1
|
Cheng Z, Kong Y, Xu H, Xiao L, Tian L, Liu Z. Extracellular vesicles derived from stored red blood cell suspensions enhance invasion and migration of lung cancer cells by miR1246 and miR150-3p. Vox Sang 2024; 119:809-820. [PMID: 38839077 DOI: 10.1111/vox.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Aged red blood cell (RBC) transfusions in lung cancer patients are often related to cancer recurrence and shorter lifespans. Extracellular vesicles (EVs) accumulated in stored RBC suspensions may be one of the important influential factors. This study aims to investigate how EVs derived from RBC suspensions affect the progress of lung cancer through the most enriched microRNAs (miRNAs) previously reported in our research. STUDY DESIGN AND METHODS EVs derived from stored RBC suspensions in Weeks 1, 3 and 5 were harvested via ultracentrifugation. Lung adenocarcinoma H1975 cells were co-cultured with EVs and transfected with miR1246 and miR150-3p mimics to evaluate alterations in their proliferation, invasion and migration abilities in vitro. Proteomics and bioinformatics were performed to predict the signalling pathway related to invasion and migration of H1975, which were verified by western blotting (WB) and flow cytometry. RESULTS EVs derived from stored RBC suspensions in Weeks 3 and 5 could significantly enhance the invasion and migration ability of H1975 cells and also increase the expression of miR1246 and miR150-3p. After transfection with miR1246 and miR150-3p mimics, invasion, migration and proliferation of H1975 cells were obviously enhanced. Proteomics analysis demonstrated that EVs co-cultivation and miRNA transfection groups were both enriched in cell adhesion molecules. WB and cytometry indicated that integrin beta-1 (ITGB1) and Rap1b were increased. CONCLUSIONS EVs derived from stored RBC suspensions can enhance invasion and migration ability of lung cancer cells via the most accumulated miR1246 and miR150-3p, which may increase the expression of ITGB1 through Rap1 signalling pathway.
Collapse
Affiliation(s)
- Zhanrui Cheng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Yujie Kong
- Department of Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Haixia Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Ling Xiao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Li Tian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Liu W, Gao L, Hou X, Feng S, Yan H, Pan H, Zhang S, Yang X, Jiang J, Ye F, Zhao Q, Wei L, Han Z. TWEAK Signaling-Induced ID1 Expression Drives Malignant Transformation of Hepatic Progenitor Cells During Hepatocarcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300350. [PMID: 37085918 PMCID: PMC10288241 DOI: 10.1002/advs.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/16/2023] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The malignant transformation of hepatic progenitor cells (HPCs) in the inflammatory microenvironment is the root cause of hepatocarcinogenesis. However, the potential molecular mechanisms are still elusive. The HPCs subgroup is identified by single-cell RNA (scRNA) sequencing and the phenotype of HPCs is investigated in the primary HCC model. Bulk RNA sequencing (RNA-seq) and proteomic analyses are also performed on HPC-derived organoids. It is found that tumors are formed from HPCs in peritumor tissue at the 16th week in a HCC model. Furthermore, it is confirmed that the macrophage-derived TWEAK/Fn14 promoted the expression of inhibitor of differentiation-1 (ID1) in HPCs via NF-κB signaling and a high level of ID1 induced aberrant differentiation of HPCs. Mechanistically, ID1 suppressed differentiation and promoted proliferation in HPCs through the inhibition of HNF4α and Rap1GAP transcriptions. Finally, scRNA sequencing of HCC patients and investigation of clinical specimens also verified that the expression of ID1 is correlated with aberrant differentiation of HPCs into cancer stem cells, patients with high levels of ID1 in HPCs showed a poorer prognosis. This study provides important intervention targets and a theoretical basis for the clinical diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Wenting Liu
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Lu Gao
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Xiaojuan Hou
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Shiyao Feng
- Department of UrologySecond Affiliated HospitalAnhui Medical UniversityHefei230601P. R. China
| | - Haixin Yan
- Department of UrologySecond Affiliated HospitalAnhui Medical UniversityHefei230601P. R. China
| | - Hongyu Pan
- Department of Hepatic SurgeryThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
| | - Shichao Zhang
- Department of Hepatic SurgeryThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
| | - Xue Yang
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Fei Ye
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| |
Collapse
|
3
|
Liu X, Li N, Zhang C, Wu X, Zhang S, Dong G, Liu G. Identification of metastasis-associated exoDEPs in colorectal cancer using label-free proteomics. Transl Oncol 2022; 19:101389. [PMID: 35303583 PMCID: PMC8927999 DOI: 10.1016/j.tranon.2022.101389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2021] [Revised: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes play essential role in the metastasis of colorectal cancer from TME aspect. Finding out the prominent regulating exoDEPs by label-free proteomics in this research provided a lot of key information of CRC metastases. Metabolism, cytoskeleton-related pathways and immunosuppression are two key mechanisms by which exosomes regulate CRC malignant behavior. The discovery of the “all or none” exoDEPs was of great significance. The exoDEPs expressed only in SW620 cells can more clearly show their ability to promote the invasion and metastasis of CRC cells.
Exosomes are secreted nanovesicles consisting of biochemical molecules, including proteins, RNAs, lipids, and metabolites that play a prominent role in tumor progression. In this study, we performed a label-free proteomic analysis of exosomes from a pair of homologous human colorectal cancer cell line with different metastatic abilities. A total of 115 exoDEPs were identified, with 31 proteins upregulated and 84 proteins downregulated in SW620 exosome. We also detected 30 proteins expressed only in SW620 exosomes and 60 proteins expressed only in SW480 exosomes. Bioinformatics analysis enriched the components and pathways associated with the extracellular matrix, cytoskeleton-related pathways, and immune system changes of colorectal cancer (CRC). Cellular function experiments confirmed the role of SW620 exosomes in promoting the proliferation, migration, and invasion of SW480 cells. Further verifications were performed on six upregulated exoDEPs (FGFBP1, SIPA1, THBS1, TGFBI, COL6A1, and RPL10), three downregulated exoDEPs (SLC2A3, MYO1D, and RBP1), and three exoDEPs (SMOC2, GLG1, and CEMIP) expressed only in SW620 by WB and IHC. This study provides a complete and novel basis for exploring new drug targets to inhibit the invasion and metastasis of CRC.
Collapse
Affiliation(s)
- Xinlu Liu
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian City, Liaoning Province, China
| | - Chi Zhang
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Xiaoyu Wu
- Operating Room, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Shoujia Zhang
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Gang Dong
- Anorectal surgery, Central Hospital of Jinzhou City, No. 51, Section 2, Shanghai Road, Guta District, Jinzhou City, Liaoning Province, China
| | - Ge Liu
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China.
| |
Collapse
|
4
|
Simulated Microgravity Increases the Permeability of HUVEC Monolayer through Up-Regulation of Rap1GAP and Decreased Rap2 Activation. Int J Mol Sci 2022; 23:ijms23020630. [PMID: 35054818 PMCID: PMC8776081 DOI: 10.3390/ijms23020630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Space microgravity condition has great physiological influence on astronauts’ health. The interaction of endothelial cells, which control vascular permeability and immune responses, is sensitive to mechanical stress. However, whether microgravity has significant effects on the physiological function of the endothelium has not been investigated. In order to address such a question, a clinostat-based culture model with a HUVEC monolayer being inside the culture vessel under the simulated microgravity (SMG) was established. The transmittance of FITC-tagged dextran was used to estimate the change of integrity of the adherens junction of the HUVEC monolayer. Firstly, we found that the permeability of the HUVEC monolayer was largely increased after SMG treatment. To elucidate the mechanism of the increased permeability of the HUVEC monolayer under SMG, the levels of total expression and activated protein levels of Rap1 and Rap2 in HUVEC cells, which regulate the adherens junction of endothelial cells, were detected by WB and GST pull-down after SMG. As the activation of both Rap1 and Rap2 was significantly decreased under SMG, the expression of Rap1GEF1 (C3G) and Rap1GAP in HUVECs, which regulate the activation of them, was further determined. The results indicate that both C3G and Rap1GAP showed a time-dependent increase with the expression of Rap1GAP being dominant at 48 h after SMG. The down-regulation of the expression of junctional proteins, VE-cadherin and β-catenin, in HUVEC cells was also confirmed by WB and immunofluorescence after SMG. To clarify whether up-regulation of Rap1GAP is necessary for the increased permeability of the HUVEC monolayer after SMG, the expression of Rap1GAP was knocked down by Rap1GAP-shRNA, and the change of permeability of the HUVEC monolayer was detected. The results indicate that knock-down of Rap1GAP reduced SMG-induced leaking of the HUVEC monolayer in a time-dependent manner. In total, our results indicate that the Rap1GAP-Rap signal axis was necessary for the increased permeability of the HUVEC monolayer along with the down-regulation of junctional molecules including VE-cadherin and β-catenin.
