chronic Myelogenous Leukemia. Cancers (Basel) 2022; 14:cancers14163893. [PMID: 36010887 PMCID: PMC9406065 DOI: 10.3390/cancers14163893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The p210BCR/ABL oncoprotein is necessary and sufficient to trigger chronic myelogenous leukemia (CML) in mice. Our prior in vitro studies showing that the ABL-mediated phosphorylation of SOS1 promotes RAC activation and contributes to BCR-ABL leukemogenesis suggested the significant role of SOS1 in the development of CML. To provide direct in vivo experimental evidence of the specific contribution of SOS1 to the development of CML, here, we analyzed the effect of the direct genetic ablation of SOS1 or SOS2 on the genesis of p210BCR/ABL -driven CML in mice. Our data showed that direct SOS1 genetic ablation causes the significant suppression of all the pathological hallmarks typical of CML, demonstrating that SOS1 deficiency is protective against CML development and identifying this cellular GEF as a relevant, novel therapeutic target for the clinical treatment of this hematological malignancy. Abstract We showed previously that the ABL-mediated phosphorylation of SOS1 promotes RAC activation and contributes to BCR-ABL leukemogenesis, suggesting the relevant role of SOS1 in the pathogenesis of CML. To try and obtain direct experimental evidence of the specific mechanistic implication of SOS1 in CML development, here, we combined a murine model of CML driven by a p210BCR/ABL transgene with our tamoxifen-inducible SOS1/2-KO system in order to investigate the phenotypic impact of the direct genetic ablation of SOS1 or SOS2 on the pathogenesis of CML. Our observations showed that, in contrast to control animals expressing normal levels of SOS1 and SOS2 or to single SOS2-KO mice, p210BCR/ABL transgenic mice devoid of SOS1 presented significantly extended survival curves and also displayed an almost complete disappearance of the typical hematological alterations and splenomegaly constituting the hallmarks of CML. SOS1 ablation also resulted in a specific reduction in the proliferation and the total number of colony-forming units arising from the population of bone marrow stem/progenitor cells from p210BCR/ABL transgenic mice. The specific blockade of CML development caused by SOS1 ablation in p210BCR/ABL mice indicates that SOS1 is critically required for CML pathogenesis and supports the consideration of this cellular GEF as a novel, alternative bona fide therapeutic target for CML treatment in the clinic.
Collapse
Affiliation(s)
- Carmela Gómez
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca and CIBERONC, 37007 Salamanca, Spain or
| | - Rósula Garcia-Navas
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca and CIBERONC, 37007 Salamanca, Spain or
| | - Fernando C. Baltanás
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca and CIBERONC, 37007 Salamanca, Spain or
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41013 Seville, Spain
| | - Rocío Fuentes-Mateos
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca and CIBERONC, 37007 Salamanca, Spain or
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca and CIBERONC, 37007 Salamanca, Spain or
| | - Nuria Calzada
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca and CIBERONC, 37007 Salamanca, Spain or
| | - Eugenio Santos
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca and CIBERONC, 37007 Salamanca, Spain or
- Correspondence: ; Tel.: +34-923294801; Fax: +34-923294750
| |
Collapse
|
11
|
Abstract
RAS proteins play major roles in many human cancers, but programs to develop direct RAS inhibitors so far have only been successful for the oncogenic KRAS mutant G12C. As an alternative approach, inhibitors for the RAS guanine nucleotide exchange factor SOS1 have been investigated by several academic groups and companies, and major progress has been achieved in recent years in the optimization of small molecule activators and inhibitors of SOS1. Here, we review the discovery and development of small molecule modulators of SOS1 and their molecular binding modes and modes of action. As targeting the RAS pathway is expected to result in the development of resistance mechanisms, SOS1 inhibitors will most likely be best applied in vertical combination approaches where two nodes of the RAS signaling pathway are hit simultaneously. We summarize the current understanding of which combination partners may be most beneficial for patients with RAS driven tumors.
Collapse
Affiliation(s)
| | - Benjamin Bader
- Screening, Lead Discovery, Nuvisan ICB GmbH, Berlin, Germany
| |
Collapse
|
12
|
Liu C, Zheng Z, Li W, Tang D, Zhao L, He Y, Li H. Inhibition of KDM5A attenuates cisplatin-induced hearing loss via regulation of the MAPK/AKT pathway. Cell Mol Life Sci 2022; 79:596. [PMID: 36396833 PMCID: PMC9672031 DOI: 10.1007/s00018-022-04565-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
The study aimed to investigate the potential role of lysine-specific demethylase 5A (KDM5A) in cisplatin-induced ototoxicity. The effect of the KDM5A inhibitor CPI-455 was assessed by apoptosis assay, immunofluorescence, flow cytometry, seahorse respirometry assay, and auditory brainstem response test. RNA sequencing, qRT-PCR, and CUT&Tag assays were used to explore the mechanism underlying CPI-455-induced protection. Our results demonstrated that the expression of KDM5A was increased in cisplatin-injured cochlear hair cells compared with controls. CPI-455 treatment markedly declined KDM5A and elevated H3K4 trimethylation levels in cisplatin-injured cochlear hair cells. Moreover, CPI-455 effectively prevented the death of hair cells and spiral ganglion neurons and increased the number of ribbon synapses in a cisplatin-induced ototoxicity mouse model both in vitro and in vivo. In HEI-OC1 cells, KDM5A knockdown reduced reactive oxygen species accumulation and improved mitochondrial membrane potential and oxidative phosphorylation under cisplatin-induced stress. Mechanistically, through transcriptomics and epigenomics analyses, a set of apoptosis-related genes, including Sos1, Sos2, and Map3k3, were regulated by CPI-455. Altogether, our findings indicate that inhibition of KDM5A may represent an effective epigenetic therapeutic target for preventing cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Chang Liu
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Zhiwei Zheng
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Wen Li
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Dongmei Tang
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Liping Zhao
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Yingzi He
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Huawei Li
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China ,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 People’s Republic of China ,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
13
|
Thompson SK, Buckl A, Dossetter AG, Griffen E, Gill A. Small molecule Son of Sevenless 1 (SOS1) inhibitors: a review of the patent literature. Expert Opin Ther Pat 2021; 31:1189-1204. [PMID: 34253125 DOI: 10.1080/13543776.2021.1952984] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Up to 30% of all human cancers are driven by the overactivation of RAS signaling. Son of Sevenless 1 (SOS1) is a central node in RAS signaling pathways and modulation of SOS1-mediated RAS activation represents a unique opportunity for treating RAS-addicted cancers. Several recent publications and patent documents have demonstrated the ability of small molecules to affect the activation of RAS by SOS1 and have shown their potential for the treatment of cancers driven by RAS mutants.Areas covered: Documents focusing on both small-molecule inhibitors and activators of the SOS1:RAS interaction and their potential use as cancer therapeutics are covered. A total of 10 documents from 4 applicants are evaluated with discussion focusing on structural modifications of these compounds as well as relevant preclinical data.Expert opinion: The last decade has seen a significant increase in research and disclosures in the development of small-molecule SOS1 inhibitors. Considering the promising data that have been disclosed, interest in this area of research will likely remain strong for the foreseeable future. With the first SOS1 inhibitor currently in phase I clinical trials, the outcome of these trials will likely influence future development of SOS1 inhibitors for treatment of RAS-driven cancers.
