1
|
Zheng J, Zhang X, Xue Y, Shao W, Wei Y, Mi S, Yang X, Hu L, Zhang Y, Liang M. PAIP1 binds to pre-mRNA and regulates alternative splicing of cancer pathway genes including VEGFA. BMC Genomics 2024; 25:926. [PMID: 39363305 PMCID: PMC11451205 DOI: 10.1186/s12864-024-10530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/14/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Poly (A) binding protein interacting protein 1 (PAIP1) has been shown to causally contribute to the development and progression of cancer. However, the mechanisms of the PAIP1 regulation in tumor cells remain poorly understood. RESULTS Here, we used a recently developed UV cross-linking and RNA immunoprecipitation method (iRIP-seq) to map the direct and indirect interaction sites between PAIP1 and RNA on a transcriptome-wide level in HeLa cells. We found that PAIP1 not only binds to 3'UTRs, but also to pre-mRNAs/mRNAs with a strong bias towards the coding region and intron. PAIP1 binding sites are enriched in splicing enhancer consensus GA-rich motifs. RNA-seq analysis revealed that PAIP1 selectively modulates the alternative splicing of genes in some cancer hallmarks including cell migration, the mTOR signaling pathway and the HIF-1 signaling pathway. PAIP1-regulated alternative splicing events were strongly associated with PAIP1 binding, demonstrating that the binding may promote selection of the nearby splice sites. Deletion of a PAIP1 binding site containing seven repeats of GA motif reduced the PAIP1-mediated suppression of the exon 6 inclusion in a VEGFA mRNA isoform. Proteomic analysis of the PAIP1-interacted proteins revealed the enrichment of the spliceosome components and splicing factors. CONCLUSIONS These findings suggest that PAIP1 is both a polyadenylation and alternative splicing regulator, that may play a large role in RNA processing via its role in alternative splicing regulation.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Laboratory Medicine, Baoan Central Hospital of Shenzhen, Shenzhen, 518102, Guangdong, P.R. China
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Xiaoyu Zhang
- First department of infection, second affiliated hospital of Harbin medical university, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Yaqiang Xue
- Center for Genome Analysis, ABLife Inc, Optics Valley International Biomedical Park, Building 18-1, East Lake High-Tech Development Zone, Wuhan, 430075, Hubei, China
- ABLife BioBigData Institute, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China
| | - Wenhua Shao
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc, Optics Valley International Biomedical Park, Building 18-1, East Lake High-Tech Development Zone, Wuhan, 430075, Hubei, China
| | - Sisi Mi
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Xiaojie Yang
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Linan Hu
- Harbin Center for Disease Prevention and Control, Harbin, 150056, Heilongjiang, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc, Optics Valley International Biomedical Park, Building 18-1, East Lake High-Tech Development Zone, Wuhan, 430075, Hubei, China.
- ABLife BioBigData Institute, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China.
| | - Ming Liang
- First department of infection, second affiliated hospital of Harbin medical university, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
2
|
Wang Y, Vandewalle N, De Veirman K, Vanderkerken K, Menu E, De Bruyne E. Targeting mTOR signaling pathways in multiple myeloma: biology and implication for therapy. Cell Commun Signal 2024; 22:320. [PMID: 38862983 PMCID: PMC11165851 DOI: 10.1186/s12964-024-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple Myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most prevalent hematological malignancy and is incurable due to the inevitable development of drug resistance. Intense protein synthesis is a distinctive trait of MM cells, supporting the massive production of clonal immunoglobulins or free light chains. The mammalian target of rapamycin (mTOR) kinase is appreciated as a master regulator of vital cellular processes, including regulation of metabolism and protein synthesis, and can be found in two multiprotein complexes, mTORC1 and mTORC2. Dysregulation of these complexes is implicated in several types of cancer, including MM. Since mTOR has been shown to be aberrantly activated in a large portion of MM patients and to play a role in stimulating MM cell survival and resistance to several existing therapies, understanding the regulation and functions of the mTOR complexes is vital for the development of more effective therapeutic strategies. This review provides a general overview of the mTOR pathway, discussing key discoveries and recent insights related to the structure and regulation of mTOR complexes. Additionally, we highlight findings on the mechanisms by which mTOR is involved in protein synthesis and delve into mTOR-mediated processes occurring in MM. Finally, we summarize the progress and current challenges of drugs targeting mTOR complexes in MM.