Collapse
|
5
|
Kan J, Fu B, Zhou R, Zhou D, Huang Y, Zhao H, Zhang Y, Rong Y, Dong J, Xia L, Liu S, Huang Q, Wang N, Ning N, Zhang B, Zhang E. He-Chan Pian inhibits the metastasis of non-small cell lung cancer via the miR-205-5p-mediated regulation of the GREM1/Rap1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153821. [PMID: 34752967 DOI: 10.1016/j.phymed.2021.153821] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/01/2021] [Revised: 09/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND He-Chan Pian (HCP), a traditional Chinese medicinal formula, shows promising efficacy for the treatment of lung cancer. PURPOSE Gremlin (GREM1) plays an important role in gastrointestinal tumor metastasis; however, little is known about its role in lung cancer. We determined the mechanism underlying the protective effect of HCP against metastasis in a mouse model of non-small cell lung cancer (NSCLC) and demonstrated the role of GREM1. METHODS Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the herbal components and metabolites from the serum of HCP-treated mice. The tumor, liver, and kidney were examined histologically, and the antitumor effects and toxicity of HCP were evaluated. Levels of epithelial-mesenchymal transition (EMT)-associated transcription factors were measured using western blotting in tumors from five groups (i.e., model, HCP [L], HCP [M], HCP [H], and positive control [cisplatin, DDP]). Differentially expressed proteins and genes were identified using protein chip and sequencing analyzes, respectively. Short hairpin RNAs and overexpression plasmids were introduced into cells to evaluate the effects of GREM1. To evaluate proliferation, migration, and invasion, the expression levels of proteins involved in the Rap1 pathway and EMT were measured in vitro. Xenograft tumors with overexpression-GREM1 (OE-GREM1) in A549 cells were examined for cell proliferation. A dual-luciferase assay was performed to verify the direct interaction of GREM1 with miR-205-5p in lung cancer. RESULTS Thirty-six ingredients and bioactive constituents detected in the serum of HCP-treated mice were identified as the key compounds involved in the inhibition of tumor growth. Animal experiments revealed that HCP significantly decreased tumor volumes and had no adverse effects on the liver or kidney or side effects. GREM1 upregulation was closely related to tumor metastasis and was regulated by miR-205-5p, as confirmed using a dual-luciferase reporter assay. OE-GREM1 promoted A549 cell migration and invasion, promoted EMT, and increased the expression of Rap1 pathway intermediaries, whereas shGREM1 had the opposite effects. Furthermore, the effects of OE-GREM1 on proliferation in the A549 xenograft mouse model were attenuated, although HCP has an inhibitory effect on tumors. CONCLUSION Our results suggest that HCP contributes to the inhibition of NSCLC metastasis via the Gremlin/Rap1 signaling pathway regulated by miR-205-5p.
Collapse
Affiliation(s)
- Jun Kan
- Department of VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Biqian Fu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Ruisheng Zhou
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Daihan Zhou
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yufang Huang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongwei Zhao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuming Rong
- Department of VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jun Dong
- Department of VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Liangping Xia
- Department of VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shanshan Liu
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou 510530, China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou 510530, China
| | - Nannan Wang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou 510530, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou 510530, China.
| | - Bei Zhang
- Department of VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Enxin Zhang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China.
| |
Collapse
|
6
|
Wang Y, Xie Y, Sun B, Guo Y, Song L, Mohammednur DE, Zhao C. The degradation of Rap1GAP via E6AP-mediated ubiquitin-proteasome pathway is associated with HPV16/18-infection in cervical cancer cells. Infect Agent Cancer 2021; 16:71. [PMID: 34952616 PMCID: PMC8710002 DOI: 10.1186/s13027-021-00409-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2020] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cervical cancers are closely associated with persistent high-risk human papillomaviruses (HR HPV) infection. The main mechanism involves the targeting of tumor suppressors, such as p53 and pRB, for degradation by HR HPV-encoded oncoproteins, thereby leading to tumorigenesis. Rap1GAP, a tumor suppressor gene, is down-regulated in many cancers. Previous studies have revealed that down-regulation of Rap1GAP is correlated with HPV16/18 infection in cervical cancer. However, the molecular mechanism remains unclear. In this study, we aimed to address the degradation pathway of Rap1GAP in HPV-positive cervical cancer cells. METHODS HPV-positive (HeLa and SiHa) and negative (C33A) cervical cancer cells were used to analyze the pathways of Rap1GAP degradation. MG132 (carbobenzoxy-leucyl-leucyl-leucine) was used to inhibit protein degradation by proteasome. Co-immunoprecipitation (co-IP) was used to detect the interaction between Rap1GAP and E6AP. siRNA for E6AP was used to silence the expression of E6AP. Rapamycin was used to induce cell autophagy. Western blotting was used to check the levels of proteins. RESULTS Following treatment with MG132, the levels of Rap1GAP were increased in the HR HPV-positive HeLa and SiHa cells, but not in the HPV-negative C33A cells. Co-immunoprecipitation assay revealed ubiquitinated Rap1GAP protein in HeLa and SiHa cells, but not in C33A cells. E6-associated protein (E6AP) mediated the ubiquitination of Rap1GAP by binding to it in HeLa and SiHa cells, but not in C33A cells. However, the levels of Rap1GAP were decreased in HeLa and SiHa cells after knocking down E6AP by siRNA. Silencing of E6AP did not affect the levels of Rap1GAP in C33A cells. Autophagy marker p62 was decreased and LC3 II/LC3 I was increased after knocking down E6AP in HeLa cells, but not in C33A cells. The levels of Rap1GAP were decreased after treating the cells with rapamycin to induce cell autophagy in HeLa and C33A cells. CONCLUSION Rap1GAP may be degraded by autophagy in cervical cancer cells, but HPV infection can switch the degradation pathway from autophagy to E6AP-mediated ubiquitin-proteasome degradation. E6AP may be a key component of the switch.
Collapse
Affiliation(s)
- Yinghui Wang
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Yihang Xie
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
| | - Boxuan Sun
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
| | - Yuwei Guo
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
| | - Ling Song
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
- Foruth Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dawit Eman Mohammednur
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
| | - Chunyan Zhao
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China.
| |
Collapse
|
7
|
Downregulation of Rap1GAP Expression Activates the TGF- β/Smad3 Pathway to Inhibit the Expression of Sodium/Iodine Transporter in Papillary Thyroid Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6840642. [PMID: 34840979 PMCID: PMC8616680 DOI: 10.1155/2021/6840642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/29/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/04/2022]
Abstract
Objective Rap1GAP is considered a tumor suppressor gene, but its regulatory mechanism in papillary thyroid cancer (PTC) has not been clearly elucidated. The aim of this study was to explore whether the regulation between Rap1GAP and sodium/iodine transporter (NIS) in tumorigenesis of PTC is mediated by TGF-β1. Methods Western blotting (WB) and quantitative reverse-transcription polymerase chain reaction were performed to analyze the relationships between TGF-β1 concentration and NIS expression. After transfecting BCPAP cells with siRNAs, the Rap1GAP interference model was successfully established. Then, the expression and nuclear localization of TGF-β1 and pathway-related proteins were detected. Flow cytometry was applied to analyze cell apoptosis and cycle. WB was performed to detect apoptotic-related proteins. Wound healing and transwell assays were used to measure cell migration and invasion. EDU was performed to detect cell proliferative activity. Results The results suggested that TGF-β1 could significantly inhibit the expression of NIS in both mRNA and protein levels. In BCPAP cells transfected with siRNA-Rap1GAP, the expression levels of TGF-β1, Foxp3, and p-Smad3 were significantly increased. By applying immunofluorescence assay, the nuclear localizations of TβR-1 and p-Smad3 were found to be activated. Moreover, anti-TGF-β1 can reverse the decrease in NIS expression caused by downregulation of Rap1GAP. Additionally, the knockdown of Rap1GAP could alter the cell apoptosis, cycle, migration, invasion, and proliferation of BCPAP. Conclusion The downregulation of Rap1GAP expression can activate the TGF-β/Smad3 pathway to inhibit NIS expression and alter the tumor cell functions of PTC.