Collapse
Affiliation(s)
- Severin K Thompson
- Department of Discovery Chemistry, Revolution Medicines Inc., Redwood City, CA, USA
| | - Andreas Buckl
- Department of Discovery Chemistry, Revolution Medicines Inc., Redwood City, CA, USA
| | | | - Ed Griffen
- Medchemica Limited, Biohub, Mereside, Cheshire, UK
| | - Adrian Gill
- Department of Discovery Chemistry, Revolution Medicines Inc., Redwood City, CA, USA
| |
Collapse
|
14
|
García-Navas R, Liceras-Boillos P, Gómez C, Baltanás FC, Calzada N, Nuevo-Tapioles C, Cuezva JM, Santos E. Critical requirement of SOS1 RAS-GEF function for mitochondrial dynamics, metabolism, and redox homeostasis. Oncogene 2021; 40:4538-4551. [PMID: 34120142 PMCID: PMC8266680 DOI: 10.1038/s41388-021-01886-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
SOS1 ablation causes specific defective phenotypes in MEFs including increased levels of intracellular ROS. We showed that the mitochondria-targeted antioxidant MitoTEMPO restores normal endogenous ROS levels, suggesting predominant involvement of mitochondria in generation of this defective SOS1-dependent phenotype. The absence of SOS1 caused specific alterations of mitochondrial shape, mass, and dynamics accompanied by higher percentage of dysfunctional mitochondria and lower rates of electron transport in comparison to WT or SOS2-KO counterparts. SOS1-deficient MEFs also exhibited specific alterations of respiratory complexes and their assembly into mitochondrial supercomplexes and consistently reduced rates of respiration, glycolysis, and ATP production, together with distinctive patterns of substrate preference for oxidative energy metabolism and dependence on glucose for survival. RASless cells showed defective respiratory/metabolic phenotypes reminiscent of those of SOS1-deficient MEFs, suggesting that the mitochondrial defects of these cells are mechanistically linked to the absence of SOS1-GEF activity on cellular RAS targets. Our observations provide a direct mechanistic link between SOS1 and control of cellular oxidative stress and suggest that SOS1-mediated RAS activation is required for correct mitochondrial dynamics and function.
Collapse
Affiliation(s)
- Rósula García-Navas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC - Universidad de Salamanca), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer - Cáncer (CIBERONC), Madrid, Spain
| | - Pilar Liceras-Boillos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC - Universidad de Salamanca), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer - Cáncer (CIBERONC), Madrid, Spain
| | - Carmela Gómez
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC - Universidad de Salamanca), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer - Cáncer (CIBERONC), Madrid, Spain
| | - Fernando C Baltanás
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC - Universidad de Salamanca), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer - Cáncer (CIBERONC), Madrid, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC - Universidad de Salamanca), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer - Cáncer (CIBERONC), Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa3, (CSIC - Universidad Autónoma de Madrid), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer - Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa3, (CSIC - Universidad Autónoma de Madrid), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer - Enfermedades Raras (CIBERER), Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC - Universidad de Salamanca), Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer - Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
15
|
Baltanás FC, García-Navas R, Santos E. SOS2 Comes to the Fore: Differential Functionalities in Physiology and Pathology. Int J Mol Sci 2021; 22:ijms22126613. [PMID: 34205562 PMCID: PMC8234257 DOI: 10.3390/ijms22126613] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The SOS family of Ras-GEFs encompasses two highly homologous and widely expressed members, SOS1 and SOS2. Despite their similar structures and expression patterns, early studies of constitutive KO mice showing that SOS1-KO mutants were embryonic lethal while SOS2-KO mice were viable led to initially viewing SOS1 as the main Ras-GEF linking external stimuli to downstream RAS signaling, while obviating the functional significance of SOS2. Subsequently, different genetic and/or pharmacological ablation tools defined more precisely the functional specificity/redundancy of the SOS1/2 GEFs. Interestingly, the defective phenotypes observed in concomitantly ablated SOS1/2-DKO contexts are frequently much stronger than in single SOS1-KO scenarios and undetectable in single SOS2-KO cells, demonstrating functional redundancy between them and suggesting an ancillary role of SOS2 in the absence of SOS1. Preferential SOS1 role was also demonstrated in different RASopathies and tumors. Conversely, specific SOS2 functions, including a critical role in regulation of the RAS-PI3K/AKT signaling axis in keratinocytes and KRAS-driven tumor lines or in control of epidermal stem cell homeostasis, were also reported. Specific SOS2 mutations were also identified in some RASopathies and cancer forms. The relevance/specificity of the newly uncovered functional roles suggests that SOS2 should join SOS1 for consideration as a relevant biomarker/therapy target.
Collapse
|
16
|
Regulation of the Small GTPase Ras and Its Relevance to Human Disease. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:19-43. [PMID: 33977469 DOI: 10.1007/978-1-0716-1190-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ras research has experienced a considerable boost in recent years, not least prompted by the Ras initiative launched by the NCI in 2013 ( https://www.cancer.gov/research/key-initiatives/ras ), accompanied and conditioned by a strongly reinvigorated determination within the Ras community to develop therapeutics attacking directly the Ras oncoproteins. As a member of the small G-protein superfamily, function and transforming activity of Ras all revolve about its GDP/GTP loading status. For one thing, the extent of GTP loading will determine the proportion of active Ras in the cell, with implications for intensity and quality of downstream signaling. But also the rate of nucleotide exchange, i.e., the Ras-GDP/GTP cycling rate, can have a major impact on Ras function, as illustrated perhaps most impressively by newly discovered fast-cycling oncogenic mutants of the Ras-related GTPase Rac1. Thus, while the last years have witnessed memorable new findings and technical developments in the Ras field, leading to an improved insight into many aspects of Ras biology, they have not jolted at the basics, but rather deepened our view of the fundamental regulatory principles of Ras activity control. In this brief review, we revisit the role and mechanisms of Ras nucleotide loading and its implications for cancer in the light of recent findings.