Collapse
Affiliation(s)
- Yanmeng Wang
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Niels Vandewalle
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| |
Collapse
|
3
|
Zheng J, Fan W, Zhang X, Quan W, Wu Y, Shu M, Chen M, Liang M. PAIP1 regulates expression of immune and inflammatory response associated genes at transcript level in liver cancer cell. PeerJ 2023; 11:e15070. [PMID: 37101794 PMCID: PMC10124545 DOI: 10.7717/peerj.15070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/23/2023] [Indexed: 04/28/2023] Open
Abstract
Poly(A) binding protein interacting protein 1 (PAIP1) is a translation regulator and also regulate the decay of mRNA. PAIP1 has also been reported to be a marker of increased invasive potential of liver cancer. However, the roles and underlying molecular mechanism of PAIP1 in liver cancer is still unclear. Here, cell viability and the gene expression profile of liver cancer line HepG2 transfected with PAIP1 siRNA was compared with cells transfected with non-targeting control siRNA. The results showed that PAIP1 knockdown inhibited cell viability, and extensively affects expression of 893 genes at transcriptional level in HepG2 cells. Gene function analysis showed that a large number of PAIP1 up-regulated genes were enriched in term of DNA-dependent transcription and the down-regulated genes were enriched in some pathways including immune response and inflammatory response. qPCR confirmed that PAIP1 knockdown positively regulated the expression of selected immune and inflammatory factor genes in HepG2 cells. Expression analysis of TCGA revealed that PAIP1 had positive correlations with two immune associated genes IL1R2 and PTAFR in liver tumor tissue. Taken together, our results demonstrated that PAIP1 was not only a translation regulator, but also a transcription regulator in liver cancer. Moreover, PAIP1 could function as a regulatory factor of immune and inflammatory genes in liver cancer. Thus, our study provides important cues for further study on the regulatory mechanism of PAIP1 in liver cancer.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Laboratory Medicine, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Weiwei Fan
- Department of Infectious Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Xiaoyu Zhang
- First Department of Infection, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Weili Quan
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
- ABLife BioBigData Institute, Wuhan, Hubei, China
| | - Yunfei Wu
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Mengni Shu
- First Department of Infection, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Moyang Chen
- First Department of Infection, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ming Liang
- First Department of Infection, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Zhang N, Chen X. PAIP1 is a novel oncogene in human hepatocellular carcinoma. Discov Oncol 2022; 13:132. [PMID: 36436074 PMCID: PMC9702235 DOI: 10.1007/s12672-022-00530-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Poly(A)-binding protein interacting protein 1 (PAIP1) is a translational initiation regulatory factor that has been reported as oncogene in multiple malignant diseases. However, its role in hepatocellular carcinoma (HCC) and the potential mechanisms have not been explored. METHODS PAIP1 expression level in HCC cell lines were detected by real-time quantitative PCR and western blotting. The proliferation and colony formation of HCC cell lines were detected by MTT and colony formation assay. The apoptosis and cell cycle were detected by flow cytometry. The volume and growth rate of the xenograft tumors were observed. The potential mechanism of PAIP1 was analyzed by miRNA Microarray Analysis and TargetScan analysis. RESULTS PAIP1 is significantly upregulated in HCC cell lines. PAIP1 knockdown dramatically inhibits cell proliferation and colony formation, induces apoptosis and alters the cell cycle distribution by increasing the G2/M cell percentage. Moreover, PAIP1 knockdown significantly reduces tumorigenesis in a murine transplantation model. Bioinformatics and immunoblotting analysis reveal that PAIP1 knockdown dysregulates cyclin D pathway-related proteins. CONCLUSION PAIP1 plays an oncogenic role in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Nuobei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Xin Chen
- Department of Nuclear Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Effect of PAIP1 on the metastatic potential and prognostic significance in oral squamous cell carcinoma. Int J Oral Sci 2022; 14:9. [PMID: 35153296 PMCID: PMC8841500 DOI: 10.1038/s41368-022-00162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPoly Adenylate Binding Protein Interacting protein 1 (PAIP1) plays a critical role in translation initiation and is associated with the several cancer types. However, its function and clinical significance have not yet been described in oral squamous cell carcinoma (OSCC) and its associated features like lymph node metastasis (LNM). Here, we used the data available from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) to analyze PAIP1 expression in oral cancer. The publicly available data suggests that PAIP1 mRNA and protein levels were increased in OSCC. The high PAIP1 expression was more evident in samples with advanced stage, LNM, and worse pattern of invasion. Moreover, the in vitro experiments revealed that PAIP1 knockdown attenuated colony forming, the aggressiveness of OSCC cell lines, decreasing MMP9 activity and SRC phosphorylation. Importantly, we found a correlation between PAIP1 and pSRC through the analysis of the IHC scores and CPTAC data in patient samples. Our findings suggest that PAIP1 could be an independent prognostic factor in OSCC with LNM and a suitable therapeutic target to improve OSCC patient outcomes.
Collapse
|
7
|
Xie J, Kusnadi EP, Furic L, Selth LA. Regulation of mRNA Translation by Hormone Receptors in Breast and Prostate Cancer. Cancers (Basel) 2021; 13:3254. [PMID: 34209750 PMCID: PMC8268847 DOI: 10.3390/cancers13133254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and prostate cancer are the second and third leading causes of death amongst all cancer types, respectively. Pathogenesis of these malignancies is characterised by dysregulation of sex hormone signalling pathways, mediated by the estrogen receptor-α (ER) in breast cancer and androgen receptor (AR) in prostate cancer. ER and AR are transcription factors whose aberrant function drives oncogenic transcriptional programs to promote cancer growth and progression. While ER/AR are known to stimulate cell growth and survival by modulating gene transcription, emerging findings indicate that their effects in neoplasia are also mediated by dysregulation of protein synthesis (i.e., mRNA translation). This suggests that ER/AR can coordinately perturb both transcriptional and translational programs, resulting in the establishment of proteomes that promote malignancy. In this review, we will discuss relatively understudied aspects of ER and AR activity in regulating protein synthesis as well as the potential of targeting mRNA translation in breast and prostate cancer.