Collapse
|
8
|
Chadchan SB, Popli P, Ambati CR, Tycksen E, Han SJ, Bulun SE, Putluri N, Biest SW, Kommagani R. Gut microbiota-derived short-chain fatty acids protect against the progression of endometriosis. Life Sci Alliance 2021; 4:4/12/e202101224. [PMID: 34593556 PMCID: PMC8500332 DOI: 10.26508/lsa.202101224] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, ∼196 million are afflicted with endometriosis, a painful disease in which endometrial tissue implants and proliferates on abdominal peritoneal surfaces. Theories on the origin of endometriosis remained inconclusive. Whereas up to 90% of women experience retrograde menstruation, only 10% develop endometriosis, suggesting that factors that alter peritoneal environment might contribute to endometriosis. Herein, we report that whereas some gut bacteria promote endometriosis, others protect against endometriosis by fermenting fiber to produce short-chain fatty acids. Specifically, we found that altered gut microbiota drives endometriotic lesion growth and feces from mice with endometriosis contained less of short-chain fatty acid and n-butyrate than feces from mice without endometriosis. Treatment with n-butyrate reduced growth of both mouse endometriotic lesions and human endometriotic lesions in a pre-clinical mouse model. Mechanistic studies revealed that n-butyrate inhibited human endometriotic cell survival and lesion growth through G-protein-coupled receptors, histone deacetylases, and a GTPase activating protein, RAP1GAP. Our findings will enable future studies aimed at developing diagnostic tests, gut bacteria metabolites and treatment strategies, dietary supplements, n-butyrate analogs, or probiotics for endometriosis.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Pooja Popli
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Chandrasekhar R Ambati
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Fienberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott W Biest
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Division of Minimally Invasive Gynecologic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA .,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
9
|
Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep 2021; 11:13295. [PMID: 34168237 PMCID: PMC8225821 DOI: 10.1038/s41598-021-92675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2020] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Desmosomes have a central role in mediating extracellular adhesion between cells, but they also coordinate other biological processes such as proliferation, differentiation, apoptosis and migration. In particular, several lines of evidence have implicated desmosomal proteins in regulating the actin cytoskeleton and attachment to the extracellular matrix, indicating signaling crosstalk between cell–cell junctions and cell–matrix adhesions. In our study, we found that cells lacking the desmosomal cadherin Desmoglein-2 (Dsg2) displayed a significant increase in spreading area on both fibronectin and collagen, compared to control A431 cells. Intriguingly, this effect was observed in single spreading cells, indicating that Dsg2 can exert its effects on cell spreading independent of cell–cell adhesion. We hypothesized that Dsg2 may mediate cell–matrix adhesion via control of Rap1 GTPase, which is well known as a central regulator of cell spreading dynamics. We show that Rap1 activity is elevated in Dsg2 knockout cells, and that Dsg2 harnesses Rap1 and downstream TGFβ signaling to influence both cell spreading and focal adhesion protein phosphorylation. Further analysis implicated the Rap GEF PDZ-GEF2 in mediating Dsg2-dependent cell spreading. These data have identified a novel role for Dsg2 in controlling cell spreading, providing insight into the mechanisms via which cadherins exert non-canonical junction-independent effects.
Collapse
|
10
|
Cao Y, Di X, Zhang Q, Li R, Wang K. RBM10 Regulates Tumor Apoptosis, Proliferation, and Metastasis. Front Oncol 2021; 11:603932. [PMID: 33718153 PMCID: PMC7943715 DOI: 10.3389/fonc.2021.603932] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The RNA-binding motif protein 10 (RBM10) is involved in alternative splicing and modifies mRNA post-transcriptionally. RBM10 is abnormally expressed in the lung, breast, and colorectal cancer, female genital tumors, osteosarcoma, and other malignant tumors. It can inhibit proliferation, promote apoptosis, and inhibit invasion and metastasis. RBM10 has long been considered a tumor suppressor because it promotes apoptosis through the regulation of the MDM2-p53 negative feedback loop, Bcl-2, Bax, and other apoptotic proteins and inhibits proliferation through the Notch signaling and rap1a/Akt/CREB pathways. However, it has been recently demonstrated that RBM10 can also promote cancer. Given these different views, it is necessary to summarize the research progress of RBM10 in various fields to reasonably analyze the underlying molecular mechanisms, and provide new ideas and directions for the clinical research of RBM10 in various cancer types. In this review, we provide a new perspective on the reasons for these opposing effects on cancer biology, molecular mechanisms, research progress, and clinical value of RBM10.
Collapse
Affiliation(s)
- Yingshu Cao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Wu F, Lin X, Shan SK, Li F, Xu F, Zhong JY, Guo B, Zheng MH, Wang Y, Mo ZH, Yuan LQ. The Suppression of miR-199a-3p by Promoter Methylation Contributes to Papillary Thyroid Carcinoma Aggressiveness by Targeting RAP2a and DNMT3a. Front Cell Dev Biol 2020; 8:594528. [PMID: 33365310 PMCID: PMC7750465 DOI: 10.3389/fcell.2020.594528] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background It was previously demonstrated that miR-199a-3p plays an important role in tumor progression; especially, its down-regulation in papillary thyroid cancer (PTC) is associated with cancer cell invasion and proliferation. In the present report, we investigated the mechanism involved in the down-regulation of miR-199a-3p in PTC and how miR-199a-3p regulates PTC invasion both in vivo and in vitro. Methods qRT-PCR and Western blot assays were used to determine the expression of the investigated genes. Bisulfite sequencing PCR was used to investigate miR-199a-3p methylation. The functions of miR-199a-3p were investigated by a series of in vitro and in vivo experiments. Results Our results showed hypermethylation of the miR-199a-3p promoter, which resulted in decreased miR-199a-3p expression both in PTC cell lines and PTC tissues. DNA-methyltransferase 3a (DNMT3a), a target gene of miR-199a-3p, was increased both in PTC cell lines and PTC tissues, while 5-aza-2′-deoxycytidine (methyltransferase-specific inhibitor) or knock-down using DNMT3a Small-Interfering RNA could restore the expression of miR-199a-3p, and the over-expression of miR-199a-3p could decrease the expression of DNMT3a; this suggests that miR-199a-3p/DNMT3a constructs a regulatory circuit in regulating miR-199a-3p/DNMT3a expression. Moreover, gain- and loss-of-function studies revealed that miR-199a-3p is involved in cancer cell migration, invasion, and growth. Meanwhile, we found that RAP2a was also a direct target of miR-199a-3p, which might mediate the tumor-growth-inhibiting effect of miR-199a-3p. To further confirm the tumor-suppressive properties of miR-199a-3p, stable overexpression of miR-199a-3p in a PTC cell line (BCPAP cells) was xenografted to athymic BALB/c nude mice, resulting in delayed tumor growth in vivo. In clinical PTC samples, the expression of RAP2a and DNMT3a was increased significantly, and the expression of RAP2a was inversely correlated with that of miR-199a-3p. Conclusion Our studies demonstrate that an epigenetic change in the promoter region of miR-199a contributes to the aggressive behavior of PTC via the miR-199a-3p/DNMT3a regulatory circuit and directly targets RAP2a.
Collapse
Affiliation(s)
- Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuxingzi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Hui Mo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Xu M, Zhou J, Zhang Q, Le K, Xi Z, Yi P, Zhao X, Tan J, Huang T. MiR-3121-3p promotes tumor invasion and metastasis by suppressing Rap1GAP in papillary thyroid cancer in vitro. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1229. [PMID: 33178761 PMCID: PMC7607113 DOI: 10.21037/atm-20-4469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Background Rap1GAP is a tumor suppressor and is downregulated in human malignancies including papillary thyroid cancer (PTC). The mechanism of its suppression in PTC remains unclear. Methods Bioinformatic analyses were carried out to evaluate clinical significance and to predict upstream miRNA bindings of Rap1GAP. Three PTC cell lines, TPC-1, B-CPAP, and K1, were employed for functional verification and further experiments. We used dual-luciferase reporter gene assay to confirm the miRNA binding prediction, Western blotting and quantitative polymerase chain reaction (qPCR) to explore miRNA and Rap1GAP regulation, Transwell and wound healing assays to compare cell migration and invasion after protein knockout or overexpression, and Cell Counting Kit-8 (CCK-8) assay to evaluate cell proliferation. Results Rap1GAP expression was suppressed in thyroid cancer compared to adjacent normal tissues and was a potential diagnostic marker of PTC. Rap1GAP suppression was correlated to younger age, advanced T stage, N stage, extrathyroidal extension, BRAF-like tumors, and higher risk of recurrence. Combined analysis of bioinformatic prediction and dual-luciferase assay revealed binding between miR-3121-3p with 3'UTR of Rap1GAP promoter. MiR-3121-3p promoted cell migration, invasion, and proliferation via inhibiting Rap1GAP and thus upregulating MAPK pathway. Overexpression and knockdown of Rap1GAP could counteract the influence on cell migration and invasion carried out by miR-3121-3p mimic and inhibitor, respectively. Rap1GAP partially impaired the effect of miR-3121-3p in cell growth in the CCK-8 assay. Conclusions Rap1GAP expression is suppressed in PTC and is a potential diagnostic marker. Its upstream regulator, miR-3121-3p, affects tumor metastasis and proliferation via regulating Rap1GAP expression. MAPK signaling pathway may be involved in this effect.
