1
|
Safi R, Wardell SE, Watkinson P, Qin X, Lee M, Park S, Krebs T, Dolan EL, Blattler A, Tsuji T, Nayak S, Khater M, Fontanillo C, Newlin MA, Kirkland ML, Xie Y, Long H, Fink EC, Fanning SW, Runyon S, Brown M, Xu S, Owzar K, Norris JD, McDonnell DP. Androgen receptor monomers and dimers regulate opposing biological processes in prostate cancer cells. Nat Commun 2024; 15:7675. [PMID: 39227594 PMCID: PMC11371910 DOI: 10.1038/s41467-024-52032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Most prostate cancers express the androgen receptor (AR), and tumor growth and progression are facilitated by exceptionally low levels of systemic or intratumorally produced androgens. Thus, absolute inhibition of the androgen signaling axis remains the goal of current therapeutic approaches to treat prostate cancer (PCa). Paradoxically, high dose androgens also exhibit considerable efficacy as a treatment modality in patients with late-stage metastatic PCa. Here we show that low levels of androgens, functioning through an AR monomer, facilitate a non-genomic activation of the mTOR signaling pathway to drive proliferation. Conversely, high dose androgens facilitate the formation of AR dimers/oligomers to suppress c-MYC expression, inhibit proliferation and drive a transcriptional program associated with a differentiated phenotype. These findings highlight the inherent liabilities in current approaches used to inhibit AR action in PCa and are instructive as to strategies that can be used to develop new therapeutics for this disease and other androgenopathies.
Collapse
Affiliation(s)
- Rachid Safi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Paige Watkinson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Marissa Lee
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Emma L Dolan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Adam Blattler
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Toshiya Tsuji
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Surendra Nayak
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Marwa Khater
- Informatics and Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Celia Fontanillo
- Informatics and Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Madeline A Newlin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Megan L Kirkland
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Henry Long
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Emma C Fink
- Department of Cancer Biology, Loyola University, Maywood, IL, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University, Maywood, IL, USA
| | - Scott Runyon
- RTI International, Research Triangle Park, NC, USA
| | - Myles Brown
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuichan Xu
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Kohlmeier A, Sison CAM, Yilmaz BD, Coon V JS, Dyson MT, Bulun SE. GATA2 and Progesterone Receptor Interaction in Endometrial Stromal Cells Undergoing Decidualization. Endocrinology 2020; 161:5825448. [PMID: 32335672 PMCID: PMC7899565 DOI: 10.1210/endocr/bqaa070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
The transcription factor GATA2 is important for endometrial stromal cell decidualization in early pregnancy. Progesterone receptor (PGR) is also critical during decidualization but its interaction with GATA2 in regulating genes and pathways necessary for decidualization in human endometrium are unclear. RNA-sequencing (RNA-seq) was performed to compare gene expression profiles (n = 3), and chromatin immunoprecipitation followed by sequencing (ChIP-seq) using an antibody against GATA2 (n = 2) was performed to examine binding to target genes in human endometrial stromal cells undergoing in vitro decidualization (IVD including estrogen, progestin, and 3',5'-cyclic AMP analogue) or vehicle treatment. We identified 1232 differentially expressed genes (DEGs) in IVD vs vehicle. GATA2 cistrome in IVD-treated cells was enriched with motifs for GATA, ATF, and JUN, and gene ontology analysis of GATA2 cistrome revealed pathways that regulate cholesterol storage, p38 mitogen-activated protein kinase, and the c-Jun N-terminal kinase cascades. Integration of RNA-seq and ChIP-seq data revealed that the PGR motif is highly enriched at GATA2 binding regions surrounding upregulated genes in IVD-treated cells. The integration of a mined public PGR cistrome in IVD-treated human endometrial cells with our GATA2 cistrome showed that GATA2 binding was significantly enhanced at PGR-binding regions in IVD vs vehicle. Interrogating 2 separate ChIP-seq data sets together with RNA-seq revealed integration of GATA2 and PGR action to coregulate biologic processes during decidualization of human endometrial stromal cells, specifically via WNT activation and stem cell differentiation pathways. These findings reveal the key pathways that are coactivated by GATA2 and PGR that may be therapeutic targets for supporting implantation and early pregnancy.
Collapse
Affiliation(s)
- Amanda Kohlmeier
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
- Correspondence: Serdar E. Bulun, MD, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 250 East Superior Street, Prentice 3-2306, Chicago, IL 60611. E-mail:
| | - Christia Angela M Sison
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - Bahar D Yilmaz
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - John S Coon V
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - Matthew T Dyson
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| |
Collapse
|
3
|
Cenciarini ME, Proietti CJ. Molecular mechanisms underlying progesterone receptor action in breast cancer: Insights into cell proliferation and stem cell regulation. Steroids 2019; 152:108503. [PMID: 31562879 DOI: 10.1016/j.steroids.2019.108503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The ovarian steroid hormone progesterone and its nuclear receptor, the Progesterone Receptor (PR), play an essential role in the regulation of cell proliferation and differentiation in the mammary gland. In addition, experimental and clinical evidence demonstrate their critical role in controlling mammary gland tumorigenesis and breast cancer development. When bound to its ligand, the main action of PR is as a transcription factor, which regulates the expression of target genes networks. PR also activates signal transduction pathways through a rapid or non-genomic mechanism in breast cancer cells, an event that is fully integrated with its genomic effects. This review summarizes the molecular mechanisms of the ligand-activated PR actions that drive epithelial cell proliferation and the regulation of the stem cell population in the normal breast and in breast cancer.