Collapse
|
17
|
Fernández-Medarde A, Santos E. Ras GEF Mouse Models for the Analysis of Ras Biology and Signaling. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:361-395. [PMID: 33977490 DOI: 10.1007/978-1-0716-1190-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animal models have become in recent years a crucial tool to understand the physiological and pathological roles of many cellular proteins. They allow analysis of the functional consequences of [1] complete or partial (time- or organ-limited) removal of specific proteins (knockout animals), [2] the exchange of a wild-type allele for a mutant or truncated version found in human illnesses (knock-in), or [3] the effect of overexpression of a given protein in the whole body or in specific organs (transgenic mice). In this regard, the study of phenotypes in Ras GEF animal models has allowed researchers to find specific functions for otherwise very similar proteins, uncovering their role in physiological contexts such as memory formation, lymphopoiesis, photoreception, or body homeostasis. In addition, mouse models have been used to unveil the functional role of Ras GEFs under pathological conditions, including Noonan syndrome, skin tumorigenesis, inflammatory diseases, diabetes, or ischemia among others. In the following sections, we will describe the methodological approaches employed for Ras GEF animal model analyses, as well as the main discoveries made.
Collapse
Affiliation(s)
- Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain.
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain
| |
Collapse
|
18
|
Ras Isoforms from Lab Benches to Lives-What Are We Missing and How Far Are We? Int J Mol Sci 2021; 22:ijms22126508. [PMID: 34204435 PMCID: PMC8233758 DOI: 10.3390/ijms22126508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.
Collapse
|
19
|
Baltanás FC, Mucientes-Valdivieso C, Lorenzo-Martín LF, Fernández-Parejo N, García-Navas R, Segrelles C, Calzada N, Fuentes-Mateos R, Paramio JM, Bustelo XR, Santos E. Functional Specificity of the Members of the Sos Family of Ras-GEF Activators: Novel Role of Sos2 in Control of Epidermal Stem Cell Homeostasis. Cancers (Basel) 2021; 13:cancers13092152. [PMID: 33946974 PMCID: PMC8124217 DOI: 10.3390/cancers13092152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The Sos Ras-GEFs are known to participate in a wide range of skin-related diseases including cutaneous cancers, cardio-facio-cutaneous syndromes, or hirsutism. However, the specific functional roles played by the Sos1 and/or Sos2 family members in specific skin compartments remain largely unknown. This report aimed at precisely characterizing the specific functions played by Sos1 and/or Sos2 in keratinocytes, an essential cellular component of the skin. Our data show that Sos1 and Sos2 make overlapping contributions to both keratinocyte proliferation and survival. However, Sos1 seems to have a preferential involvement in regulating the ERK axis, whereas Sos2 seems to control the signaling output from the PI3K axis. We also uncovered an essential role of Sos2 in the control of the population of epidermal stem cells. Abstract Prior reports showed the critical requirement of Sos1 for epithelial carcinogenesis, but the specific functionalities of the homologous Sos1 and Sos2 GEFs in skin homeostasis and tumorigenesis remain unclear. Here, we characterize specific mechanistic roles played by Sos1 or Sos2 in primary mouse keratinocytes (a prevalent skin cell lineage) under different experimental conditions. Functional analyses of actively growing primary keratinocytes of relevant genotypes—WT, Sos1-KO, Sos2-KO, and Sos1/2-DKO—revealed a prevalent role of Sos1 regarding transcriptional regulation and control of RAS activation and mechanistic overlapping of Sos1 and Sos2 regarding cell proliferation and survival, with dominant contribution of Sos1 to the RAS-ERK axis and Sos2 to the RAS-PI3K/AKT axis. Sos1/2-DKO keratinocytes could not grow under 3D culture conditions, but single Sos1-KO and Sos2-KO keratinocytes were able to form pseudoepidermis structures that showed disorganized layer structure, reduced proliferation, and increased apoptosis in comparison with WT 3D cultures. Remarkably, analysis of the skin of both newborn and adult Sos2-KO mice uncovered a significant reduction of the population of stem cells located in hair follicles. These data confirm that Sos1 and Sos2 play specific, cell-autonomous functions in primary keratinocytes and reveal a novel, essential role of Sos2 in control of epidermal stem cell homeostasis.
Collapse
Affiliation(s)
- Fernando C. Baltanás
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
- Correspondence: (F.C.B.); (E.S.)
| | - Cynthia Mucientes-Valdivieso
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - L. Francisco Lorenzo-Martín
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Natalia Fernández-Parejo
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Rósula García-Navas
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Carmen Segrelles
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
- Molecular Oncology Division, CIEMAT and Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre, E-28040 Madrid, Spain
| | - Nuria Calzada
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Rocío Fuentes-Mateos
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Jesús M. Paramio
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
- Molecular Oncology Division, CIEMAT and Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre, E-28040 Madrid, Spain
| | - Xosé R. Bustelo
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Eugenio Santos
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
- Correspondence: (F.C.B.); (E.S.)
| |
Collapse
|
20
|
Kerr DL, Haderk F, Bivona TG. Allosteric SHP2 inhibitors in cancer: Targeting the intersection of RAS, resistance, and the immune microenvironment. Curr Opin Chem Biol 2021; 62:1-12. [PMID: 33418513 DOI: 10.1016/j.cbpa.2020.11.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
Abstract
The nonreceptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) integrates growth and differentiation signals from receptor tyrosine kinases (RTKs) into the RAS/mitogen-activated protein kinase (MAPK) cascade. Considered 'undruggable' over three decades, SHP2 is now a potentially druggable target with the advent of allosteric SHP2 inhibitors. These agents hold promise for improving patient outcomes, showing efficacy in preclinical cancer models, where SHP2 is critical for either oncogenic signaling or resistance to current targeted agents. SHP2 inhibition may also produce immunomodulatory effects in certain tumor microenvironment cells to help cultivate antitumor immune responses. The first generation of allosteric SHP2 inhibitors is under clinical evaluation to determine safety, appropriate tolerability management, and antitumor efficacy, investigations that will dictate future clinical applications.