Collapse
Affiliation(s)
- Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Eric P Kusnadi
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luc Furic
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
8
|
Bi J, Ma H, Liu Y, Huang A, Xiao Y, Shu WJ, Du H, Zhang T. Upregulation of PAIP1 promotes the gallbladder tumorigenesis through regulating PLK1 level. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:991. [PMID: 34277791 PMCID: PMC8267329 DOI: 10.21037/atm-21-2417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Background Increasing evidence suggests that elevated expression of polyA-binding protein-interacting protein 1 (PAIP1) is associated with cancer development and progression. However, how PAIP1 promotes gallbladder cancer (GBC) is still unclear. Methods Two GBC tissue-derived cell lines, NOZ and GBC-SD cells, were used in this study. Assays of cell proliferation, colony formation, apoptosis, and xenograft tumor model were performed to examine the tumorigenic effects of PAIP1. Immunohistochemical (IHC) staining was used to examine the expression level of PAIP1 in both patient GBC tissues and mouse tumors. Microarray and bioinformatics analysis were used to explore the targets of PAIP1. Quantitative polymerase chain reaction (qPCR) and western blot analysis were used to validate PAIP1-mediated targets. Results We found that upregulated PAIP1 expression was correlated with GBC. Knockdown of PAIP1 in gallbladder cells alleviated cell proliferation, promoted apoptosis, and inhibited xenograft tumor growth. Gene microarray analysis showed that stable silencing of PAIP1 altered various gene expressions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that PAIP1 regulates cell cycle progression. Finally, we found that the PLK1 kinase, a key regulator of cell cycle, was regulated by PAIP1 at the transcriptional and protein levels. PLK1 level was positively correlated with PAIP1 level in both mouse tumors and GBC tissues. PAIP1 interacted with PLK1, and rescue of PAIP1 could recover PLK1 protein level and inhibit apoptosis. Conclusions Our data suggest that PAIP1 contributes to GBC progression likely through regulating PLK1 level. Since upregulated PAIP1 expression is positively associated with GBC, PAIP1 may act as a clinical prognostic biomarker of GBC.
Collapse
Affiliation(s)
- Jianping Bi
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Liu
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xiao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haining Du
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Lei J, Ma-Lauer Y, Han Y, Thoms M, Buschauer R, Jores J, Thiel V, Beckmann R, Deng W, Leonhardt H, Hilgenfeld R, von Brunn A. The SARS-unique domain (SUD) of SARS-CoV and SARS-CoV-2 interacts with human Paip1 to enhance viral RNA translation. EMBO J 2021; 40:e102277. [PMID: 33876849 PMCID: PMC8167360 DOI: 10.15252/embj.2019102277] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS‐CoV‐2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS‐CoV‐2 and SARS‐CoV share an otherwise non‐conserved part of non‐structural protein 3 (Nsp3), therefore named as “SARS‐unique domain” (SUD). We previously found a yeast‐2‐hybrid screen interaction of the SARS‐CoV SUD with human poly(A)‐binding protein (PABP)‐interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS‐CoV SUD:Paip1 interaction by size‐exclusion chromatography, split‐yellow fluorescent protein, and co‐immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS‐CoV‐2 and Paip1. The three‐dimensional structure of the N‐terminal domain of SARS‐CoV SUD (“macrodomain II”, Mac2) in complex with the middle domain of Paip1, determined by X‐ray crystallography and small‐angle X‐ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC‐SARS‐CoV replicon‐transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS‐CoV and SARS‐CoV‐2.
Collapse
Affiliation(s)
- Jian Lei
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck- Borstel-Riems Site, University of Lübeck, Lübeck, Germany.,State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Ma-Lauer
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - Yinze Han
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Matthias Thoms
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joerg Jores
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wen Deng
- Department of Biology and Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Heinrich Leonhardt
- Department of Biology and Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck- Borstel-Riems Site, University of Lübeck, Lübeck, Germany.,Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany
| | - Albrecht von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
10
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
11
|
Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Pharmacol Rev 2021; 73:59-88. [PMID: 33203717 PMCID: PMC7736833 DOI: 10.1124/pharmrev.120.000030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in regulation of mRNA translation is an increasingly recognized characteristic of many diseases and disorders, including cancer, diabetes, autoimmunity, neurodegeneration, and chronic pain. Approximately 50 million adults in the United States experience chronic pain. This economic burden is greater than annual costs associated with heart disease, cancer, and diabetes combined. Treatment options for chronic pain are inadequately efficacious and riddled with adverse side effects. There is thus an urgent unmet need for novel approaches to treating chronic pain. Sensitization of neurons along the nociceptive pathway causes chronic pain states driving symptoms that include spontaneous pain and mechanical and thermal hypersensitivity. More than a decade of preclinical research demonstrates that translational mechanisms regulate the changes in gene expression that are required for ongoing sensitization of nociceptive sensory neurons. This review will describe how key translation regulation signaling pathways, including the integrated stress response, mammalian target of