Collapse
Affiliation(s)
- Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulei Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehao Le
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihan Xi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Yi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangwang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Tan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Fan M, Ma X, Wang F, Zhou Z, Zhang J, Zhou D, Hong Y, Wang Y, Wang G, Dong Q. MicroRNA-30b-5p functions as a metastasis suppressor in colorectal cancer by targeting Rap1b. Cancer Lett 2020; 477:144-156. [PMID: 32112903 DOI: 10.1016/j.canlet.2020.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Colorectal liver metastasis (CRLM) is the leading cause of death in patients with colorectal cancer (CRC). MiR-30b-5p can function as an oncogene or tumor suppressor in cancers, but its role in CRLM is still unknown. Here, we found that miR-30b-5p overexpression suppressed the invasion, migration, adhesion, and motility of HCT116 and LoVo cells. The expression of EMT (Zeb1, Snail, and vimentin) and adhesion-related proteins (p-paxillin and p-Src) was decreased. We validated Rap1b, a Ras family small GTPase that regulates cell adhesion and mobility, as the direct and functional target of miR-30b-5p. Rap1b overexpression rescued the aggressive characteristics of CRC cells that were inhibited by miR-30b-5p. Rap1b knockdown suppressed invasion and migration and decreased CRC cell-matrix adhesion and spreading, which was consistent with the results of miR-30b-5p overexpression. Further in vivo experiments demonstrated that miR-30b-5p overexpression inhibited CRLM, but Rap1b rescue attenuated the inhibitory effect of miR-30b-5p. In addition, miR-30b-5p was downregulated in CRC specimens, and Rap1b showed a negative correlation with miR-30b-5p expression in primary CRC and LM tissues. These results indicate that miR-30b-5p functions as a metastasis suppressor by targeting Rap1b and may provide a new target for the treatment of CRLM.
Collapse
Affiliation(s)
- Mengjing Fan
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ximei Ma
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feifan Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuha Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Zhang
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Difan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiyang Hong
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yihong Wang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guanyu Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qinghua Dong
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China.
| |
Collapse
|
14
|
Li Q, Xu A, Chu Y, Chen T, Li H, Yao L, Zhou P, Xu M. Rap1A promotes esophageal squamous cell carcinoma metastasis through the AKT signaling pathway. Oncol Rep 2019; 42:1815-1824. [PMID: 31545475 PMCID: PMC6775818 DOI: 10.3892/or.2019.7309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2018] [Accepted: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
Ras‑associated protein 1A (Rap1A) is a member of the Ras subfamily of small GTP‑binding proteins and is found to promote metastasis in several types of cancer. However, the functional role and molecular mechanism of action in Rap1A in esophageal squamous cell carcinoma (ESCC) is not fully understood. In the present study, Rap1A was found to be upregulated in ESCC tissues and its expression was correlated with cancer stage. Functional studies revealed that Rap1A could promote ESCC metastasis by stimulating cell migration and invasion in vivo and in vitro. Further study indicated that the transcriptional factor SP1 increased Rap1A expression via promoter binding and transcription activation. Furthermore, Rap1A promoted epithelial‑to‑mesenchymal transition, possibly through the AKT signaling pathway. Hence, the findings of the present study indicated that Rap1A may be a potential prognostic marker or therapeutic target for ESCC.
Collapse
Affiliation(s)
- Qinfang Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Aiping Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yuan Chu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Tao Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Hongqi Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Liqing Yao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Meidong Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
15
|
Tsygankova OM, Keen JH. A unique role for clathrin light chain A in cell spreading and migration. J Cell Sci 2019; 132:jcs.224030. [PMID: 30975920 DOI: 10.1242/jcs.224030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Clathrin heavy chain is the structural component of the clathrin triskelion, but unique functions for the two distinct and highly conserved clathrin light chains (CLCa and CLCb, also known as CLTA and CLTB, respectively) have been elusive. Here, we show that following detachment and replating, CLCa is uniquely responsible for promoting efficient cell spreading and migration. Selective depletion of CLCa, but not of CLCb, reduced the initial phase of isotropic spreading of HeLa, H1299 and HEK293 cells by 60-80% compared to siRNA controls, and wound closure and motility by ∼50%. Surface levels of β1-integrins were unaffected by CLCa depletion. However, CLCa was required for effective targeting of FAK (also known as PTK2) and paxillin to the adherent surface of spreading cells, for integrin-mediated activation of Src, FAK and paxillin, and for maturation of focal adhesions, but not their microtubule-based turnover. Depletion of CLCa also blocked the interaction of clathrin with the nucleation-promoting factor WAVE complex, and altered actin distribution. Furthermore, preferential recruitment of CLCa to budding protrusions was also observed. These results comprise the first identification of CLCa-specific functions, with implications for normal and neoplastic integrin-based signaling and cell migration.
Collapse
Affiliation(s)
- Oxana M Tsygankova
- Department of Biochemistry and Molecular Biology, Cell Biology and Signaling Program of the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James H Keen
- Department of Biochemistry and Molecular Biology, Cell Biology and Signaling Program of the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Jin X, Di X, Wang R, Ma H, Tian C, Zhao M, Cong S, Liu J, Li R, Wang K. RBM10 inhibits cell proliferation of lung adenocarcinoma via RAP1/AKT/CREB signalling pathway. J Cell Mol Med 2019; 23:3897-3904. [PMID: 30955253 PMCID: PMC6533519 DOI: 10.1111/jcmm.14263] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
Initial functional studies have demonstrated that RNA‐binding motif protein 10 (RBM10) can promote apoptosis and suppress cell proliferation; however, the results of several studies suggest a tumour‐promoting role for RBM10. Herein, we assessed the involvement of RBM10 in lung adenocarcinoma cell proliferation and explored the potential molecular mechanism. We found that, both in vitro and in vivo, RBM10 overexpression suppresses lung adenocarcinoma cell proliferation, while its knockdown enhances cell proliferation. Using complementary DNA microarray analysis, we previously found that RBM10 overexpression induces significant down‐regulation of RAP1A expression. In this study, we have confirmed that RBM10 decreases the activation of RAP1 and found that EPAC stimulation and inhibition can abolish the effects of RBM10 knockdown and overexpression, respectively, and regulate cell growth. This effect of RBM10 on proliferation was independent of the MAPK/ERK and P38/MAPK signalling pathways. We found that RBM10 reduces the phosphorylation of CREB via the AKT signalling pathway, suggesting that RBM10 exhibits its effect on lung adenocarcinoma cell proliferation via the RAP1/AKT/CREB signalling pathway.
Collapse
Affiliation(s)
- Xin Jin
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ruimin Wang
- Department of Operation room, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - He Ma
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Chang Tian
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaying Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Shah S, Brock EJ, Jackson RM, Ji K, Boerner JL, Sloane BF, Mattingly RR. Downregulation of Rap1Gap: A Switch from DCIS to Invasive Breast Carcinoma via ERK/MAPK Activation. Neoplasia 2018; 20:951-963. [PMID: 30144784 PMCID: PMC6106701 DOI: 10.1016/j.neo.2018.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2017] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023] Open
Abstract
Diagnosis of breast ductal carcinoma in situ (DCIS) presents a challenge since we cannot yet distinguish those cases that would remain indolent and not require aggressive treatment from cases that may progress to invasive ductal cancer (IDC). The purpose of this study is to determine the role of Rap1Gap, a GTPase activating protein, in the progression from DCIS to IDC. Immunohistochemistry (IHC) analysis of samples from breast cancer patients shows an increase in Rap1Gap expression in DCIS compared to normal breast tissue and IDCs. In order to study the mechanisms of malignant progression, we employed an in vitro three-dimensional (3D) model that more accurately recapitulates both structural and functional cues of breast tissue. Immunoblotting results show that Rap1Gap levels in MCF10.Ca1D cells (a model of invasive carcinoma) are reduced compared to those in MCF10.DCIS (a model of DCIS). Retroviral silencing of Rap1Gap in MCF10.DCIS cells activated extracellular regulated kinase (ERK) mitogen-activated protein kinase (MAPK), induced extensive cytoskeletal reorganization and acquisition of mesenchymal phenotype, and enhanced invasion. Enforced reexpression of Rap1Gap in MCF10.DCIS-Rap1GapshRNA cells reduced Rap1 activity and reversed the mesenchymal phenotype. Similarly, introduction of dominant negative Rap1A mutant (Rap1A-N17) in DCIS-Rap1Gap shRNA cells caused a reversion to nonmalignant phenotype. Conversely, expression of constitutively active Rap1A mutant (Rap1A-V12) in noninvasive MCF10.DCIS cells led to phenotypic changes that were reminiscent of Rap1Gap knockdown. Thus, reduction of Rap1Gap in DCIS is a potential switch for progression to an invasive phenotype. The Graphical Abstract summarizes these findings.