Collapse
Affiliation(s)
- Mauro E Cenciarini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | - Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
4
|
El-Mayet FS, El-Habbaa AS, D'Offay J, Jones C. Synergistic Activation of Bovine Herpesvirus 1 Productive Infection and Viral Regulatory Promoters by the Progesterone Receptor and Krüppel-Like Transcription Factor 15. J Virol 2019; 93:e01519-18. [PMID: 30305353 PMCID: PMC6288325 DOI: 10.1128/jvi.01519-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), including modified live vaccines, readily infects the fetus and ovaries, which can lead to reproductive failure. The BoHV-1 latency reactivation cycle in sensory neurons may further complicate reproductive failure in pregnant cows. The immediate early transcription unit 1 (IEtu1) promoter drives expression of important viral transcriptional regulators (bICP0 and bICP4). This promoter contains two functional glucocorticoid receptor (GR) response elements (GREs) that have the potential to stimulate productive infection following stressful stimuli. Since progesterone and the progesterone receptor (PR) can activate many GREs, we hypothesized that the PR and/or progesterone regulates productive infection and viral transcription. New studies demonstrated that progesterone stimulated productive infection. Additional studies revealed the PR and Krüppel-like transcription factor 15 (KLF15) cooperated to stimulate productive infection and IEtu1 promoter activity. IEtu1 promoter activation required both GREs, which correlated with the ability of the PR to interact with wild-type (wt) GREs but not mutant GREs. KLF15 also cooperated with the PR to transactivate the bICP0 early promoter, a promoter that maintains bICP0 protein expression during productive infection. Intergenic viral DNA fragments (less than 400 bp) containing two GREs and putative KLF binding sites present within genes encoding unique long 52 (UL-52; component of DNA primase/helicase complex), Circ, bICP4, and IEtu2 were stimulated by KLF15 and the PR more than 10-fold, suggesting that additional viral promoters are activated by these transcription factors. Collectively, these studies suggest progesterone and the PR promote BoHV-1 spread to reproductive tissues, thus increasing the incidence of reproductive failure.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is the most frequently diagnosed cause of abortions in pregnant cows and can cause "abortion storms" in susceptible herds. Virulent field strains and even commercially available modified live vaccines can induce abortion, in part because BoHV-1 replicates efficiently in the ovary and corpus luteum. We now demonstrate that progesterone and the progesterone receptor (PR) stimulate productive infection. The BoHV-1 genome contains approximately 100 glucocorticoid receptor (GR) response elements (GREs). Interestingly, the PR can bind and activate many promoters that contain GREs. The PR and Krüppel-like transcription factor 15 (KLF15), which regulate key steps during embryo implantation, cooperate to stimulate productive infection and two viral promoters that drive expression of key viral transcriptional regulators. These studies suggest that the ability of progesterone and the PR to stimulate productive infection has the potential to promote virus spread in reproductive tissue and induce reproductive failure.
Collapse
Affiliation(s)
- Fouad S El-Mayet
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Ayman S El-Habbaa
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Jean D'Offay
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
5
|
Sun C, Ma P, Wang Y, Liu W, Chen Q, Pan Y, Zhao C, Qian Y, Liu J, Li W, Shu Y. KLF15 Inhibits Cell Proliferation in Gastric Cancer Cells via Up-Regulating CDKN1A/p21 and CDKN1C/p57 Expression. Dig Dis Sci 2017; 62:1518-1526. [PMID: 28421457 DOI: 10.1007/s10620-017-4558-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Krüppel-like factors (KLFs) have been identified in multi-cancers and act as oncogenes or tumor suppressors. The function of KLF15, one member of KLFs, has not been well elucidated, especially in gastric cancer (GC). AIMS This study was designed to investigate the prognostic value and biological functions of KLF15 in GC. METHODS KLF15 protein expression in GC patients was evaluated by immunohistochemistry assays in 50 paired GC tissues and adjacent normal tissues, and correlations between KLF15 expression and clinicopathological characteristics and prognosis were analyzed. Then, we investigated the over-expression of KLF15 on cell proliferation and its mechanism in GC cells. RESULTS KLF15 expression levels were significantly down-regulated in GC tissues compared to adjacent normal tissues. And KLF15 expression was negatively correlated with clinical stage, lymphatic metastasis, and distant metastasis. Furthermore, KLF15 expression could predict prognosis in patients with GC. Moreover, over-expression of KLF15 could inhibit cell proliferation partly via regulating CDKN1A/p21 and CDKN1C/p57. CONCLUSION These findings demonstrate that KLF15 plays a significant role in GC progression and could be a therapeutic target for GC.