rapamycin, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase-interacting kinases, impact the translation of different subsets of mRNAs. We then place these mechanisms of translation regulation in the context of chronic pain states, evaluate currently available therapies, and examine the potential for developing novel drugs. Considering the large body of evidence now published in this area, we propose that pharmacologically manipulating specific aspects of the translational machinery may reverse key neuronal phenotypic changes causing different chronic pain conditions. Therapeutics targeting these pathways could eventually be first-line drugs used to treat chronic pain disorders. SIGNIFICANCE STATEMENT: Translational mechanisms regulating protein synthesis underlie phenotypic changes in the sensory nervous system that drive chronic pain states. This review highlights regulatory mechanisms that control translation initiation and how to exploit them in treating persistent pain conditions. We explore the role of mammalian/mechanistic target of rapamycin and mitogen-activated protein kinase-interacting kinase inhibitors and AMPK activators in alleviating pain hypersensitivity. Modulation of eukaryotic initiation factor 2α phosphorylation is also discussed as a potential therapy. Targeting specific translation regulation mechanisms may reverse changes in neuronal hyperexcitability associated with painful conditions.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - James J Sahn
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| |
Collapse
|
12
|
Tateshita N, Miura N, Tanaka H, Masuda T, Ohtsuki S, Tange K, Nakai Y, Yoshioka H, Akita H. Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. J Control Release 2019; 310:36-46. [PMID: 31386869 DOI: 10.1016/j.jconrel.2019.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022]
Abstract
A dendritic cells (DCs)-based vaccine (DC-vaccine) system is an attractive technology for eliciting antigen-specific immune responses that can protect subjects from infectious diseases and for curing various types of cancers. For the insertion of a foreign antigen to DCs, the transfection of an antigen-coding mRNA to the cells is a promising approach. In order to introduce an antigen, a carrier for mRNA transfection is required, since the mRNA molecule per se is unstable in serum-containing medium. We previously reported on an ionizable lipid-like material with vitamin E-scaffolds (ssPalmE) as a material for a lipid nanoparticle (LNP)-based carrier for nucleic acids. In the present study, we report on the development of a lipoplex-type mRNA carrier for use as a DC-vaccine by using a combination of an ssPalmE-LNP and an α-helical cationic peptide "KALA" (ssPalmE-KALA). The transfection of mRNAs complexed with the ssPalmE-KALA achieved a significantly higher protein expression and the production of proinflammatory cytokines from murine bone marrow derived DCs (BMDCs) in comparison with a lipoplex that was prepared with an ssPalm with fatty acid-scaffolds (myristic acid; ssPalmM-KALA). A cellular uptake process and a pH-responsive membrane-destabilization activity cannot explain the preferred protein expression and immune-stimulation caused by the ssPalmE-KALA. Proteomic analyses suggest that transfection with the ssPalmM-KALA stimulates a down-regulatory pathway of translation, while the transfection with the ssPalmE-KALA does not stimulate it. In the vaccination with the BMDCs that were preliminarily transfected with an ovalbumin (OVA)-encoding mRNA elicited the induction OVA specific cytotoxic T-lymphocyte activity in vivo. In parallel, the vaccination induced significant prophylactic anti-tumor effects against a model tumor that stably expressed the OVA protein. Based on the above findings, the ssPalmE-KALA appears to be a potent ex vivo DCs-based RNA vaccine platform.
Collapse
Affiliation(s)
- Naho Tateshita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, Japan
| | - Naoya Miura
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, Japan.
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Kota Tange
- DDS Research Laboratory, DDS Development Division, NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki 210-0865, Japan
| | - Yuta Nakai
- DDS Research Laboratory, DDS Development Division, NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki 210-0865, Japan
| | - Hiroki Yoshioka
- DDS Research Laboratory, DDS Development Division, NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki 210-0865, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, Japan.
| |
Collapse
|
13
|
Piazzi M, Bavelloni A, Gallo A, Faenza I, Blalock WL. Signal Transduction in Ribosome Biogenesis: A Recipe to Avoid Disaster. Int J Mol Sci 2019; 20:ijms20112718. [PMID: 31163577 PMCID: PMC6600399 DOI: 10.3390/ijms20112718] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | | | - Angela Gallo
- RNA Editing Laboratory, Dipartimento di Oncoematologia, IRCCS, Ospedale Pediatrica Bambino Gesù, 00146 Rome, Italy.
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40126 Bologna, Italy.
| | - William L Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
14
|
Abstract
Translation is a key step in the regulation of gene expression and one of the most energy-consuming processes in the cell. In response to various stimuli, multiple signaling pathways converge on the translational machinery to regulate its function. To date, the roles of phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways in the regulation of translation are among the best understood. Both pathways engage the mechanistic target of rapamycin (mTOR) to regulate a variety of components of the translational machinery. While these pathways regulate protein synthesis in homeostasis, their dysregulation results in aberrant translation leading to human diseases, including diabetes, neurological disorders, and cancer. Here we review the roles of the PI3K/AKT and MAPK pathways in the regulation of mRNA translation. We also highlight additional signaling mechanisms that have recently emerged as regulators of the translational apparatus.