Collapse
Affiliation(s)
- Seema Shah
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ethan J Brock
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ryan M Jackson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julie L Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bonnie F Sloane
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Raymond R Mattingly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
18
|
Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: A tale of two GTPases. Semin Cancer Biol 2018; 54:29-39. [PMID: 29621614 DOI: 10.1016/j.semcancer.2018.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2018] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Ras oncoproteins play pivotal roles in both the development and maintenance of many tumor types. Unfortunately, these proteins are difficult to directly target using traditional pharmacological strategies, in part due to their lack of obvious binding pockets or allosteric sites. This obstacle has driven a considerable amount of research into pursuing alternative ways to effectively inhibit Ras, examples of which include inducing mislocalization to prevent Ras maturation and inactivating downstream proteins in Ras-driven signaling pathways. Ras proteins are archetypes of a superfamily of small GTPases that play specific roles in the regulation of many cellular processes, including vesicle trafficking, nuclear transport, cytoskeletal rearrangement, and cell cycle progression. Several other superfamily members have also been linked to the control of normal and cancer cell growth and survival. For example, Rap1 has high sequence similarity to Ras, has overlapping binding partners, and has been demonstrated to both oppose and mimic Ras-driven cancer phenotypes. Rap1 plays an important role in cell adhesion and integrin function in a variety of cell types. Mechanistically, Ras and Rap1 cooperate to initiate and sustain ERK signaling, which is activated in many malignancies and is the target of successful therapeutics. Here we review the role activated Rap1 in ERK signaling and other downstream pathways to promote invasion and cell migration and metastasis in various cancer types.
Collapse
Affiliation(s)
- Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
19
|
Gao WL, Ye GC, Liu LW, Wei L. The downregulation of Rap1 GTPase-activating protein is associated with a poor prognosis in colorectal cancer and may impact on tumor progression. Oncol Lett 2018; 15:7661-7668. [PMID: 29725465 PMCID: PMC5920375 DOI: 10.3892/ol.2018.8305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2017] [Accepted: 02/15/2018] [Indexed: 12/18/2022] Open
Abstract
Rap1 GTPase-activating protein (Rap1GAP) has been reported to serve an important role in various types of cancer by specific stimulation as a negative regulator of Rap1 activity. However, the role of Rap1GAP in colorectal cancer (CRC) has yet to be fully elucidated. The aim of the present study was to investigate the expression of Rap1GAP in CRC tissues and to elucidate its clinical significance. The expression of Rap1GAP, matrix metallopeptidase 9 (MMP-9) and E-cadherin in 227 CRC tissues and paired para-carcinoma tissues was detected by immunohistochemistry. Associations between Rap1GAP expression and clinicopathological characteristics, and between Rap1GAP expression and prognostic value (OS + DFS) in CRC were investigated. Furthermore, associations between Rap1GAP expression and MMP-9 expression, and between Rap1GAP expression and E-cadherin expression were also investigated. Rap1GAP expression was markedly downregulated in CRC tissues compared with para-carcinoma tissues. Decreased expression of Rap1GAP was significantly associated with depth of invasion, lymph node metastasis, advanced Tumor-Node-Metastasis stage and a poor prognosis in patients with CRC following surgery. Furthermore, univariate and multivariate analyses revealed that Rap1GAP was an independent poor prognostic factor for disease-free survival and overall survival. In addition, Rap1GAP expression was negatively associated with MMP-9 and positively associated with E-cadherin in 227 CRC samples. In brief, the results of the present study suggested that Rap1GAP may be involved in tumor progression in CRC and may serve as a potential target for prognostic prediction of patients with CRC.
Collapse
Affiliation(s)
- Wei-Li Gao
- Department of General Surgery, Huzhou Central Hospital, Zhejiang University, Huzhou, Zhejiang 313000, P.R. China
| | - Guo-Chao Ye
- Department of General Surgery, Huzhou Central Hospital, Zhejiang University, Huzhou, Zhejiang 313000, P.R. China
| | - Li-Wei Liu
- Department of General Surgery, Huzhou Central Hospital, Zhejiang University, Huzhou, Zhejiang 313000, P.R. China
| | - Lu Wei
- Department of General Surgery, Huzhou Central Hospital, Zhejiang University, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
20
|
Tang Z, Peng H, Chen J, Liu Y, Yan S, Yu G, Chen Q, Tang H, Liu S. Rap1b enhances the invasion and migration of hepatocellular carcinoma cells by up-regulating Twist 1. Exp Cell Res 2018; 367:56-64. [PMID: 29559227 DOI: 10.1016/j.yexcr.2018.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 02/04/2023]
Abstract
Rap1b was found be dysregulated in several types of cancers. Previously, we have demonstrated that Rap1b affects proliferation, migration and invasion of hepatocellular carcinoma (HCC) cells. However, the definite function of Rap1b in HCC remains unknown. Here, we reported that Rap1b was significantly up-regulated in HCC tissues compared with the non-tumoral liver tissues. Overexpression of Rap1b promoted tumor growth and migration in vitro and tumor formation in vivo. Oppositely, inhibition of Rap1b suppressed the proliferation and migration of HCC cells. Mechanism study revealed that Rap1b could up-regulate Twist 1 expression by enhancing its promoter activity. We concluded that Rap1b increased Twist 1 expression by targeting its promoter activity to induce proliferation and migration of HCC cells.
Collapse
Affiliation(s)
- Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Hong Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, China
| | - Juan Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, China
| | - Yuyang Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, China
| | - Shaoying Yan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, China
| | - Gangfeng Yu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, China
| | - Qiuxu Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, China.
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
21
|
Yang Y, Zhang J, Yan Y, Cai H, Li M, Sun K, Wang J, Liu X, Wang J, Duan X. Low expression of Rap1GAP is associated with epithelial-mesenchymal transition (EMT) and poor prognosis in gastric cancer. Oncotarget 2018; 8:8057-8068. [PMID: 28009991 PMCID: PMC5352382 DOI: 10.18632/oncotarget.14074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2015] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Rap1GAP is a crucial tumor suppressor, but its role in gastric cancer (GC) is little investigated. In this study, we found that the expression of Rap1GAP was decreased in GC. Low expression of Rap1GAP was positively correlated with advanced pTNM stage, Borrmann types, tumor diameter and poor prognosis in patients with GC. Low expression of Rap1GAP correlated with loss of E-cadherin expression, and anomalous positivity of MMP2 expression. Multivariate analysis showed that low expression of Rap1GAP was an independent prognostic factor. Ectopic expression of Rap1GAP impaired cell migration and invasion, promoted the expression of E-cadherin and decreased the expression of MMP2. These results suggest that Rap1GAP functions as a novel suppressor of EMT and tumor metastasis in GC, and loss of Rap1GAP predicts poor prognosis in GC.
Collapse
Affiliation(s)
- Ya Yang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Department III of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jia Zhang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yan Yan
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Min Li
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kai Sun
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jizhao Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xu Liu
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jiansheng Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xiaoyi Duan
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
22
|
Hu X, Wei H, Zheng H. Identification of perturbed signaling pathways from gene expression data using information divergence. MOLECULAR BIOSYSTEMS 2017; 13:1797-1804. [PMID: 28702621 DOI: 10.1039/c7mb00285h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Abnormal regulation of signaling pathways is the key causative factor in several diseases. Although many methods have been proposed to identify significantly differential pathways between two conditions via microarray gene expression datasets, most of them concentrate on differences in the pathway components-either the differential expression or the correlation of genes in a given pathway. However, as biological functional units, signaling pathways may have diverse activity patterns across different biological contexts. In order to detect overall changes in pathways, we propose an analysis model called SPAID (Signaling Pathway Analysis based on Information Divergence). SPAID is based on the concept of information divergence, which can be used to compare two conditions by computing the differential probability distribution of the regulation capacity. We compared SPAID with several classical algorithms using different datasets, and the results indicate that SPAID produces higher repeatability, has better performance and universality, and extracts more comprehensive information regarding the underlying biological processes. In conclusion, by introducing the idea of information divergence, our study measures differences in pathways from an overall perspective and will provide a complementary analysis framework for pathway analysis.
Collapse
Affiliation(s)
- Xinying Hu
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China.
| | | | | |
Collapse
|
23
|
Rap1GAP inhibits tumor progression in endometrial cancer. Biochem Biophys Res Commun 2017; 485:476-483. [PMID: 28196746 DOI: 10.1016/j.bbrc.2017.02.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Endometrioid adenocarcinoma (EAC) is a common endometrial cancer with recent dramatic increases in incidence. Previous findings indicate that Rap1GAP acts as a tumor suppressor inhibiting Ras superfamily protein Rap1 in multiple aggressive carcinomas; however, Rap1GAP expression in EAC has not been investigated. In this study, the tumor suppressing activity of Rap1GAP in EAC was explored. METHODS EAC cell lines were used to examine Rap1GAP levels by real-time RT-PCR and western blotting and the effects of Rap1GAP on cancer cell invasion and migration. Rap1GAP expression was analyzed by immunohistochemical staining for Rap1GAP, E-cadherin in surgically resected tumors of 114 EAC patients scored according to EAC differentiation grade. Prognostic variables such as age, stage, grade, tumor size, and immunostaining for Rap1GAP, E-cadherin were evaluated using Cox regression multivariate analysis. RESULTS Low Rap1GAP expression was detected in poorly differentiated EAC cells. Rap1GAP deficiency significantly accelerated while Rap1 deficiency decreased cancer cell migration and invasion. Patients with higher Rap1GAP, E-cadherin, and especially combined Rap1GAP/E-cadherin levels had better overall survival than EAC patients with no or weak expression. In addition, Rap1GAP expression was an independent prognostic factor in EAC. CONCLUSIONS Inhibition of Rap1GAP expression increases EAC cell migration and invasion through upregulation of Rap1. Low expression of Rap1GAP correlates with poor EAC differentiation. Our findings suggest that Rap1GAP is an important tumor suppressor with high prognostic value in EAC.