Collapse
Affiliation(s)
- Chongqi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Yanfen Wang
- Department of Pathology, Yangzhou No.1 People's Hospital, Yangzhou, People's Republic of China
| | - Weitao Liu
- Department of Pathology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qinnan Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Yingchen Qian
- Department of Pathology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China. .,Department of Medical Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Medical Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
6
|
Clare SE, Gupta A, Choi M, Ranjan M, Lee O, Wang J, Ivancic DZ, Kim JJ, Khan SA. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes. BMC Cancer 2016; 16:326. [PMID: 27215412 PMCID: PMC4878043 DOI: 10.1186/s12885-016-2355-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
Background The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. Methods We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. Results TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. Conclusions By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2355-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susan E Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - Akash Gupta
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - MiRan Choi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - Manish Ranjan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - Oukseub Lee
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - Jun Wang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - David Z Ivancic
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA.
| | - Seema A Khan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Monsivais D, Clementi C, Peng J, Titus MM, Barrish JP, Creighton CJ, Lydon JP, DeMayo FJ, Matzuk MM. Uterine ALK3 is essential during the window of implantation. Proc Natl Acad Sci U S A 2016; 113:E387-95. [PMID: 26721398 PMCID: PMC4725477 DOI: 10.1073/pnas.1523758113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The window of implantation is defined by the inhibition of uterine epithelial proliferation, structural epithelial cell remodeling, and attenuated estrogen (E2) response. These changes occur via paracrine signaling between the uterine epithelium and stroma. Because implantation defects are a major cause of infertility in women, identifying these signaling pathways will improve infertility interventions. Bone morphogenetic proteins (BMPs) are TGF-β family members that regulate the postimplantation and midgestation stages of pregnancy. In this study, we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. Conditional knockout (cKO) of ALK3 in the uterus was obtained by producing Alk3(flox) (/flox)-Pgr-cre-positive females. Alk3 cKO mice are sterile and have defects in the luminal uterine epithelium, including increased microvilli density and maintenance of apical cell polarity. Moreover, Alk3 cKO mice exhibit an elevated uterine E2 response and unopposed epithelial cell proliferation during the window of implantation. We determined that dual transcriptional regulation of Kruppel-like factor 15 (Klf15), by both the transforming growth factor β (TGF-β) transcription factor SMAD family member 4 (SMAD4) and progesterone receptor (PR), is necessary to inhibit uterine epithelial cell proliferation, a key step for embryo implantation. Our findings present a convergence of BMP and steroid hormone signaling pathways in the regulation of uterine receptivity.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Caterina Clementi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Jia Peng
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Mary M Titus
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - James P Barrish
- Electron Microscopy Laboratory, Texas Children's Hospital, Houston, TX 77030
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - John P Lydon
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Francesco J DeMayo
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
8
|
Mazur EC, Vasquez YM, Li X, Kommagani R, Jiang L, Chen R, Lanz RB, Kovanci E, Gibbons WE, DeMayo FJ. Progesterone receptor transcriptome and cistrome in decidualized human endometrial stromal cells. Endocrinology 2015; 156:2239-53. [PMID: 25781565 PMCID: PMC4430623 DOI: 10.1210/en.2014-1566] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Decidualization is a complex process involving cellular proliferation and differentiation of the endometrial stroma that is required to establish and support pregnancy. Progesterone acting via its nuclear receptor, the progesterone receptor (PGR), is a critical regulator of decidualization and is known to interact with certain members of the activator protein-1 (AP-1) family in the regulation of transcription. In this study, we identified the cistrome and transcriptome of PGR and identified the AP-1 factors FOSL2 and JUN to be regulated by PGR and important in the decidualization process. Direct targets of PGR were identified by integrating gene expression data from RNA sequencing with the whole-genome binding profile of PGR determined by chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in primary human endometrial stromal cells exposed to 17β-estradiol, medroxyprogesterone acetate, and cAMP to promote in vitro decidualization. Ablation of FOSL2 and JUN attenuates the induction of 2 decidual marker genes, IGFBP1 and PRL. ChIP-seq analysis of genomic binding revealed that FOSL2 is bound in proximity to 8586 distinct genes, including nearly 80% of genes bound by PGR. A comprehensive assessment of the PGR-dependent decidual transcriptome integrated with the genomic binding of PGR identified FOSL2 as a potentially important transcriptional coregulator of PGR via direct interaction with regulatory regions of genes actively regulated during decidualization.