Collapse
|
15
|
Jiang X, Feng S, Chen Y, Feng Y, Deng H. Proteomic analysis of mTOR inhibition-mediated phosphorylation changes in ribosomal proteins and eukaryotic translation initiation factors. Protein Cell 2018; 7:533-7. [PMID: 27278278 PMCID: PMC4930769 DOI: 10.1007/s13238-016-0279-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Xu Jiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shan Feng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yun Feng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Piao J, Chen L, Jin T, Xu M, Quan C, Lin Z. Paip1 affects breast cancer cell growth and represents a novel prognostic biomarker. Hum Pathol 2017; 73:33-40. [PMID: 29258905 DOI: 10.1016/j.humpath.2017.10.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 11/26/2022]
Abstract
Polyadenylate-binding protein-interacting protein 1 (Paip1) regulates translational initiation. Increasing evidence suggests that Paip1 plays important roles in cancer development and progression. This study explored the role of Paip1 in breast cancer progression and evaluated its prognostic value. The cellular location of Paip1 protein was determined using immunofluorescence. Then, Paip1 protein expression was evaluated by immunohistochemical staining in 119 breast cancers and 40 normal breast tissues. The correlation between Paip1 expression and the clinicopathologic features of breast cancer was evaluated using the χ2 test, and differences in survival curves were analyzed using log-rank tests. The role of Paip1 in breast cancer proliferation and cell cycle progression was identified by siRNA transfection. Paip1 was expressed mainly in the cytoplasm of cancer cells and tissues. Expression was observed in 60.5% of the breast cancers (72/119), which was significantly higher than in normal breast tissues (17.5%; 7/40). High expression of Paip1 protein was associated with high histologic grade, late clinical stage, and a low survival rate. Multivariate analysis indicated that Paip1 was an independent prognostic factor. Additionally, Paip1 depletion by RNAi significantly decreased cell proliferation and induced cell cycle arrest. In conclusion, our study demonstrated that Paip1 promotes the growth of breast cancers and could be a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Junjie Piao
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Liyan Chen
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China
| | - Tiefeng Jin
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China
| | - Ming Xu
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China
| | - Chunji Quan
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
17
|
Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression. J Nucleic Acids 2016; 2016:8235121. [PMID: 28083147 PMCID: PMC5204094 DOI: 10.1155/2016/8235121] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation.
Collapse
|
18
|
Creanza TM, Liguori M, Liuni S, Nuzziello N, Ancona N. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis. Int J Mol Sci 2016; 17:E936. [PMID: 27314336 PMCID: PMC4926469 DOI: 10.3390/ijms17060936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment.
Collapse
Affiliation(s)
- Teresa Maria Creanza
- Institute of Intelligent Systems for Automation, National Research Council of Italy, 70126 Bari, Italy.
- Center for Complex Systems in Molecular Biology and Medicine, University of Turin, 10123 Turin, Italy.
| | - Maria Liguori
- Institute of Biomedical Technologies, National Research Council of Italy, 70126 Bari, Italy.
| | - Sabino Liuni
- Institute of Biomedical Technologies, National Research Council of Italy, 70126 Bari, Italy.
| | - Nicoletta Nuzziello
- Institute of Biomedical Technologies, National Research Council of Italy, 70126 Bari, Italy.
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70126 Bari, Italy.
| | - Nicola Ancona
- Institute of Intelligent Systems for Automation, National Research Council of Italy, 70126 Bari, Italy.
| |
Collapse
|
19
|
Pinto-Leite R, Arantes-Rodrigues R, Sousa N, Oliveira PA, Santos L. mTOR inhibitors in urinary bladder cancer. Tumour Biol 2016; 37:11541-11551. [PMID: 27235118 DOI: 10.1007/s13277-016-5083-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
Despite the great scientific advances that have been made in cancer treatment, there is still much to do, particularly with regard to urinary bladder cancer. Some of the drugs used in urinary bladder cancer treatment have been in use for more than 30 years and show reduced effectiveness and high recurrence rates. There have been several attempts to find new and more effective drugs, to be used alone or in combination with the drugs already in use, in order to overcome this situation.The biologically important mammalian target of rapamycin (mTOR) pathway is altered in cancer and mTOR inhibitors have raised many expectations as potentially important anticancer drugs. In this article, the authors will review the mTOR pathway and present their experiences of the use of some mTOR inhibitors, sirolimus, everolimus and temsirolimus, in isolation and in conjunction with non-mTOR inhibitors cisplatin and gemcitabine, on urinary bladder tumour cell lines. The non-muscle-invasive cell line, 5637, is the only one that exhibits a small alteration in the mTOR and AKT phosphorylation after rapalogs exposure. Also, there was a small inhibition of cell proliferation. With gemcitabine plus everolimus or temsirolimus, the results were encouraging as a more effective response was noticed with both combinations, especially in the 5637 and T24 cell lines. Cisplatin associated with everolimus or temsirolimus also gave promising results, as an antiproliferative effect was observed when the drugs were associated, in particular on the 5637 and HT1376 cell lines. Everolimus or temsirolimus in conjunction with gemcitabine or cisplatin could have an important role to play in urinary bladder cancer treatment, depending on the tumour grading.