Collapse
|
24
|
Lee YE, He HL, Chen TJ, Lee SW, Chang IW, Hsing CH, Li CF. The prognostic impact of RAP2A expression in patients with early and locoregionally advanced nasopharyngeal carcinoma in an endemic area. Am J Transl Res 2015; 7:912-921. [PMID: 26175852 PMCID: PMC4494142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND By data mining from published transcriptomic databases, we identified RAP2A as a significantly upregulated gene in nasopharyngeal carcinoma (NPC) tissues. RAP2A, a member of the RAS oncogene family, is involved in the process of GTP binding and GTPase activity. The aim of this study was to evaluate the expression of RAP2A and its prognostic impact in patients with early and locoregionally advanced NPC. METHODS RAP2A immunohistochemistry was performed for 124 NPC patients who were receiving standard treatment and had no initial distal metastasis. We also performed Western blotting to evaluate the endogenous protein expression of RAP2A in NPC cells and non-neoplastic mucosal cells. The result of RAP2A expression was further correlated with clinicopathological variables, disease-specific survival (DSS), distant metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS). RESULTS High expression of RAP2A was significantly associated with advanced primary tumor status (P = 0.024) and advanced TNM stage (P = 0.006). In univariate analysis, high expression of RAP2A served as a significant prognostic factor for inferior DSS (P < 0.0001), DMeFS (P < 0.0001), and LRFS (P < 0.0001). In multivariate analysis, RAP2A overexpression still independently predicted worse DSS (hazard ratio [HR] = 2.976, P < 0.001), DMeFS (HR = 4.233, P < 0.001), and LRFS (HR = 4.156, P < 0.001). Moreover, Both HONE1 and TW01 NPC cells, but not non-neoplastic DOK cells demonstrated significantly increased RAP2A expression. CONCLUSION Overexpression of RAP2A is associated with advanced disease status and may therefore be an important prognosticator for poor outcomes in NPC, as well as a potential therapeutic target to aid in developing effective treatment modalities.
Collapse
Affiliation(s)
- Ying-En Lee
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou UniversityKaohsiung, Taiwan
- Institute of Biomedical Science, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical CenterTainan, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi-Mei Medical CenterLiouying, Tainan, Taiwan
| | - I-Wei Chang
- Department of Pathology, E-DA Hospital, I-Shou UniversityKaohsiung, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi-Mei Medical CenterTainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical CenterTainan, Taiwan
- National Institute of Cancer Research, National Health Research InstitutesTainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and TechnologyTainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
25
|
Potla U, Ni J, Vadaparampil J, Yang G, Leventhal JS, Campbell KN, Chuang PY, Morozov A, He JC, D'Agati VD, Klotman PE, Kaufman L. Podocyte-specific RAP1GAP expression contributes to focal segmental glomerulosclerosis-associated glomerular injury. J Clin Invest 2014; 124:1757-69. [PMID: 24642466 DOI: 10.1172/jci67846] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2012] [Accepted: 01/16/2014] [Indexed: 01/17/2023] Open
Abstract
Injury to the specialized epithelial cells of the glomerulus (podocytes) underlies the pathogenesis of all forms of proteinuric kidney disease; however, the specific genetic changes that mediate podocyte dysfunction after injury are not fully understood. Here, we performed a large-scale insertional mutagenic screen of injury-resistant podocytes isolated from mice and found that increased expression of the gene Rap1gap, encoding a RAP1 activation inhibitor, ameliorated podocyte injury resistance. Furthermore, injured podocytes in murine models of disease and kidney biopsies from glomerulosclerosis patients exhibited increased RAP1GAP, resulting in diminished glomerular RAP1 activation. In mouse models, podocyte-specific inactivation of Rap1a and Rap1b induced massive glomerulosclerosis and premature death. Podocyte-specific Rap1a and Rap1b haploinsufficiency also resulted in severe podocyte damage, including features of podocyte detachment. Over-expression of RAP1GAP in cultured podocytes induced loss of activated β1 integrin, which was similarly observed in kidney biopsies from patients. Furthermore, preventing elevation of RAP1GAP levels in injured podocytes maintained β1 integrin-mediated adhesion and prevented cellular detachment. Taken together, our findings suggest that increased podocyte expression of RAP1GAP contributes directly to podocyte dysfunction by a mechanism that involves loss of RAP1-mediated activation of β1 integrin.
Collapse
|
26
|
Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1:e26938. [PMID: 24868497 PMCID: PMC3942330 DOI: 10.4161/tisb.26938] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Alí Francisco Citalán-Madrid
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Alexander García-Ponce
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| |
Collapse
|
27
|
Tsygankova OM, Wang H, Meinkoth JL. Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP). J Biol Chem 2013; 288:24636-46. [PMID: 23864657 DOI: 10.1074/jbc.m113.464594] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
The functional significance of the widespread down-regulation of Rap1 GTPase-activating protein (Rap1GAP), a negative regulator of Rap activity, in human tumors is unknown. Here we show that human colon cancer cells depleted of Rap1GAP are endowed with more aggressive migratory and invasive properties. Silencing Rap1GAP enhanced the migration of confluent and single cells. In the latter, migration distance, velocity, and directionality were increased. Enhanced migration was a consequence of increased endogenous Rap activity as silencing Rap expression selectively abolished the migration of Rap1GAP-depleted cells. ROCK-mediated cell contractility was suppressed in Rap1GAP-depleted cells, which exhibited a spindle-shaped morphology and abundant membrane protrusions. Tumor cells can switch between Rho/ROCK-mediated contractility-based migration and Rac1-mediated mesenchymal motility. Strikingly, the migration of Rap1GAP-depleted, but not control cells required Rac1 activity, suggesting that loss of Rap1GAP alters migratory mechanisms. Inhibition of Rac1 activity restored membrane blebbing and increased ROCK activity in Rap1GAP-depleted cells, suggesting that Rac1 contributes to the suppression of contractility. Collectively, these findings identify Rap1GAP as a critical regulator of aggressive tumor cell behavior and suggest that the level of Rap1GAP expression influences the migratory mechanisms that are operative in tumor cells.
Collapse
Affiliation(s)
- Oxana M Tsygankova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6061, USA
| | | | | |
Collapse
|
28
|
Monteiro AC, Sumagin R, Rankin CR, Leoni G, Mina MJ, Reiter DM, Stehle T, Dermody TS, Schaefer SA, Hall RA, Nusrat A, Parkos CA. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Mol Biol Cell 2013; 24:2849-60. [PMID: 23885123 PMCID: PMC3771947 DOI: 10.1091/mbc.e13-06-0298] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
Intestinal barrier function is regulated by epithelial tight junctions, structures that control paracellular permeability. JAM-A regulates epithelial permeability through association with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and control contraction of the apical cytoskeleton. Intestinal barrier function is regulated by epithelial tight junctions (TJs), structures that control paracellular permeability. Junctional adhesion molecule-A (JAM-A) is a TJ-associated protein that regulates barrier; however, mechanisms linking JAM-A to epithelial permeability are poorly understood. Here we report that JAM-A associates directly with ZO-2 and indirectly with afadin, and this complex, along with PDZ-GEF1, activates the small GTPase Rap2c. Supporting a functional link, small interfering RNA–mediated down-regulation of the foregoing regulatory proteins results in enhanced permeability similar to that observed after JAM-A loss. JAM-A–deficient mice and cultured epithelial cells demonstrate enhanced paracellular permeability to large molecules, revealing a potential role of JAM-A in controlling perijunctional actin cytoskeleton in addition to its previously reported role in regulating claudin proteins and small-molecule permeability. Further experiments suggest that JAM-A does not regulate actin turnover but modulates activity of RhoA and phosphorylation of nonmuscle myosin, both implicated in actomyosin contraction. These results suggest that JAM-A regulates epithelial permeability via association with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and control contraction of the apical cytoskeleton.