Collapse
Affiliation(s)
- D Lucas Kerr
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| |
Collapse
|
21
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
22
|
Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, Sanderson MP, Kessler D, Trapani F, Arnhof H, Rumpel K, Botesteanu DA, Ettmayer P, Gerstberger T, Kofink C, Wunberg T, Zoephel A, Fu SC, Teh JL, Böttcher J, Pototschnig N, Schachinger F, Schipany K, Lieb S, Vellano CP, O'Connell JC, Mendes RL, Moll J, Petronczki M, Heffernan TP, Pearson M, McConnell DB, Kraut N. BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discov 2020; 11:142-157. [PMID: 32816843 DOI: 10.1158/2159-8290.cd-20-0142] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph R Marszalek
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | | | | | | | - Szu-Chin Fu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica L Teh
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Simone Lieb
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Christopher P Vellano
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Jurgen Moll
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Timothy P Heffernan
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.
| |
Collapse
|
23
|
Stalnecker CA, Der CJ. RAS, wanted dead or alive: Advances in targeting RAS mutant cancers. Sci Signal 2020; 13:13/624/eaay6013. [PMID: 32209699 DOI: 10.1126/scisignal.aay6013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oncogenic RAS proteins, which are mutated in approximately 24% of all human cancers, have earned a well-deserved reputation as being "undruggable." However, several studies have challenged that reputation. With the first small molecules that directly target one oncogenic RAS mutant (G12C) undergoing clinical evaluation, there have been substantial advances in finding anti-RAS therapeutic strategies. Furthermore, new insights have come from the growing appreciation that neither all RAS proteins (HRAS, NRAS, and KRAS4A/KRAS4B) nor all oncogenic RAS mutations (such as at residues Gly12, Gly13, and Gln61) have the same impact on RAS signaling and function. The role of the nonmutated, wild-type RAS proteins in the context of mutant RAS is increasingly considered to be targetable, with reports of strategies that directly disrupt either the RAS interaction with activating guanine nucleotide exchange factors (GEFs) or receptor tyrosine kinase-mediated and GEF-dependent RAS activation (such as by targeting the scaffolding phosphatase SHP2). Last, the development of agents that target downstream effectors of RAS signaling has advanced substantially. In this review, we highlight some important trends in the targeting of RAS proteins in cancer.
Collapse
Affiliation(s)
- Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Lee SH, Lee S. Change of Ras and its guanosine triphosphatases (GTPases) during development and regression in bovine corpus luteum. Theriogenology 2019; 144:16-26. [PMID: 31887652 DOI: 10.1016/j.theriogenology.2019.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
The aim of this study was to determine the change of Ras and its guanosine triphosphatases (GTPases) proteins in the bovine corpus luteum (CL) during estrous cycle and investigate protein-protein interaction between hormone receptors and Ras proteins via angiogenetic and apoptotic factors using bioinformatics database. The bovine CLs at proliferation phase (PP), secretion phase (SP), and regression phase (RP) were dissected from abattoir ovaries (n = 4/stage), whole of the tissue samples was used to analyze two-dimensional electrophoresis (2-DE), mRNA, and protein analysis. The protein-protein interaction between the Ras GTPases proteins and hormone receptors were analyzed using Search Tool for the Retrieval of Interacting Genes (STRING) database. The Ras protein activator like 3 (RASAL3), Ras GTPase activating protein 3 (RASA3), Ras guanine nucleotide exchange factors 1 beta (RasGEF1B) were discovered by the 2-DE and mass spectrometry in bovine CLs, and the protein spots of RASA3 and RASAL3 were significantly increased in the SPCL compared to the PPCL, whereas the RasGEF1B was reduced in the PPCL (P < 0.05). The mRNA and proteins expression of progesterone receptor, estrogen receptor alpha (ERα), vascular endothelial growth factor A (VEGFA), angiopoietin 1 (Ang1), VEGF receptor2 (VEGFR2), and Tie2 were significantly increased, but intrinsic and extrinsic apoptotic factors were decreased in PPCL and SPCL compared to RPCL (P < 0.05). Based on STRING database, we determined that RasGEF1B is activated by ERα via VEGFA and VEGFR2, then RasGEF1B activates H-Ras and R-Ras. In addition, the RasGAP protein was significantly increased, however, the RasGEF, H-Ras and R-Ras proteins were reduced in SPCL compared to PPCL and RPCL (P < 0.05). In summary, the RasGEF and Ras proteins were raised during the development, whereas the RasGAP was increased when development was completed, then the Ras and its GTPases dramatically decreased at the regression in bovine CL. In conclusion, these results suggest that Ras and Ras GTPases could be changed during development and regression, activated by the ERα via angiogenetic signaling during proliferation, and may be important to understanding of the Ras and its GTPases system for estrous cycle in bovine CL.
Collapse
Affiliation(s)
- S H Lee
- Discipline of ICT, University of Tasmania, Hobart, Tasmania, Australia
| | - S Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
25
|
Orfao A, Matarraz S, Pérez-Andrés M, Almeida J, Teodosio C, Berkowska MA, van Dongen JJ. Immunophenotypic dissection of normal hematopoiesis. J Immunol Methods 2019; 475:112684. [DOI: 10.1016/j.jim.2019.112684] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
|
26
|
Gu Y, Zhou R, Jin L, Tao X, Zhong Z, Yang X, Liang Y, Yang Y, Wang Y, Chen X, Gong J, He Z, Li M, Lv X. Temporal expression profiling of long noncoding RNA and mRNA in the peripheral blood during porcine development. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:836-847. [PMID: 31480157 PMCID: PMC7206404 DOI: 10.5713/ajas.19.0313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022]
Abstract
Objective We investigated the temporal expression profiles of long noncoding RNA (lncRNA) and mRNA in the peripheral blood of pigs during development and identified the lncRNAs that are related to the blood-based immune system. Methods Peripheral blood samples were obtained from the pigs at 0, 7, 28, and 180 days and 2 years of age. RNA sequencing was performed to survey the lncRNA and mRNA transcriptomes in the samples. Short time-series expression miner (STEM) was used to show temporal expression patterns in the mRNAs and lncRNAs. Gene ontology and Kyoto encyclopedia of genes and genomes analyses were performed to assess the genes’ biological relevance. To predict the functions of the identified lncRNAs, we extracted mRNAs that were nearby loci and highly correlated with the lncRNAs. Results In total of 5,946 lncRNA and 12,354 mRNA transcripts were identified among the samples. STEM showed that most lncRNAs and mRNAs had similar temporal expression patterns during development, indicating the expressional correlation and functional relatedness between them. The five stages were divided into two classes: the suckling period and the late developmental stage. Most genes were expressed at low level during the suckling period, but at higher level during the late stages. Expression of several T-cell-related genes increased continuously during the suckling period, indicating that these genes are crucial for establishing the adaptive immune system in piglets at this stage. Notably, lncRNA TCONS-00086451 may promote blood-based immune system development by upregulating nuclear factor of activated T-cells cytoplasmic 2 expression. Conclusion This study provides a catalog of porcine peripheral blood-related lncRNAs and mRNAs and reveals the characteristics and temporal expression profiles of these lncRNAs and mRNAs during peripheral blood development from the newborn to adult stages in pigs.