Collapse
Affiliation(s)
- Erik C Mazur
- Division of Reproductive Endocrinology and Infertility (E.C.M., E.K., W.E.G.), Department of Obstetrics and Gynecology, Texas Children's Hospital Pavilion for Women, Department of Molecular and Cellular Biology (Y.M.V., X.L., R.K., R.B.L., F.J.D.), and Department of Molecular and Human Genetics (L.J., R.C.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
PURPOSE Krüppel-like factor 15 (KLF15) is a transcription factor that is involved in various biological processes, including cellular proliferation, differentiation and death. In addition, KLF15 has recently been implicated in the development of several human malignancies, including breast cancer. In vitro breast cancer studies have pointed at a putative role in the regulation of cell proliferation. As yet, however, KLF15 expression analyses in primary human breast cancers have not been reported. Here, we set out to investigate the clinical and biological significance of KLF15 expression in human breast cancers. METHODS KLF15 expression was evaluated by immunohistochemistry in 54 primary invasive ductal breast carcinomas, and its status was correlated with various clinicopathological parameters. We also assessed KLF15 expression in vitro in 4 breast cancer-derived cell lines using Western blotting, and examined the effects of exogenous KLF15 expression on cell cycle progression using flow cytometry. Concomitant (changes in) p21, p27 and TOPO2A expression levels were examined using real-time RT-PCR and immunocytochemistry, respectively. RESULTS In ~90% of the primary breast carcinoma tissues tested, KLF15 was found to be expressed and localized in either the cytoplasm, the nucleus or both. Predominant nuclear immunoreactivity was found to be associated with clinicopathological factors predicting a better clinical outcome (i.e., ER positive, HER2 negative, low grade, low Ki-67 expression). The breast cancer-derived cell lines tested showed a low KLF15 expression with a predominant cytoplasmic localization. Subsequent exogenous KLF15 over-expression resulted in a predominant nuclear localization and a concomitant decreased cellular proliferation and an arrest at the G0/G1 phase of the cell cycle. In addition, we found that nuclear KLF15 expression results in up-regulation of p21, a pivotal suppressor of the G1 to S phase transition of the cell cycle. CONCLUSIONS Our results indicate that nuclear KLF15 expression suppresses breast cancer cell proliferation at least partially through p21 up-regulation and subsequent cell cycle arrest. This is a first study addressing the role of KLF15 in breast cancer development.
Collapse
|
10
|
Knoedler JR, Denver RJ. Krüppel-like factors are effectors of nuclear receptor signaling. Gen Comp Endocrinol 2014; 203:49-59. [PMID: 24642391 PMCID: PMC4339045 DOI: 10.1016/j.ygcen.2014.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/09/2023]
Abstract
Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs (1) act as accessory transcription factors for NR actions, (2) regulate expression of NR genes, and (3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Robert J Denver
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-1048, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
11
|
Prashar P, Yadav PS, Samarjeet F, Bandyopadhyay A. Microarray meta-analysis identifies evolutionarily conserved BMP signaling targets in developing long bones. Dev Biol 2014; 389:192-207. [PMID: 24583261 DOI: 10.1016/j.ydbio.2014.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 11/26/2022]
Abstract
In vertebrates, BMP signaling has been demonstrated to be sufficient for bone formation in several tissue contexts. This suggests that genes necessary for bone formation are expressed in a BMP signaling dependent manner. However, till date no gene has been reported to be expressed in a BMP signaling dependent manner in bone. Our aim was to identify such genes. On searching the literature we found that several microarray experiments have been conducted where the transcriptome of osteogenic cells in absence and presence of BMP signaling activation have been compared. However, till date, there is no evidence to suggest that any of the genes found to be upregulated in presence of BMP signaling in these microarray analyses is indeed a target of BMP signaling in bone. We wanted to utilize this publicly available information to identify candidate BMP signaling target genes in vivo. We performed a meta-analysis of six such comparable microarray datasets. This analysis and subsequent experiments led to the identification of five targets of BMP signaling in bone that are conserved both in mouse and chick. Of these Lox, Klf10 and Gpr97 are likely to be direct transcriptional targets of BMP signaling pathway. Dpysl3, is a novel BMP signaling target identified in our study. Our data demonstrate that Dpysl3 is important for osteogenic differentiation of mesenchymal cells and is involved in cell secretion. We have demonstrated that the expression of Dpysl3 is co-operatively regulated by BMP signaling and Runx2. Based on our experimental data, in silico analysis of the putative promoter-enhancer regions of Bmp target genes and existing literature, we hypothesize that BMP signaling collaborates with multiple signaling pathways to regulate the expression of a unique set of genes involved in endochondral ossification.
Collapse
Affiliation(s)
- Paritosh Prashar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Prem Swaroop Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Fnu Samarjeet
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
12
|
Pregnancy without progesterone in horses defines a second endogenous biopotent progesterone receptor agonist, 5α-dihydroprogesterone. Proc Natl Acad Sci U S A 2014; 111:3365-70. [PMID: 24550466 DOI: 10.1073/pnas.1318163111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
One of the most widely accepted axioms of mammalian reproductive biology is that pregnancy requires the (sole) support of progesterone, acting in large measure through nuclear progesterone receptors (PRs) in uterine and cervical tissues, without which pregnancy cannot be established or maintained. However, mares lack detectable progesterone in the latter half of pregnancy. Instead of progesterone, several (mainly 5α-reduced) pregnanes are elevated and have long been speculated to provide progestational support in lieu of progesterone itself. To the authors' knowledge, evidence for the bioactivity of a second potent endogenously synthesized pregnane able to support pregnancy in the absence of progesterone has never before been reported. The 5α-reduced progesterone metabolite dihydroprogesterone (DHP) was shown in vivo to stimulate endometrial growth and progesterone-dependent gene expression in the horse at subphysiological concentrations and to maintain equine pregnancy in the absence of luteal progesterone in the third and fourth weeks postbreeding. Results of in vitro studies indicate that DHP is an equally potent and efficacious endogenous progestin in the horse but that the PR evolved with increased agonistic potency for DHP at the expense of potency toward progesterone based on comparisons with human PR responses. Sequence analysis and available literature indicate that the enzyme responsible for DHP synthesis, 5α-reductase type 1, also adapted primarily to metabolize progesterone and thereby to serve diverse roles in the physiology of pregnancy in mammals. Our confirmation that endogenously synthesized DHP is a biopotent progestin in the horse ends decades of speculation, explaining how equine pregnancies survive without measurable circulating progesterone in the last 4 to 5 mo of gestation.