Collapse
Affiliation(s)
- Ana C Monteiro
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30306 Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30306 Emory Rollins School of Public Health, Atlanta, GA 30306 Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany Department of Pediatrics and Pathology, Vanderbilt University School of Medicine, Nashville, TN 37230 Departments of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37230 Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37230
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pannekoek WJ, Linnemann JR, Brouwer PM, Bos JL, Rehmann H. Rap1 and Rap2 antagonistically control endothelial barrier resistance. PLoS One 2013; 8:e57903. [PMID: 23469100 PMCID: PMC3585282 DOI: 10.1371/journal.pone.0057903] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
Rap1 and Rap2 are closely related proteins of the Ras family of small G-proteins. Rap1 is well known to regulate cell-cell adhesion. Here, we have analysed the effect of Rap-mediated signalling on endothelial permeability using electrical impedance measurements of HUVEC monolayers and subsequent determination of the barrier resistance, which is a measure for the ease with which ions can pass cell junctions. In line with its well-established effect on cell-cell junctions, depletion of Rap1 decreases, whereas activation of Rap1 increases barrier resistance. Despite its high sequence homology with Rap1, depletion of Rap2 has an opposite, enhancing, effect on barrier resistance. This effect can be mimicked by depletion of the Rap2 specific activator RasGEF1C and the Rap2 effector MAP4K4, establishing Rap2 signalling as an independent pathway controlling barrier resistance. As simultaneous depletion or activation of both Rap1 and Rap2 results in a barrier resistance comparable to control cells, Rap1 and Rap2 control barrier resistance in a reciprocal manner. This Rap1-antagonizing effect of Rap2 is established independent of junctional actin formation. These data establish that endothelial barrier resistance is determined by the combined antagonistic actions of Rap1 and Rap2.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jelena R. Linnemann
- Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricia M. Brouwer
- Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes L. Bos
- Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Holger Rehmann
- Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Xiao X, Mruk DD, Cheng FL, Cheng CY. C-Src and c-Yes are two unlikely partners of spermatogenesis and their roles in blood-testis barrier dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:295-317. [PMID: 23397631 DOI: 10.1007/978-1-4614-4711-5_15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Src family kinases (SFKs), in particular c-Src and c-Yes, are nonreceptor protein tyrosine kinases that mediate integrin signaling at focal adhesion complex at the cell-extracellular matrix interface to regulate cell adhesion, cell cycle progression, cell survival, proliferation and differentiation, most notably in cancer cells during tumorigenesis and metastasis. Interestingly, recent studies have shown that these two proto-oncogenes are integrated components of the stem cell niche and the cell-cell actin-based anchoring junction known as ectoplasmic specialization (ES) at the: (1) Sertoli cell-spermatid interface known as apical ES and (2) Sertoli-Sertoli cell interface known as basal ES which together with tight junctions (TJ), gap junctions and desmosomes constitute the blood-testis barrier (BTB). At the stem cell niche, these SFKs regulate spermatogonial stem cell (SSC) renewal to maintain the proper population of SSC/spermatogonia for spermatogenesis. At the apical ES and the BTB, c-Src and c-Yes confer cell adhesion either by maintaining the proper phosphorylation status of integral membrane proteins at the site which in turn regulates protein-protein interactions between integral membrane proteins and their adaptors, or by facilitating androgen action on spermatogenesis via a nongenomic pathway which also modulates cell adhesion in the seminiferous epithelium. Herein, we critically evaluate recent findings in the field regarding the roles of these two unlikely partners of spermatogenesis. We also propose a hypothetical model on the mechanistic functions of c-Src and c-Yes in spermatogenesis so that functional experiments can be designed in future studies.
Collapse
Affiliation(s)
- Xiang Xiao
- Center for Biomedical Research, Population Council, New York New York, USA
| | | | | | | |
Collapse
|
31
|
Yasuda T, Fukuda M. Slp2-a controls renal epithelial cell size through regulation of Rap–ezrin signaling independently of Rab27. J Cell Sci 2013; 127:557-70. [DOI: 10.1242/jcs.134056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023] Open
Abstract
Slp2-a is a Rab27 effector protein that regulates transport of Rab27-bearing vesicles/organelles via its N-terminal Rab27-binding domain and a phospholipid-binding C2A domain. Here we demonstrate a Rab27-independent function of Slp2-a in the control of renal cell size via a previously uncharacterized C2B domain. We found that by recruiting Rap1GAPs to the plasma membrane of MDCK II cells via the C2B domain Slp2-a inactivates Rap signaling and modulates the size of the cells. Functional ablation of Slp2-a resulted in an increase in the size of MDCK II cells. Drosophila Slp bitesize was found to compensate for the function of Slp2-a in MDCK II cells, thereby indicating that the mechanism of the cell size control by Slps has been evolutionarily conserved. Interestingly, blockade of the activity of ezrin, a downstream target of Rap, with the glucosylceramide synthase inhibitor miglustat effectively inhibited cell spreading of Slp2-a-knockdown cells. We also discovered aberrant expression of Slp2-a and increased activity of ezrin in pcy mice, a model of polycystic kidney disease that is characterized by renal cell spreading. Our findings indicate that Slp2-a controls renal cell size through regulation of Rap–ezrin signaling independently of Rab27.
Collapse
|
32
|
Zali H, Rezaei-Tavirani M, Vafaee R, Rezaei-Tavirani M. Gastric cardia adenocarcinoma pathway analysis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2013; 6:S11-8. [PMID: 24834279 PMCID: PMC4017529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 06/15/2013] [Accepted: 08/18/2013] [Indexed: 11/30/2022]
Abstract
Gastric cardia adenocarcinoma (GCA)is one of the few malignancies with unexplained reasons that have increased sharply in developed countries. The purpose of this review was to determine the pathways in GCA to identify new biomarker. So by comparing gene expression in GCA group with normal control identified important pathways. Gene expression data were extracted from the beforehand investigations then differentially expressed genes utilized in DAVID program to explorer and find related pathways. Our findings contain 367 gene names. Out of these 367 proteins, 199 were found to be exclusively expressed in GCA; whereas 168 proteins were detected down-regulated or silenced. The GCA associated diseases based on the differently expressed genes made up of diseases pathway related colorectal cancer, small cell lung cancer, breast cancer and H. pylori infection stomach cancer. KEGG pathways related to GCA contained cell cycle, p53 signaling pathway, DNA replication, toll-like receptor signaling pathway and some other diseases. The GO-discovered categories also demonstrated most biological process and molecular function related to cancer. Up until now, there is no report to introduce influential biomarkers in GCA so, the deregulated genes identified in GCA patterns might be helpful for diagnosis, prognosis and therapies for gastric cancer but validation of these biomarkers is necessary.
Collapse
Affiliation(s)
- Hakimeh Zali
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
33
|
Chen CH, Chuang HC, Huang CC, Fang FM, Huang HY, Tsai HT, Su LJ, Shiu LY, Leu S, Chien CY. Overexpression of Rap-1A indicates a poor prognosis for oral cavity squamous cell carcinoma and promotes tumor cell invasion via Aurora-A modulation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:516-28. [PMID: 23219753 DOI: 10.1016/j.ajpath.2012.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/18/2012] [Revised: 08/10/2012] [Accepted: 10/12/2012] [Indexed: 12/25/2022]
Abstract
The functions of Rap-1A in oral carcinogenesis are largely unexplored. In this study, we examined the expression of Rap-1A at different malignant stages of oral cavity squamous cell carcinoma (OCSCC). Semiquantitative RT-PCR, quantitative RT-PCR, and Western blotting were used to evaluate Rap-1A mRNA and protein expressions, respectively, in paired OCSCC patient specimens. To determine the possible correlation between Rap-1A expression and various clinical characteristics, 256 samples from patients with OCSCC were evaluated by immunohistochemical staining. Strong Rap-1A expression was a significant prognostic marker and predictor of aggressive OCSCC. The overall and disease-specific 5-year survival rates were significantly correlated with strong expression of Rap-1A (P < 0.001). Functionally, overexpressed Rap-1A could promote oral cancer cell migration and invasion by Transwell chambers and wound healing assay. Conversely, the suppression of Rap-1A expression using Rap-1A-mediated siRNA was sufficient to decrease cell motility. Furthermore, our data also illustrated that Aurora-A could not only induce mRNA and protein expressions of Rap-1A for enhancing cancer cell motility but also co-localize and form a complex with Rap-1A in the oral cancer cell line. Finally, immunohistochemical staining, indirect immunofluorescence, and Western blotting analysis of human aggressive OCSCC specimens revealed a significantly positive correlation between Rap-1A and Aurora-A expression. Taken together, our results suggest that the Aurora-A/Rap-1A pathway is associated with survival, tumor progression, and metastasis of OCSCC patients.