Collapse
Affiliation(s)
- Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rui Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Long Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuan Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China
| | - Zhijun Zhong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China
| | - Xuemei Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China
| | - Yuekui Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China
| | - Yan Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China
| | - Xiaohui Chen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China
| | - Jianjun Gong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China
| | - Mingzhou Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan 610066, China
| |
Collapse
|
27
|
Suire S, Baltanas FC, Segonds-Pichon A, Davidson K, Santos E, Hawkins PT, Stephens LR. Frontline Science: TNF-α and GM-CSF1 priming augments the role of SOS1/2 in driving activation of Ras, PI3K-γ, and neutrophil proinflammatory responses. J Leukoc Biol 2019; 106:815-822. [PMID: 30720883 PMCID: PMC6977543 DOI: 10.1002/jlb.2hi0918-359rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022] Open
Abstract
Circulating neutrophils are, by necessity, quiescent and relatively unresponsive to acute stimuli. In regions of inflammation, mediators can prime neutrophils to react to acute stimuli with stronger proinflammatory, pathogen-killing responses. In neutrophils G protein-coupled receptor (GPCR)-driven proinflammatory responses, such as reactive oxygen species (ROS) formation and accumulation of the key intracellular messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3 ), are highly dependent on PI3K-γ, a Ras-GTP, and Gβγ coincidence detector. In unprimed cells, the major GPCR-triggered activator of Ras is the Ras guanine nucleotide exchange factor (GEF), Ras guanine nucleotide releasing protein 4 (RasGRP4). Although priming is known to increase GPCR-PIP3 signaling, the mechanisms underlying this augmentation remain unclear. We used genetically modified mice to address the role of the 2 RasGEFs, RasGRP4 and son of sevenless (SOS)1/2, in neutrophil priming. We found that following GM-CSF/TNFα priming, RasGRP4 had only a minor role in the enhanced responses. In contrast, SOS1/2 acquired a substantial role in ROS formation, PIP3 accumulation, and ERK activation in primed cells. These results suggest that SOS1/2 signaling plays a key role in determining the responsiveness of neutrophils in regions of inflammation.
Collapse
Affiliation(s)
- Sabine Suire
- Inositide Laboratory, The Babraham Institute, Cambridge, UK
| | - Fernando C Baltanas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, (CSIC- Universitad de Salamanca) and CiberONC, Salamanca, Spain
| | | | - Keith Davidson
- Inositide Laboratory, The Babraham Institute, Cambridge, UK
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, (CSIC- Universitad de Salamanca) and CiberONC, Salamanca, Spain
| | | | - Len R Stephens
- Inositide Laboratory, The Babraham Institute, Cambridge, UK
| |
Collapse
|
28
|
Zarich N, Anta B, Fernández-Medarde A, Ballester A, de Lucas MP, Cámara AB, Anta B, Oliva JL, Rojas-Cabañeros JM, Santos E. The CSN3 subunit of the COP9 signalosome interacts with the HD region of Sos1 regulating stability of this GEF protein. Oncogenesis 2019; 8:2. [PMID: 30631038 PMCID: PMC6328564 DOI: 10.1038/s41389-018-0111-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023] Open
Abstract
Sos1 is an universal, widely expressed Ras guanine nucleotide-exchange factor (RasGEF) in eukaryotic cells. Its N-terminal HD motif is known to be involved in allosteric regulation of Sos1 GEF activity through intramolecular interaction with the neighboring PH domain. Here, we searched for other cellular proteins also able to interact productively with the Sos1 HD domain. Using a yeast two-hybrid system, we identified the interaction between the Sos1 HD region and CSN3, the third component of the COP9 signalosome, a conserved, multi-subunit protein complex that functions in the ubiquitin–proteasome pathway to control degradation of many cellular proteins. The interaction of CSN3 with the HD of Sos1 was confirmed in vitro by GST pull-down assays using truncated mutants and reproduced in vivo by co-immunoprecipitation with the endogenous, full-length cellular Sos1 protein. In vitro kinase assays showed that PKD, a COP9 signalosome-associated-kinase, is able to phosphorylate Sos1. The intracellular levels of Sos1 protein were clearly diminished following CSN3 or PKD knockdown. A sizable fraction of the endogenous Sos1 protein was found ubiquitinated in different mammalian cell types. A significant reduction of RasGTP formation upon growth factor stimulation was also observed in CSN3-silenced as compared with control cells. Our data suggest that the interaction of Sos1 with the COP9 signalosome and PKD plays a significant role in maintenance of cellular Sos1 protein stability and homeostasis under physiological conditions and raises the possibility of considering the CSN/PKD complex as a potential target for design of novel therapeutic drugs.
Collapse
Affiliation(s)
- Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Begoña Anta
- Centro de Investigación del Cáncer, IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer, IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Alicia Ballester
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - María Pilar de Lucas
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Ana Belén Cámara
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Berta Anta
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - José Luís Oliva
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - José M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Eugenio Santos
- Centro de Investigación del Cáncer, IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
29
|
Unique dependence on Sos1 in Kras G12D -induced leukemogenesis. Blood 2018; 132:2575-2579. [PMID: 30377195 DOI: 10.1182/blood-2018-09-874107] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
We and others have previously shown that Kras G12D is a much more potent oncogene than oncogenic Nras in hematological malignancies. We attributed the strong leukemogenic activity of KrasG12D at least partially to its unique capability to hyperactivate wild-type (WT) Nras and Hras. Here, we report that Sos1, a guanine nucleotide exchange factor, is required to mediate this process. Sos1 is overexpressed in Kras G12D/+ cells, but not in Nras Q61R/+ and Nras G12D/+ cells. KrasG12D proteins form a complex with Sos1 in vivo. Sos1 deficiency attenuates hyperactivation of WT Nras, Hras, and the downstream ERK signaling in Kras G12D/+ cells. Thus, Sos1 deletion ameliorates oncogenic Kras-induced myeloproliferative neoplasm (MPN) phenotypes and prolongs the survival of Kras G12D/+ mice. In contrast, Sos1 is dispensable for hyperactivated granulocyte-macrophage colony-stimulating factor signaling in Nras Q61R/+ cells, and Sos1 -/- does not affect MPN phenotypes in Nras Q61R/+ mice. Moreover, the survival of Kras G12D/+ ; Sos1 -/- recipients is comparable to that of Kras G12D/+ recipients treated with combined MEK and JAK inhibitors. Our study suggests that targeting Sos1-oncogenic Kras interaction may improve the survival of cancer patients with KRAS mutations.