Collapse
|
13
|
Wei Q, Zhu G, Cui X, Kang L, Cao D, Jiang Y. Expression of CCT6A mRNA in chicken granulosa cells is regulated by progesterone. Gen Comp Endocrinol 2013; 189:15-23. [PMID: 23644154 DOI: 10.1016/j.ygcen.2013.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 02/04/2023]
Abstract
CCT6A, the zeta subunit of the chaperonin containing TCP1 complex, is the only cytosolic chaperonin in eukaryotes and is estimated to assist in the folding of multiple proteins including actin, tubulin, cyclin E, myosin, transducin and the Von Hippel Lindau tumor suppressor. In this study, we examined the expression of CCT6A and progesterone receptor (PGR) mRNA in various tissues of chickens and the regulation of CCT6A and PGR mRNA in ovarian granulosa cells. Northern blot analysis revealed that CCT6A had one transcript and was highly expressed in the ovary tissues from chickens at both the sexually immature and mature stages. CCT6A mRNA expression was increased maximally from pre-hierarchy follicles to F5 follicles and subsequently declined in pre-ovulatory and post-ovulatory follicles. The expression of PGR mRNA exhibited the similar pattern to CCT6A. In granulosa cells isolated from pre-ovulatory follicles, follicle-stimulating hormone (FSH) inhibited the expression of CCT6A mRNA, whereas progesterone activated CCT6A and suppressed PGR expression in a time-dependent manner. We further investigated the regulation of CCT6A transcription by progesterone by constructing various progressive deletions and mutants and identified the core promoter element of CCT6A and the binding region of progesterone, which is located from -2056 to -2051. Taken together, our results indicate that CCT6A likely plays an important role in follicle growth, and in granulosa cells, progesterone activates CCT6A transcription via a progesterone response element (PRE) located in the distal promoter of CCT6A.
Collapse
Affiliation(s)
- Qingqing Wei
- Laboratory of Animal Molecular Genetics, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | | | | | | | | | | |
Collapse
|
14
|
Treviño LS, Bingman WE, Edwards DP, Weigel NL. The requirement for p42/p44 MAPK activity in progesterone receptor-mediated gene regulation is target gene-specific. Steroids 2013; 78:542-7. [PMID: 23380370 PMCID: PMC3640704 DOI: 10.1016/j.steroids.2012.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022]
Abstract
Recent studies have suggested that progestins play a role in the etiology of breast cancer; however, the mechanisms by which progestins promote tumor formation/progression have not been defined. Progestin action, in target tissues such as the breast, is mediated by the progesterone receptor (PR). PR signaling is complex and PR regulates transcription of target genes through a variety of mechanisms. Many cell signaling pathways are activated inappropriately in breast cancer cells and these pathways can regulate PR activity. For example, the p42/p44 MAPK pathway can regulate PR function by altering phosphorylation of PR, as well as its coregulators. We found that inhibition of the p42/p44 MAPK signaling pathway with a MEK inhibitor (U0126) impairs PR-mediated gene induction, but not gene repression. In addition, the effects of U0126 on PR-mediated gene transcription are much greater with long-term versus short-term inhibition and are gene-specific. Finally, treatment with U0126 delays phosphorylation of Ser294, but does not block phosphorylation completely, suggesting that p42/p44 MAPK kinase is not the dominant kinase responsible for phosphorylating this site. Collectively, these studies suggest that in addition to the p42/p44 MAPK pathway, other signaling pathways are also important for PR transcriptional activity in breast cancer cells. The integration of PR transcriptional effects and cell signaling pathways has implications for the initiation or progression of breast cancer. Understanding how these pathways interact may aid in the development of prevention and/or treatment strategies for the disease.