Collapse
Affiliation(s)
- R Pinto-Leite
- Genetic Service, Cytogenetic Laboratory, Hospital Center of Trás-os-Montes and Alto Douro, Vila Real, Portugal. .,Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.
| | - R Arantes-Rodrigues
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,Institute for Research and Innovation in Health (I3S), Porto, Portugal
| | - Nuno Sousa
- Health School, University Fernando Pessoa, Porto, Portugal
| | - P A Oliveira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Health School, University Fernando Pessoa, Porto, Portugal.,Medical Oncology Department, Portuguese Institute of Oncology, Porto, Portugal
| |
Collapse
|
20
|
Thakor N, Smith MD, Roberts L, Faye MD, Patel H, Wieden HJ, Cate JHD, Holcik M. Cellular mRNA recruits the ribosome via eIF3-PABP bridge to initiate internal translation. RNA Biol 2016; 14:553-567. [PMID: 26828225 PMCID: PMC5449081 DOI: 10.1080/15476286.2015.1137419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
IRES-mediated translation of key cell fate regulating genes has been implicated in tumorigenesis. Concerted action of canonical eukaryotic initiation factors and IRES transacting factors (ITAFs) was shown to regulate cellular IRES mediated translation; however, the precise molecular mechanism of ribosome recruitment to cellular IRESes remains unclear. Here we show that the X-linked inhibitor of apoptosis (XIAP) IRES operates in an evolutionary conserved viral like mode and the structural integrity, particularly in the vicinity of AUG, is critical for ribosome recruitment. The binding of eIF3 together with PABP potentiates ribosome recruitment to the IRES. Our data support the model in which eIF3 binds directly to the XIAP IRES RNA in a structure-dependent manner and acts as a scaffold for IRES RNA, PABP and the 40S ribosome.
Collapse
Affiliation(s)
- Nehal Thakor
- a Apoptosis Research Center , Children's Hospital of Eastern Ontario Research Institute , Ottawa , Ontario , Canada.,c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - M Duane Smith
- d Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| | - Luc Roberts
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - Mame Daro Faye
- a Apoptosis Research Center , Children's Hospital of Eastern Ontario Research Institute , Ottawa , Ontario , Canada
| | - Harshil Patel
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - Hans-Joachim Wieden
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - Jamie H D Cate
- d Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| | - Martin Holcik
- a Apoptosis Research Center , Children's Hospital of Eastern Ontario Research Institute , Ottawa , Ontario , Canada.,b Department of Pediatrics , University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
21
|
Pollard HJ, Willett M, Morley SJ. mTOR kinase-dependent, but raptor-independent regulation of downstream signaling is important for cell cycle exit and myogenic differentiation. Cell Cycle 2015; 13:2517-25. [PMID: 25486193 PMCID: PMC4614745 DOI: 10.4161/15384101.2014.941747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Myogenic differentiation in the C2C12 myoblast model system reflects a concerted and controlled activation of transcription and translation following the exit of cells from the cell cycle. Previously we have shown that the mTORC1 signaling inhibitor, RAD001, decreased protein synthesis rates, delayed C2C12 myoblast differentiation, decreased p70S6K activity but did not affect the hypermodification of 4E-BP1. Here we have further investigated the modification of 4E-BP1 during the early phase of differentiation as cells exit the cell cycle, using inhibitors to target mTOR kinase and siRNAs to ablate the expression of raptor and rictor. As predicted, inhibition of mTOR kinase activity prevented p70S6K, 4E-BP1 phosphorylation and was associated with an inhibition of myogenic differentiation. Surprisingly, extensive depletion of raptor did not affect p70S6K or 4E-BP1 phosphorylation, but promoted an increase in mTORC2 activity (as evidenced by increased Akt Ser473 phosphorylation). These data suggest that an mTOR kinase-dependent, but raptor-independent regulation of downstream signaling is important for myogenic differentiation.
Collapse
Affiliation(s)
- Hilary J Pollard
- a Department of Biochemistry, School of Life Sciences ; University of Sussex ; Brighton , UK
| | | | | |
Collapse
|
22
|
Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex. J Virol 2015; 89:8773-82. [PMID: 26063427 DOI: 10.1128/jvi.01402-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Through its interaction with the 5' translation initiation factor eIF4G, poly(A) binding protein (PABP) facilitates the translation of 5'-capped and 3'-poly(A)-tailed mRNAs. Rotavirus mRNAs are capped but not polyadenylated, instead terminating in a 3' GACC motif that is recognized by the viral protein NSP3, which competes with PABP for eIF4G binding. Upon rotavirus infection, viral, GACC-tailed mRNAs are efficiently translated, while host poly(A)-tailed mRNA translation is, in contrast, severely impaired. To explore the roles of NSP3 in these two opposing events, the translational capabilities of three capped mRNAs, distinguished by either a GACC, a poly(A), or a non-GACC and nonpoly(A) 3' end, have been monitored after electroporation of cells expressing all rotavirus proteins (infected cells) or only NSP3 (stably or transiently transfected cells). In infected cells, we found that the magnitudes of translation induction (GACC-tailed mRNA) and translation reduction [poly(A)-tailed mRNA] both depended on the rotavirus strain used but that translation reduction not genetically linked to NSP3. In transfected cells, even a small amount of NSP3 was sufficient to dramatically enhance GACC-tailed mRNA translation and, surprisingly, to slightly favor the translation of both poly(A)- and nonpoly(A)-tailed mRNAs, likely by stabilizing the eIF4E-eIF4G interaction. These data suggest that NSP3 is a translational surrogate of the PABP-poly(A) complex; therefore, it cannot by itself be responsible for inhibiting the translation of host poly(A)-tailed mRNAs upon rotavirus infection. IMPORTANCE To control host cell physiology and to circumvent innate immunity, many viruses have evolved powerful mechanisms aimed at inhibiting host mRNA translation while stimulating translation of their own mRNAs. How rotavirus tackles this challenge is still a matter of debate. Using rotavirus-infected cells, we show that the magnitude of cellular poly(A) mRNA translation differs with respect to rotavirus strains but is not genetically linked to NSP3. Using cells expressing rotavirus NSP3, we show that NSP3 alone not only dramatically enhances rotavirus-like mRNA translation but also enhances poly(A) mRNA translation rather than inhibiting it, likely by stabilizing the eIF4E-eIF4G complex. Thus, the inhibition of cellular polyadenylated mRNA translation during rotavirus infection cannot be attributed solely to NSP3 and is more likely the result of global competition between viral and host mRNAs for the cellular translation machinery.