Collapse
|
30
|
Sheffels E, Sealover NE, Wang C, Kim DH, Vazirani IA, Lee E, M Terrell E, Morrison DK, Luo J, Kortum RL. Oncogenic RAS isoforms show a hierarchical requirement for the guanine nucleotide exchange factor SOS2 to mediate cell transformation. Sci Signal 2018; 11:11/546/eaar8371. [PMID: 30181243 DOI: 10.1126/scisignal.aar8371] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
About a third of tumors have activating mutations in HRAS, NRAS, or KRAS, genes encoding guanosine triphosphatases (GTPases) of the RAS family. In these tumors, wild-type RAS cooperates with mutant RAS to promote downstream effector activation and cell proliferation and transformation, suggesting that upstream activators of wild-type RAS are important modulators of mutant RAS-driven oncogenesis. The guanine nucleotide exchange factor (GEF) SOS1 mediates KRAS-driven proliferation, but little is understood about the role of SOS2. We found that RAS family members have a hierarchical requirement for the expression and activity of SOS2 to drive cellular transformation. In mouse embryonic fibroblasts (MEFs), SOS2 critically mediated mutant KRAS-driven, but not HRAS-driven, transformation. Sos2 deletion reduced epidermal growth factor (EGF)-dependent activation of wild-type HRAS and phosphorylation of the kinase AKT in cells expressing mutant RAS isoforms. Assays using pharmacological inhibitors revealed a hierarchical requirement for signaling by phosphoinositide 3-kinase (PI3K) in promoting RAS-driven cellular transformation that mirrored the requirement for SOS2. KRAS-driven transformation required the GEF activity of SOS2 and was restored in Sos2-/- MEFs by expression of constitutively activated PI3K. Finally, CRISPR/Cas9-mediated deletion of SOS2 reduced EGF-stimulated AKT phosphorylation and synergized with MEK inhibition to revert the transformed phenotype of human KRAS mutant pancreatic and lung tumor cells. These results indicate that SOS2-dependent PI3K signaling mediates mutant KRAS-driven transformation, revealing therapeutic targets in KRAS-driven cancers. Our data also reveal the importance of three-dimensional culture systems in investigating the mediators of mutant KRAS.
Collapse
Affiliation(s)
- Erin Sheffels
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Nancy E Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chenyue Wang
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Do Hyung Kim
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Isabella A Vazirani
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Elizabeth Lee
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI)-Frederick, Frederick, MD 21702, USA
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI)-Frederick, Frederick, MD 21702, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
31
|
Differential Role of the RasGEFs Sos1 and Sos2 in Mouse Skin Homeostasis and Carcinogenesis. Mol Cell Biol 2018; 38:MCB.00049-18. [PMID: 29844066 DOI: 10.1128/mcb.00049-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/21/2018] [Indexed: 12/24/2022] Open
Abstract
Using Sos1 knockout (Sos1-KO), Sos2-KO, and Sos1/2 double-knockout (Sos1/2-DKO) mice, we assessed the functional role of Sos1 and Sos2 in skin homeostasis under physiological and/or pathological conditions. Sos1 depletion resulted in significant alterations of skin homeostasis, including reduced keratinocyte proliferation, altered hair follicle and blood vessel integrity in dermis, and reduced adipose tissue in hypodermis. These defects worsened significantly when both Sos1 and Sos2 were absent. Simultaneous Sos1/2 disruption led to severe impairment of the ability to repair skin wounds, as well as to almost complete ablation of the neutrophil-mediated inflammatory response in the injury site. Furthermore, Sos1 disruption delayed the onset of tumor initiation, decreased tumor growth, and prevented malignant progression of papillomas in a DMBA (7,12-dimethylbenz[α]anthracene)/TPA (12-O-tetradecanoylphorbol-13-acetate)-induced skin carcinogenesis model. Finally, Sos1 depletion in preexisting chemically induced papillomas resulted also in decreased tumor growth, probably linked to significantly reduced underlying keratinocyte proliferation. Our data unveil novel, distinctive mechanistic roles of Sos 1 and Sos2 in physiological control of skin homeostasis and wound repair, as well as in pathological development of chemically induced skin tumors. These observations underscore the essential role of Sos proteins in cellular proliferation and migration and support the consideration of these RasGEFs as potential biomarkers/therapy targets in Ras-driven epidermal tumors.