Collapse
Affiliation(s)
- Lindsey S. Treviño
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - William E. Bingman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dean P. Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - NL Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Corresponding Author: Department of Molecular and Cellular Biology, Baylor College of Medicine, M515, One Baylor Plaza, Houston, TX 77030, USA. Telephone: 713-798-6234;
| |
Collapse
|
15
|
The glucocorticoid receptor and KLF15 regulate gene expression dynamics and integrate signals through feed-forward circuitry. Mol Cell Biol 2013; 33:2104-15. [PMID: 23508109 DOI: 10.1128/mcb.01474-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The glucocorticoid receptor (GR) regulates adaptive transcriptional programs that alter metabolism in response to stress. Network properties that allow GR to tune gene expression to match specific physiologic demands are poorly understood. We analyzed the transcriptional consequences of GR activation in murine lungs deficient for KLF15, a transcriptional regulator of amino acid metabolism that is induced by glucocorticoids and fasting. Approximately 7% of glucocorticoid-regulated genes had altered expression in Klf15-knockdown (Klf15(-/-)) mice. KLF15 formed coherent and incoherent feed-forward circuits with GR that correlated with the expression dynamics of the glucocorticoid response. Coherent feed-forward gene regulation by GR and KLF15 was characterized by combinatorial activation of linked GR-KLF15 regulatory elements by both factors and increased GR occupancy, while expression of KLF15 reduced GR occupancy at the incoherent target, MT2A. Serum deprivation, which increased KLF15 expression in a GR-independent manner in vitro, enhanced glucocorticoid-mediated induction of feed-forward targets of GR and KLF15, such as the loci for the amino acid-metabolizing enzymes proline dehydrogenase and alpha-aminoadipic semialdehyde synthase. Our results establish feed-forward architecture as an organizational principle for the GR network and provide a novel mechanism through which GR integrates signals and regulates expression dynamics.
Collapse
|
16
|
Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells. Biochem J 2012; 442:345-56. [PMID: 22115192 DOI: 10.1042/bj20111418] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PFKFB (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) catalyses the synthesis and degradation of Fru-2,6-P2 (fructose-2,6-bisphosphate), a key modulator of glycolysis and gluconeogenesis. The PFKFB3 gene is extensively involved in cell proliferation owing to its key role in carbohydrate metabolism. In the present study we analyse its mechanism of regulation by progestins in breast cancer cells. We report that exposure of T47D cells to synthetic progestins (ORG2058 or norgestrel) leads to a rapid increase in Fru-2,6-P2 concentration. Our Western blot results are compatible with a short-term activation due to PFKFB3 isoenzyme phosphorylation and a long-term sustained action due to increased PFKFB3 protein levels. Transient transfection of T47D cells with deleted gene promoter constructs allowed us to identify a PRE (progesterone-response element) to which PR (progesterone receptor) binds and thus transactivates PFKFB3 gene transcription. PR expression in the PR-negative cell line MDA-MB-231 induces endogenous PFKFB3 expression in response to norgestrel. Direct binding of PR to the PRE box (-3490 nt) was confirmed by ChIP (chromatin immunoprecipiation) experiments. A dual mechanism affecting PFKFB3 protein and gene regulation operates in order to assure glycolysis in breast cancer cells. An immediate early response through the ERK (extracellular-signal-regulated kinase)/RSK (ribosomal S6 kinase) pathway leading to phosphorylation of PFKFB3 on Ser461 is followed by activation of mRNA transcription via cis-acting sequences on the PFKFB3 promoter.
Collapse
|
17
|
Taylor DK, Leppert PC. Treatment for Uterine Fibroids: Searching for Effective Drug Therapies. ACTA ACUST UNITED AC 2012; 9:e41-e49. [PMID: 23264802 DOI: 10.1016/j.ddstr.2012.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Uterine fibroids are common reproductive-age benign tumors that contribute to severe morbidity and infertility. Cumulative incidence is 4 times higher in Africian-Americans compared to Caucasians and constitutes a major health disparity challenge. Fibroids are the leading indication for hysterectomy and their management averages $21 billion annually in the US. No long term minimally invasive therapies exist. Thus, promising drug therapies, their chemistry, pharmacology, and clinical efficacy, focusing first on innovative drug delivery approaches, are reviewed.
Collapse
Affiliation(s)
- Darlene K Taylor
- Department of Chemistry, North Carolina Central University, 3105 M. Townes Science Building, 1801 Concord Street, Durham, NC 27707, United States ; Departments of Obstetrics and Gynecology and Pathology, Duke University School of Medicine, 242 Sands Building, Box 103206, Durham, NC 27710, United States
| | | |
Collapse
|
18
|
Yin P, Roqueiro D, Huang L, Owen JK, Xie A, Navarro A, Monsivais D, Coon V JS, Kim JJ, Dai Y, Bulun SE. Genome-wide progesterone receptor binding: cell type-specific and shared mechanisms in T47D breast cancer cells and primary leiomyoma cells. PLoS One 2012; 7:e29021. [PMID: 22272226 PMCID: PMC3260146 DOI: 10.1371/journal.pone.0029021] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/18/2011] [Indexed: 01/16/2023] Open
Abstract
Background Progesterone, via its nuclear receptor (PR), exerts an overall tumorigenic effect on both uterine fibroid (leiomyoma) and breast cancer tissues, whereas the antiprogestin RU486 inhibits growth of these tissues through an unknown mechanism. Here, we determined the interaction between common or cell-specific genome-wide binding sites of PR and mRNA expression in RU486-treated uterine leiomyoma and breast cancer cells. Principal Findings ChIP-sequencing revealed 31,457 and 7,034 PR-binding sites in breast cancer and uterine leiomyoma cells, respectively; 1,035 sites overlapped in both cell types. Based on the chromatin-PR interaction in both cell types, we statistically refined the consensus progesterone response element to G•ACA• • •TGT•C. We identified two striking differences between uterine leiomyoma and breast cancer cells. First, the cis-regulatory elements for HSF, TEF-1, and C/EBPα and β were statistically enriched at genomic RU486/PR-targets in uterine leiomyoma, whereas E2F, FOXO1, FOXA1, and FOXF sites were preferentially enriched in breast cancer cells. Second, 51.5% of RU486-regulated genes in breast cancer cells but only 6.6% of RU486-regulated genes in uterine leiomyoma cells contained a PR-binding site within 5 kb from their transcription start sites (TSSs), whereas 75.4% of RU486-regulated genes contained a PR-binding site farther than 50 kb from their TSSs in uterine leiomyoma cells. RU486 regulated only seven mRNAs in both cell types. Among these, adipophilin (PLIN2), a pro-differentiation gene, was induced via RU486 and PR via the same regulatory region in both cell types. Conclusions Our studies have identified molecular components in a RU486/PR-controlled gene network involved in the regulation of cell growth, cell migration, and extracellular matrix function. Tissue-specific and common patterns of genome-wide PR binding and gene regulation may determine the therapeutic effects of antiprogestins in uterine fibroids and breast cancer.