Collapse
|
23
|
Fittschen M, Lastres-Becker I, Halbach MV, Damrath E, Gispert S, Azizov M, Walter M, Müller S, Auburger G. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenetics 2015; 16:181-92. [PMID: 25721894 PMCID: PMC4475250 DOI: 10.1007/s10048-015-0441-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders, caused or modified by an unstable CAG-repeat expansion in the SCA2 gene, which encodes a polyglutamine (polyQ) domain expansion in ataxin-2 (ATXN2). ATXN2 is an RNA-binding protein and interacts with the poly(A)-binding protein PABPC1, localizing to ribosomes at the rough endoplasmic reticulum. Under cell stress, ATXN2, PABPC1 and small ribosomal subunits are relocated to stress granules, where mRNAs are protected from translation and from degradation. It is unknown whether ATXN2 associates preferentially with specific mRNAs or how it modulates RNA processing. Here, we investigated the RNA profile of the liver and cerebellum from Atxn2 knockout (Atxn2 (-/-)) mice at two adult ages, employing oligonucleotide microarrays. Prominent increases were observed for Lsm12/Paip1 (>2-fold), translation modulators known as protein interactor/competitor of ATXN2 and for Plin3/Mttp (>1.3-fold), known as apolipoprotein modulators in agreement with the hepatosteatosis phenotype of the Atxn2 (-/-) mice. Consistent modest upregulations were also observed for many factors in the ribosome and the translation/secretion apparatus. Quantitative reverse transcriptase PCR in liver tissue validated >1.2-fold upregulations for the ribosomal biogenesis modulator Nop10, the ribosomal components Rps10, Rps18, Rpl14, Rpl18, Gnb2l1, the translation initiation factors Eif2s2, Eif3s6, Eif4b, Pabpc1 and the rER translocase factors Srp14, Ssr1, Sec61b. Quantitative immunoblots substantiated the increased abundance of NOP10, RPS3, RPS6, RPS10, RPS18, GNB2L1 in SDS protein fractions, and of PABPC1. In mouse embryonal fibroblasts, ATXN2 absence also enhanced phosphorylation of the ribosomal protein S6 during growth stimulation, while impairing the rate of overall protein synthesis rates, suggesting a block between the enhanced translation drive and the impaired execution. Thus, the physiological role of ATXN2 subtly modifies the abundance of cellular translation factors as well as global translation.
Collapse
Affiliation(s)
- M Fittschen
- Experimental Neurology, Goethe University Medical School, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hershey JWB. The role of eIF3 and its individual subunits in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:792-800. [PMID: 25450521 DOI: 10.1016/j.bbagrm.2014.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
Specific individual subunits of eIF3 are elevated or reduced in numerous human tumors, and their ectopic overexpression in immortal cells can result in malignant transformation. The structure and assembly of eIF3 and its role in promoting mRNA and methionyl-tRNAi binding to the ribosome during the initiation phase of protein synthesis are described. Methods employed to detect altered levels of eIF3 subunits in cancers are critically evaluated in order to conclude rigorously that such subunits may cause malignant transformation. Strong evidence is presented that the individual overexpression of eIF3 subunits 3a, 3b, 3c, 3h, 3i and 3m may cause malignant transformation, whereas underexpression of subunits 3e and 3f may cause a similar outcome. Possible mechanisms to explain the malignant phenotypes are examined. The involvement of eIF3 in cancer reinforces the view that translational control plays an important role in the regulation of cell proliferation, and provides new targets for the development of therapeutic agents. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- John W B Hershey
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
25
|
Liu X, Pan S, Li X, Sun Q, Yang X, Zhao R. Maternal low-protein diet affects myostatin signaling and protein synthesis in skeletal muscle of offspring piglets at weaning stage. Eur J Nutr 2014; 54:971-9. [PMID: 25266448 DOI: 10.1007/s00394-014-0773-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE We tested the hypothesis that maternal low-protein (LP) diet during gestation and lactation can program myostatin (MSTN) signaling and protein synthesis in skeletal muscle of offspring at weaning stage (35 days). METHODS Fourteen Meishan sows were fed either LP or standard-protein diets throughout gestation and lactation, male offspring piglets were killed at weaning stage and longissimus dorsi (LD) muscles were taken. The cross-sectional areas (CSA) of LD muscles were measured by hematoxylin and eosin staining. The levels of free amino acids in plasma were measured by amino acid auto-analyzer. Proteins and mRNA were determined by Western blot and RT-qPCR, respectively. RESULTS Body weight, LD muscle weight and the myofiber CSA were significantly decreased (P < 0.05) in LP piglets; meanwhile, the concentration of branched-chain amino acids was also significantly decreased (P < 0.001). MSTN protein content tended to be higher (P = 0.098) in LP piglets, while the expression of MSTN receptors, activin type II receptor-beta and transforming growth factor type-beta type I receptor kinase, was significantly up-regulated (P < 0.05). Furthermore, p38 mitogen-activated protein kinase, the downstream signaling factor of MSTN, was also enhanced significantly (P < 0.05). In addition, key factors of translation initiation, phosphorylated eukaryotic initiation factor 4E and the 70 kDa ribosomal protein S6 kinase, were significantly decreased (P < 0.05) in LP piglets. CONCLUSIONS Our results suggest that maternal LP diet during gestation and lactation affects MSTN signaling and protein synthesis in skeletal muscle of offspring at weaning stage.