Collapse
|
32
|
Díaz D, Piquer-Gil M, Recio JS, Martínez-Losa MM, Alonso JR, Weruaga E, Álvarez-Dolado M. Bone marrow transplantation improves motor activity in a mouse model of ataxia. J Tissue Eng Regen Med 2018; 12:e1950-e1961. [PMID: 29222849 DOI: 10.1002/term.2626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 01/11/2023]
Abstract
Ataxias are locomotor disorders that can have an origin both neural and muscular, although both impairments are related. Unfortunately, ataxia has no cure, and the current therapies are aimed at motor re-education or muscular reinforcement. Nevertheless, cell therapy is becoming a promising approach to deal with incurable neural diseases, including neuromuscular ataxias. Here, we have used a model of ataxia, the Purkinje Cell Degeneration (PCD) mutant mouse, to study the effect of healthy (wild-type) bone marrow transplantation on the restoration of defective mobility. Bone marrow transplants (from both mutant and healthy donors) were performed in wild-type and PCD mice. Then, a wide battery of behavioural tests was employed to determine possible motor amelioration in mutants. Finally, cerebellum, spinal cord, and muscle were analysed to study the integration of the transplant-derived cells and the origin of the behavioural changes. Our results demonstrated that the transplant of wild-type bone marrow restores the mobility of PCD mice, increasing their capabilities of movement (52-100% of recovery), exploration (20-71% of recovery), speed (35% of recovery), and motor coordination (25% of recovery). Surprisingly, our results showed that bone marrow transplant notably improves the skeletal muscle structure, which is severely damaged in the mutants, rather than ameliorating the central nervous system. Although a multimodal effect of the transplant is not discarded, muscular improvements appear to be the basis of this motor recovery. Furthermore, the results from our study indicate that bone marrow stem cell therapy can be a safe and effective alternative for dealing with movement disorders such as ataxias.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Marina Piquer-Gil
- Laboratory of Cell Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC, Seville, Spain
| | - Javier Sánchez Recio
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain
| | - María Magdalena Martínez-Losa
- Laboratory of Cell Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC, Seville, Spain
| | - José Ramón Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | | |
Collapse
|
33
|
Wang YM, Huang LM, Li DR, Shao JH, Xiong SL, Wang CM, Lu SM. Hsa_circ_0101996 combined with hsa_circ_0101119 in peripheral whole blood can serve as the potential biomarkers for human cervical squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11924-11931. [PMID: 31966557 PMCID: PMC6966017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/22/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Previous study suggests changes in circRNAs in tumor tissues from cervical squamous cell carcinoma (CSCC) patients. However, little is known about the diagnostic value of circRNAs in CSCC. To assess the potential application of circRNAs as diagnostic tools in CSCC, the circulating circRNAs in peripheral whole blood were carried out. METHODS Five up-regulated circRNAs in peripheral whole blood from 87 patients with CSCC and 55 healthy controls were first identified by real-time quantitative polymerase chain reaction (RT-qPCR). The diagnostic value was evaluated using receiver operating characteristics (ROC) curves and the area under the ROC curves (AUC). RESULTS Compared with healthy controls, hsa_circ_0101996, hsa_circ_0104649, hsa_circ_0104443 and hsa_circ_0101119 expression were significantly up-regulated in peripheral whole blood from CSCC patients. ROC analysis showed that hsa_circ_0101996 and hsa_circ_0101119 could distinguish CSCC patients from healthy controls with high AUC (0.906 and 0.887, respectively). Intriguingly, the combination of hsa_circ_0101996 and hsa_circ_0101119 markedly improved AUC (0.964). CONCLUSION All of the findings suggest that hsa_circ_0101996 combined with hsa_circ_0101119 can serve as potential biomarkers for CSCC detection.
Collapse
Affiliation(s)
- Yi-Ming Wang
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Lu-Mi Huang
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Dai-Rong Li
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Jiang-He Shao
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Shuang-Long Xiong
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Chun-Mei Wang
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Song-Mei Lu
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| |
Collapse
|
34
|
Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis. Leukemia 2017; 32:820-827. [PMID: 28819285 PMCID: PMC5739283 DOI: 10.1038/leu.2017.267] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
Son of Sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the small GTPases RAC and RAS. Although the molecular mechanisms of RAS GEF catalysis have been unveiled, how SOS1 acquires RAC GEF activity and what is the physio-pathological relevance of this activity is much less understood. Here we show that SOS1 is tyrosine phosphorylated on Y1196 by ABL. Phosphorylation of Y1196 controls SOS1 inter-molecular interaction, is required to promote the exchange of nucleotides on RAC in vitro and for platelet-derived growth factor (PDGF) activation of RAC- and RAC-dependent actin remodeling and cell migration. SOS1 is also phosphorylated on Y1196 by BCR-ABL in chronic myelogenous leukemic cells. Importantly, in these cells, SOS1 is required for BCR-ABL-mediated activation of RAC, cell proliferation and transformation in vitro and in a xenograft mouse model. Finally, genetic removal of Sos1 in the bone marrow-derived cells (BMDCs) from Sos1fl/fl mice and infected with BCR-ABL causes a significant delay in the onset of leukemogenesis once BMDCs are injected into recipient, lethally irradiated mice. Thus, SOS1 is required for full transformation and critically contribute to the leukemogenic potential of BCR-ABL.
Collapse
|
35
|
Teku GN, Vihinen M. Simulation of the dynamics of primary immunodeficiencies in CD4+ T-cells. PLoS One 2017; 12:e0176500. [PMID: 28448599 PMCID: PMC5407609 DOI: 10.1371/journal.pone.0176500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
Primary immunodeficiencies (PIDs) form a large and heterogeneous group of mainly rare disorders that affect the immune system. T-cell deficiencies account for about one-tenth of PIDs, most of them being monogenic. Apart from genetic and clinical information, lots of other data are available for PID proteins and genes, including functions and interactions. Thus, it is possible to perform systems biology studies on the effects of PIDs on T-cell physiology and response. To achieve this, we reconstructed a T-cell network model based on literature mining and TPPIN, a previously published core T-cell network, and performed semi-quantitative dynamic network simulations on both normal and T-cell PID failure modes. The results for several loss-of-function PID simulations correspond to results of previously reported molecular studies. The simulations for TCR PTPRC, LCK, ZAP70 and ITK indicate profound changes to numerous proteins in the network. Significant effects were observed also in the BCL10, CARD11, MALT1, NEMO, IKKB and MAP3K14 simulations. No major effects were observed for PIDs that are caused by constitutively active proteins. The T-cell model facilitates the understanding of the underlying dynamics of PID disease processes. The approach confirms previous knowledge about T-cell signaling network and indicates several new important proteins that may be of interest when developing novel diagnosis and therapies to treat immunological defects.
Collapse
Affiliation(s)
- Gabriel N. Teku
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
36
|
Perucca S, Di Palma A, Piccaluga PP, Gemelli C, Zoratti E, Bassi G, Giacopuzzi E, Lojacono A, Borsani G, Tagliafico E, Scupoli MT, Bernardi S, Zanaglio C, Cattina F, Cancelli V, Malagola M, Krampera M, Marini M, Almici C, Ferrari S, Russo D. Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells). PLoS One 2017; 12:e0172430. [PMID: 28231331 PMCID: PMC5322933 DOI: 10.1371/journal.pone.0172430] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/03/2017] [Indexed: 12/30/2022] Open
Abstract
A human bone marrow-derived mesenchymal stromal cell (MSCs) and cord blood-derived CD34+ stem cell co-culture system was set up in order to evaluate the proliferative and differentiative effects induced by MSCs on CD34+ stem cells, and the reciprocal influences on gene expression profiles. After 10 days of co-culture, non-adherent (SN-fraction) and adherent (AD-fraction) CD34+ stem cells were collected and analysed separately. In the presence of MSCs, a significant increase in CD34+ cell number was observed (fold increase = 14.68), mostly in the SN-fraction (fold increase = 13.20). This was combined with a significant increase in CD34+ cell differentiation towards the BFU-E colonies and with a decrease in the CFU-GM. These observations were confirmed by microarray analysis. Through gene set enrichment analysis (GSEA), we noted a significant enrichment in genes involved in heme metabolism (e.g. LAMP2, CLCN3, BMP2K), mitotic spindle formation and proliferation (e.g. PALLD, SOS1, CCNA1) and TGF-beta signalling (e.g. ID1) and a down-modulation of genes participating in myeloid and lymphoid differentiation (e.g. PCGF2) in the co-cultured CD34+ stem cells. On the other hand, a significant enrichment in genes involved in oxygen-level response (e.g. TNFAIP3, SLC2A3, KLF6) and angiogenesis (e.g. VEGFA, IGF1, ID1) was found in the co-cultured MSCs. Taken together, our results suggest that MSCs can exert a priming effect on CD34+ stem cells, regulating their proliferation and erythroid differentiation. In turn, CD34+ stem cells seem to be able to polarise the BM-niche towards the vascular compartment by modulating molecular pathways related to hypoxia and angiogenesis.