Collapse
Affiliation(s)
- Ping Yin
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Damian Roqueiro
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lei Huang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jonas K. Owen
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Anna Xie
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Antonia Navarro
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Diana Monsivais
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - John S. Coon V
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - J. Julie Kim
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (YD); (SEB)
| | - Serdar E. Bulun
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (YD); (SEB)
| |
Collapse
|
19
|
Zhao X, Mo D, Li A, Gong W, Zhang Y, Qian W, Chen W, Xiao S, Chen Y. Characterization and transcriptional regulation analysis of the porcine PAQR6 gene. DNA Cell Biol 2011; 30:947-54. [PMID: 21988462 DOI: 10.1089/dna.2011.1262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Progestin and adipoQ receptor family member VI (PAQR6) is a new member of the Progestin and adipoQ receptors (PAQRs) family that functions as an important factor in the nongenomic actions of rapid steroid response. Considering the important role of PAQR6 in these nongenomic actions, we determined porcine PAQR6 expression and regulation. We cloned the cDNA of porcine PAQR6 and analyzed its genomic structure. Subcellular localization analysis showed that PAQR6-green fluorescent protein fusion protein was distributed in cytoplasm. Spatial expression patterns analysis revealed that porcine PAQR6 was more highly expressed in small intestinal than in other tissues. To investigate the regulatory mechanism of porcine PAQR6, we cloned approximately 1.5 kb of porcine PAQR6 5'-regulatory region and generated sequential deletion constructs and evaluated their activity in a dual-luciferase reporter assay. The results suggested that the core promoter region of this gene is located in the first exon region from +90 to +241. Site-directed mutagenesis indicated that adiponectin receptor protein 1, E2F transcription factor 1, and Sp1 transcription factor might be important transcription factors for porcine PAQR6. This study is the first attempt to elucidate the transcriptional regulation of porcine PAQR6, which established a foundation for further study and contributed to the deeper investigation of the regulation and function of PAQR6.
Collapse
Affiliation(s)
- Xiao Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Roeder H, Jayes F, Feng L, Leppert PC. CDB-4124 does not cause apoptosis in cultured fibroid cells. Reprod Sci 2011; 18:850-7. [PMID: 21422050 DOI: 10.1177/1933719111399929] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Selective progesterone receptor modulators (SPRMs), such as asoprisnil (J867) and ulipristal (CDB-2914), have been shown to reduce fibroid volume in vivo and to induce apoptosis in vitro. CDB-4124 (telapristone), a SPRM with different side groups, also reduced fibroid volume in vivo, and we hypothesized that this SPRM would also cause apoptosis in cultured fibroid cells. METHODS Immortalized, progesterone receptor-positive fibroid cells, known to be capable of apoptosis, were grown to 80% confluence in serum-containing media. Cells were then treated for 48 hours in serum-free media with 0, 10, 100, or 1000 nmol/L CDB-4124. Actinomycin-D and staurosporine were used as positive controls to induce apoptosis. Apoptosis was quantified using a TUNEL-fluorescein kit. Images were captured with a widefield-fluorescence microscope and analyzed using MetaMorph image analysis software. To validate results, Western blots of total cell lysates were probed for cleaved caspase-3 (c-CASP3). Experiments were repeated 3 times using independent cell batches. RESULTS Analysis of 19 712 nuclei indicated 14.8% ± 10.9% (mean ± SEM), 8.4% ± 4.6%, 8.2% ± 4.7%, and 9.3% ± 6.3% apoptosis in 0, 10, 100, and 1000 nmol/L CDB-4124-treated cells, respectively. There was no evidence of elevated c-CASP3 over vehicle control after treatment with CDB-4124. CONCLUSION CDB-4124 did not significantly induce apoptosis in cultured fibroid cells under the conditions described suggesting apoptosis may not be the main pathway responsible for CDB-4124-induced fibroid shrinkage. Variations in SPRM biological effects may be due to differences in fibroid source cells, binding kinetics, or extracellular matrix characteristics, and can be exploited in further investigations of the mechanisms of action of SPRMs in fibroid biology.