Collapse
Affiliation(s)
- Xiujuan Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Paip1, an effective stimulator of translation initiation, is targeted by WWP2 for ubiquitination and degradation. Mol Cell Biol 2014; 34:4513-22. [PMID: 25266661 DOI: 10.1128/mcb.00524-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Poly(A)-binding protein-interacting protein 1 (Paip1) stimulates translational initiation by inducing the circularization of mRNA. However, the mechanisms underlying Paip1 regulation, particularly its protein stability, are still unclear. Here, we show that the E6AP carboxyl terminus (HECT)-type ubiquitin ligase WW domain-containing protein 2 (WWP2), a homolog of the HECT-type ubiquitin ligase WWP1, interacts with and targets Paip1 for ubiquitination and proteasomal degradation. Mapping of the region including the WW domain of WWP2 revealed the interaction between WWP2 and the PABP-binding motif 2 (PAM2) of Paip1. The two consecutive PXXY motifs in PAM2 are required for WWP2-mediated ubiquitination and degradation. Furthermore, ectopic expression of WWP2 decreases translational stimulatory activity with the degradation of Paip1. We therefore provide evidence that the stability of Paip1 can be regulated by ubiquitin-mediated degradation, thus highlighting the importance of WWP2 as a suppressor of translation.
Collapse
|
27
|
Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A. The ever-evolving role of mTOR in translation. Semin Cell Dev Biol 2014; 36:102-12. [PMID: 25263010 DOI: 10.1016/j.semcdb.2014.09.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
Control of translation allows for the production of stoichiometric levels of each protein in the cell. Attaining such a level of fine-tuned regulation of protein production requires the coordinated temporal and spatial control of numerous cellular signalling cascades impinging on the various components of the translational machinery. Foremost among these is the mTOR signalling pathway. The mTOR pathway regulates both the initiation and elongation steps of protein synthesis through the phosphorylation of numerous translation factors, while simultaneously ensuring adequate folding of nascent polypeptides through co-translational degradation of misfolded proteins. Perhaps most remarkably, mTOR is also a key regulator of the synthesis of ribosomal proteins and translation factors themselves. Two seminal studies have recently shown in translatome analysis that the mTOR pathway preferentially regulates the translation of mRNAs encoding ribosomal proteins and translation factors. Therefore, the role of the mTOR pathway in the control of protein synthesis extends far beyond immediate translational control. By controlling ribosome production (and ultimately ribosome availability), mTOR is a master long-term controller of protein synthesis. Herein, we review the literature spanning the early discoveries of mTOR on translation to the latest advances in our understanding of how the mTOR pathway controls the synthesis of ribosomal proteins.
Collapse
Affiliation(s)
- Bruno D Fonseca
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.
| | - Ewan M Smith
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Nicolas Yelle
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Martin Bushell
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Arnim Pause
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
28
|
Hutt DM, Roth DM, Vignaud H, Cullin C, Bouchecareilh M. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition. PLoS One 2014; 9:e106224. [PMID: 25166596 PMCID: PMC4148404 DOI: 10.1371/journal.pone.0106224] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/30/2014] [Indexed: 01/11/2023] Open
Abstract
Hypoxia inducible factor 1α (HIF-1α) is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi) block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA) and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA) for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor - eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Darren M. Hutt
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniela Martino Roth
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Hélène Vignaud
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Christophe Cullin
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Marion Bouchecareilh
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
29
|
The "tale" of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1062-8. [PMID: 25120199 DOI: 10.1016/j.bbagrm.2014.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/11/2014] [Accepted: 08/04/2014] [Indexed: 11/21/2022]
Abstract
The cytoplasmic poly(A) binding protein 1 (PABPC1) is an essential eukaryotic translational initiation factor first described over 40 years ago. Most studies of PABPC1 have focused on its N-terminal RRM domains, which bind the mRNA 3' poly(A) tail and 5' translation complex eIF4F via eIF4G; however, the protein also contains a C-terminal MLLE domain that binds a peptide motif, termed PAM2, found in many proteins involved in translation regulation and mRNA metabolism. Studies over the past decade have revealed additional functions of PAM2-containing proteins (PACs) in neurodegenerative diseases, circadian rhythms, innate defense, and ubiquitin-mediated protein degradation. Here, we summarize functional and structural studies of the MLLE/PAM2 interaction and discuss the diverse roles of PACs.
Collapse
|
30
|
|