Collapse
Affiliation(s)
- Simone Perucca
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Andrea Di Palma
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
- Section of Genomics and Personalized Medicine, Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Claudia Gemelli
- Parco Scientifico e Tecnologico Materiali Innovativi e Ricerca Applicata del Mirandolese, Modena, Italy
| | - Elisa Zoratti
- Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Giulio Bassi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Edoardo Giacopuzzi
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine (DMTM), University of Brescia, Brescia, Italy
| | - Andrea Lojacono
- U.O. of Obstetrics and Gynecology I, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Giuseppe Borsani
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine (DMTM), University of Brescia, Brescia, Italy
| | - Enrico Tagliafico
- Centro di Ricerche Genomiche, Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Maria Teresa Scupoli
- Interdepartmental Laboratory of Medical Research (LURM), University of Verona, Verona, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Camilla Zanaglio
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Federica Cattina
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Valeria Cancelli
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Michele Malagola
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mirella Marini
- Department of Transfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Camillo Almici
- Department of Transfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Sergio Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
37
|
Christensen SM, Tu HL, Jun JE, Alvarez S, Triplet MG, Iwig JS, Yadav KK, Bar-Sagi D, Roose JP, Groves JT. One-way membrane trafficking of SOS in receptor-triggered Ras activation. Nat Struct Mol Biol 2016; 23:838-46. [PMID: 27501536 PMCID: PMC5016256 DOI: 10.1038/nsmb.3275] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023]
Abstract
SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.
Collapse
Affiliation(s)
- Sune M. Christensen
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Hsiung-Lin Tu
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jesse E. Jun
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Meredith G. Triplet
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jeffrey S. Iwig
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Kamlesh K. Yadav
- Department of Biochemistry, New York University School of Medicine, New York, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, New York, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California, USA
| |
Collapse
|
38
|
Sos1 disruption impairs cellular proliferation and viability through an increase in mitochondrial oxidative stress in primary MEFs. Oncogene 2016; 35:6389-6402. [PMID: 27157612 DOI: 10.1038/onc.2016.169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
Abstract
Using a 4-hydroxytamoxifen (4OHT)-inducible, conditional Sos1-null mutation, we analyzed wild-type (WT), single Sos1-KO, Sos2-KO and double Sos1/2 KO primary mouse embryonic fibroblasts (MEF) with an aim at evaluating the functional specificity or redundancy of the Sos1 and Sos2 alleles at the cellular level. The 4OHT-induced Sos1-KO and Sos1/2-DKO MEFs exhibited distinct flat morphology, enlarged cell perimeter and altered cytoskeletal organization that were not observed in the WT and Sos2-KO counterparts. The Sos1-KO and Sos1/2-DKO MEFs also displayed significant accumulation, in comparison with WT and Sos2-KO MEFs, of cytoplasmic vesicular bodies identified as autophagosomes containing degraded mitochondria by means of electron microscopy and specific markers. Cellular proliferation and migration were impaired in Sos1-KO and Sos1/2-DKO MEFs in comparison with WT and Sos2-KO MEFs, whereas cell adhesion was only impaired upon depletion of both Sos isoforms. RasGTP formation was practically absent in Sos1/2-DKO MEFs as compared with the other genotypes and extracellular signal-regulated kinase phosphorylation showed only significant reduction after combined Sos1/2 depletion. Consistent with a mitophagic phenotype, in vivo labeling with specific fluorophores uncovered increased levels of oxidative stress (elevated intracellular reactive oxygen species and mitochondrial superoxide and loss of mitochondrial membrane potential) in the Sos1-KO and the Sos1/2-DKO cells as compared with Sos2-KO and WT MEFs. Interestingly, treatment of the MEF cultures with antioxidants corrected the altered phenotypes of Sos1-KO and Sos1/2-DKO MEFs by restoring their altered perimeter size and proliferative rate to levels similar to those of WT and Sos2-KO MEFs. Our data uncover a direct mechanistic link between Sos1 and control of intracellular oxidative stress, and demonstrate functional prevalence of Sos1 over Sos2 with regards to cellular proliferation and viability.
Collapse
|
39
|
Hennig A, Markwart R, Esparza-Franco MA, Ladds G, Rubio I. Ras activation revisited: role of GEF and GAP systems. Biol Chem 2016; 396:831-48. [PMID: 25781681 DOI: 10.1515/hsz-2014-0257] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Ras is a prototypical small G-protein and a central regulator of growth, proliferation and differentiation processes in virtually every nucleated cell. As such, Ras becomes engaged and activated by multiple growth factors, mitogens, cytokines or adhesion receptors. Ras activation comes about by changes in the steady-state equilibrium between the inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states of Ras, resulting in the mostly transient accumulation of Ras-GTP. Three decades of intense Ras research have disclosed various families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) as the two principal regulatory elements of the Ras-GDP/GTP loading status. However, with the possible exception of the GEF Sos, we still have only a rudimentary knowledge of the precise role played by many GEF and GAP members in the signalling network upstream of Ras. As for GAPs, we even lack the fundamental understanding of whether they function as genuine signal transducers in the context of growth factor-elicited Ras activation or rather act as passive modulators of the Ras-GDP/GTP cycle. Here we sift through the large body of Ras literature and review the relevant data for understanding the participation and precise role played by GEFs and GAPs in the process of Ras activation.
Collapse
|
40
|
Abstract
Inhibition of Ras-stimulating enzymes is a possible avenue to treat Ras-driven diseases. In this issue of Chemistry & Biology, Evelyn and coworkers report an inhibitor for one such enzyme, Sos1, capable of impairing wild-type Ras signaling in cells.
Collapse
Affiliation(s)
- Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas and University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas and University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain.
| |
Collapse
|