Collapse
Affiliation(s)
- Hilary Roeder
- Department of Obstetrics & Gynecology, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
21
|
Tapia A, Vilos C, Marín JC, Croxatto HB, Devoto L. Bioinformatic detection of E47, E2F1 and SREBP1 transcription factors as potential regulators of genes associated to acquisition of endometrial receptivity. Reprod Biol Endocrinol 2011; 9:14. [PMID: 21272326 PMCID: PMC3040129 DOI: 10.1186/1477-7827-9-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/27/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones. Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology, several reports have provided the gene expression patterns of human endometrial tissue during the window of implantation. However it is required that biological connections be made across these genomic datasets to take full advantage of them. The objective of this work was to perform a research synthesis of available gene expression profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its molecular basis and regulation. METHODS Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript list (CERTL). For this cluster of genes we determined their functional annotations using available web-based databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites using bioinformatics tools and determined over-represented features. RESULTS We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it was enriched with transcripts related to the immune response, complement activation and cell cycle regulation. Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription factors were the most consistently over-represented and in both up- and down-regulated genes during the window of implantation. CONCLUSIONS Our research synthesis allowed organizing and mining high throughput data to explore endometrial receptivity and focus future research efforts on specific genes and pathways. The discovery of possible new transcription factors orchestrating the CERTL opens new alternatives for understanding gene expression regulation in uterine function.
Collapse
Affiliation(s)
- Alejandro Tapia
- Instituto de Investigaciones Materno Infantil (IDIMI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristian Vilos
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Horacio B Croxatto
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago, Chile
| | - Luigi Devoto
- Instituto de Investigaciones Materno Infantil (IDIMI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Estudios Moleculares de la Célula (CEMC), Santiago, Chile
| |
Collapse
|
22
|
Kobayashi S, Stice JP, Kazmin D, Wittmann BM, Kimbrel EA, Edwards DP, Chang CY, McDonnell DP. Mechanisms of progesterone receptor inhibition of inflammatory responses in cellular models of breast cancer. Mol Endocrinol 2010; 24:2292-302. [PMID: 20980435 DOI: 10.1210/me.2010-0289] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both pro- and antimitogenic activities have been ascribed to progesterone receptor (PR) agonists and antagonists in breast cancer cells; however, the transcriptional responses that underlie these paradoxical functions are not apparent. Using nontransformed, normal human mammary epithelial cells engineered to express PR and standard microarray technology, we defined 2370 genes that were significantly regulated by the PR agonist R5020. Gene ontology (GO) analysis revealed that GO terms involved in inflammation and nuclear factor-κB (NF-κB) signaling were among the most significantly regulated. Interestingly, on those NF-κB responsive genes that were inhibited by agonist-activated PR, antagonists either 1) mimicked the actions of agonists or 2) reversed the inhibitory actions of agonists. This difference in pharmacological response could be attributed to the fact that although agonist- and antagonist-activated PR is recruited to NF-κB-responsive promoters, the physical presence of PR tethered to the promoter of some genes is sufficient for transcriptional inhibition, whereas on others, an agonist-activated PR conformation is required for inhibition of NF-κB signaling. Importantly, the actions of PR on the latter class of genes were reversed by an activation function-2-inhibiting, LXXLL-containing peptide. Consideration of the relative activities of these distinct antiinflammatory pathways in breast cancer may be instructive with respect to the likely therapeutic activity of PR agonists or antagonists in the treatment of breast cancer.
Collapse
Affiliation(s)
- Sakiko Kobayashi
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol Cell Biol 2010; 30:5260-72. [PMID: 20855524 DOI: 10.1128/mcb.00484-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone modifications are regarded as the carrier of epigenetic memory through cell divisions. How the marks facilitate cell cycle-dependent gene expression is poorly understood. The evolutionarily conserved AAA ATPase ANCCA (AAA nuclear coregulator cancer-associated protein)/ATAD2 was identified as a direct target of oncogene AIB1/ACTR/SRC-3 and a transcriptional coregulator for estrogen and androgen receptors and is strongly implicated in tumorigenesis. We report here that ANCCA directly interacts with E2F1 to E2F3 and that its N terminus interacts with both the N and C termini of E2F1. ANCCA preferentially associates via its bromodomain with H3 acetylated at lysine 14 (H3K14ac) and is required for key cell cycle gene expression and cancer cell proliferation. ANCCA associates with chromosomes at late mitosis, and its occupancy at E2F targets peaks at the G(1)-to-S transition. Strikingly, ANCCA is required for recruitment of specific E2Fs to their targets and chromatin assembly of the host cell factor 1 (HCF-1)-MLL histone methyltransferase complex. ANCCA depletion results in a marked decrease of the gene activation-linked H3K4me3 mark. Bromodomain mutations disable ANCCA function as an E2F coactivator and its ability to promote cancer cell proliferation, while ANCCA overexpression in tumors correlates with tumor growth. Together, these results suggest that ANCCA acts as a pioneer factor in E2F-dependent gene activation and that a novel mechanism involving ANCCA bromodomain may contribute to cancer cell proliferation.
Collapse
|