Collapse
Affiliation(s)
- Chang-Han Chen
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dong X, Tang W, Stopenski S, Brose MS, Korch C, Meinkoth JL. RAP1GAP inhibits cytoskeletal remodeling and motility in thyroid cancer cells. Endocr Relat Cancer 2012; 19:575-88. [PMID: 22696507 PMCID: PMC3531979 DOI: 10.1530/erc-12-0086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
The functional significance of decreased RAP1GAP protein expression in human tumors is unclear. To identify targets of RAP1GAP downregulation in the thyroid gland, RAP1 and RAP2 protein expression in human thyroid cells and in primary thyroid tumors were analyzed. RAP1GAP and RAP2 were co-expressed in normal thyroid follicular cells. Intriguingly, RAP1 was not detected in normal thyroid cells, although it was detected in papillary thyroid carcinomas, which also expressed RAP2. Both RAP proteins were detected at the membrane in papillary thyroid tumors, suggesting that they are activated when RAP1GAP is downregulated. To explore the functional significance of RAP1GAP depletion, RAP1GAP was transiently expressed at the lowest level that is sufficient to block endogenous RAP2 activity in papillary and anaplastic thyroid carcinoma cell lines. RAP1GAP impaired the ability of cells to spread and migrate on collagen. Although RAP1GAP had no effect on protein tyrosine phosphorylation in growing cells, RAP1GAP impaired phosphorylation of focal adhesion kinase and paxillin at sites phosphorylated by SRC in cells acutely plated on collagen. SRC activity was increased in suspended cells, where it was inhibited by RAP1GAP. Inhibition of SRC kinase activity impaired cell spreading and motility. These findings identify SRC as a target of RAP1GAP depletion and suggest that the downregulation of RAP1GAP in thyroid tumors enhances SRC-dependent signals that regulate cellular architecture and motility.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Department of Pharmacology - Head and Neck Surgery, School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRB II/III, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Wang K, Li J, Guo H, Xu X, Xiong G, Guan X, Liu B, Li J, Chen X, Yang K, Bai Y. MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis. Carcinogenesis 2012; 33:2147-54. [DOI: 10.1093/carcin/bgs259] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
|
36
|
Banerjee R, Russo N, Liu M, Van Tubergen E, D'Silva NJ. Rap1 and its regulatory proteins: the tumor suppressor, oncogene, tumor suppressor gene axis in head and neck cancer. Small GTPases 2012; 3:192-7. [PMID: 22684501 DOI: 10.4161/sgtp.20413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer, globally. Previously, we showed that Rap1GAP is a tumor suppressor gene that inhibits tumor growth, but promotes invasion in SCCHN. In this work, we discuss the role of Rap1 and Rap1GAP in SCCHN progression in the context of a microRNA-oncogene-tumor suppressor gene axis, and investigate the role of Rap1GAP in EZH2-mediated invasion. Loss of expression of microRNA-101 in SCCHN leads to upregulation of EZH2, a histone methyltransferase. Overexpression of EZH2 silences Rap1GAP via methylation, thereby promoting activation of its target, Rap1. This microRNA-controlled activation of Rap1, via EZH2-mediated silencing of Rap1GAP, is a novel mechanism of Rap1 regulation. In two independent SCCHN cell lines, downregulation of EZH2 inhibits proliferation and invasion. In both cell lines, stable knockdown of EZH2 (shEZH2) recovers Rap1GAP expression and inhibits proliferation. However, siRNA-mediated knockdown of Rap1GAP in these cells rescues proliferation but not invasion. Thus, EZH2 promotes proliferation and invasion via Rap1GAP-dependent and -independent mechanisms, respectively. Although the studies presented here are in the context of SCCHN, our results may have broader implications, given that Rap1GAP acts as a tumor suppressor in pancreatic cancer, thyroid cancer, and melanoma.
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
37
|
Qiu T, Qi X, Cen J, Chen Z. Rap1GAP alters leukemia cell differentiation, apoptosis and invasion in vitro. Oncol Rep 2012; 28:622-8. [PMID: 22614916 DOI: 10.3892/or.2012.1825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2012] [Accepted: 04/17/2012] [Indexed: 11/06/2022] Open
Abstract
Rap1GAP which regulates the GTP-GDP form switch of Rap1 is a member of the GTPase-activating protein (GAP) family and has recently received substantial attention. Rap1GAP is thought of as a putative tumor suppressor gene and plays an important role in human tumor progression including pancreatic cancer, thyroid cancer and melanoma. In the current study, we found that the expression of Rap1GAP was lower in acute myeloid leukemia (AML) patients compared to non-malignant blood disease patients. The expression of Rap1GAP was also low in HL-60, NB4, U937 and SHI-1 myeloid leukemia cell lines. Upregulated Rap1GAP in NB4 and HL-60 cells promoted cell differentiation induced by ATRA or TPA compared to the empty vector control cells. Furthermore, Rap1GAP-transfected cells also showed a higher rate of apoptosis in response to arsenic trioxide compared to the control counterpart cells. In addition, we found that increased expression of Rap1GAP promoted leukemia cell invasion may be due to matrix metalloproteinase 9 (MMP9). In conclusion, these results demonstrated that Rap1GAP promoted leukemia cell differentiation and apoptosis, but increased leukemia cell invasion in vitro.
Collapse
Affiliation(s)
- Tingting Qiu
- Leukemia Research Unit, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou 215006, PR China
| | | | | | | |
Collapse
|
38
|
Blumer JB, Oner SS, Lanier SM. Group II activators of G-protein signalling and proteins containing a G-protein regulatory motif. Acta Physiol (Oxf) 2012; 204:202-18. [PMID: 21615707 DOI: 10.1111/j.1748-1716.2011.02327.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
Beyond the core triad of receptor, Gαβγ and effector, there are multiple accessory proteins that provide alternative modes of signal input and regulatory adaptability to G-protein signalling systems. Such accessory proteins may segregate a signalling complex to microdomains of the cell, regulate the basal activity, efficiency and specificity of signal propagation and/or serve as alternative binding partners for Gα or Gβγ independent of the classical heterotrimeric Gαβγ complex. The latter concept led to the postulate that Gα and Gβγ regulate intracellular events distinct from their role as transducers for cell surface seven-transmembrane span receptors. One general class of such accessory proteins is defined by AGS proteins or activators of G-protein signalling that refer to mammalian cDNAs identified in a specific yeast-based functional screen. The discovery of AGS proteins and related entities revealed a number of unexpected mechanisms for regulation of G-protein signalling systems and expanded functional roles for this important signalling system.
Collapse
Affiliation(s)
- J B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, 29425, USA
| | | | | |
Collapse
|
39
|
Bany BM, Scott CA, Eckstrum KS. Analysis of uterine gene expression in interleukin-15 knockout mice reveals uterine natural killer cells do not play a major role in decidualization and associated angiogenesis. Reproduction 2011; 143:359-75. [PMID: 22187674 DOI: 10.1530/rep-11-0325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
During decidualization, uterine natural killer (uNK) cells are the most abundant immune cell types found in the uterus. Although it is well known that they play key roles in spiral arteriole modification and the maintenance of decidual integrity seen after mid-pregnancy, their roles in the differentiation of decidual cells and accompanying angiogenesis during the process of decidualization is less well characterized. To address this, we used whole-genome Illumina BeadChip analysis to compare the gene expression profiles in implantation segments of the uterus during decidualization on day 7.5 of pregnancy between wild-type and uNK cell-deficient (interleukin-15-knockout) mice. We found almost 300 differentially expressed genes and verified the differential expression of ~60 using quantitative RT-PCR. Notably, there was a lack of differential expression of genes involved in decidualization and angiogenesis and this was also verified by quantitative RT-PCR. Similar endothelial cell densities and proliferation indices were also found in the endometrium between the implantation site tissues of wild-type and knockout mice undergoing decidualization. Overall, the results of this study reveal that uNK cells likely do not play a major role in decidualization and accompanying angiogenesis during implantation. In addition, the study identifies a large number of genes whose expression in implantation-site uterine tissue during decidualization depends on interleukin-15 expression in mice.
Collapse
Affiliation(s)
- Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA.
| | | | | |
Collapse
|
40
|
Inhibitory effects of Rap1GAP overexpression on proliferation and migration of endothelial cells via ERK and Akt pathways. ACTA ACUST UNITED AC 2011; 31:721-727. [DOI: 10.1007/s11596-011-0667-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2011] [Indexed: 01/28/2023]
|
41
|
Molecular Crosstalk between Integrins and Cadherins: Do Reactive Oxygen Species Set the Talk? JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:807682. [PMID: 22203898 PMCID: PMC3238397 DOI: 10.1155/2012/807682] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/19/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022]
Abstract
The coordinate modulation of the cellular functions of cadherins and integrins plays an essential role in fundamental physiological and pathological processes, including morphogenesis, tissue differentiation and renewal, wound healing, immune surveillance, inflammatory response, tumor progression, and metastasis. However, the molecular mechanisms underlying the fine-tuned functional communication between cadherins and integrins are still elusive. This paper focuses on recent findings towards the involvement of reactive oxygen species (ROS) in the regulation of cell adhesion and signal transduction functions of integrins and cadherins, pointing to ROS as emerging strong candidates for modulating the molecular crosstalk between cell-matrix and cell-cell adhesion receptors.
Collapse
|
42
|
Huang M, Anand S, Murphy EA, Desgrosellier JS, Stupack DG, Shattil SJ, Schlaepfer DD, Cheresh DA. EGFR-dependent pancreatic carcinoma cell metastasis through Rap1 activation. Oncogene 2011; 31:2783-93. [PMID: 21963850 PMCID: PMC3711644 DOI: 10.1038/onc.2011.450] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Tyrosine kinase receptors play an essential role in various aspects of tumor progression. In particular, epidermal growth factor receptor (EGFR) and its ligands have been implicated in the growth and dissemination of a wide array of human carcinomas. Here, we describe an EGFR-mediated signaling pathway that regulates human pancreatic carcinoma cell invasion and metastasis, yet does not influence the growth of primary tumors. In fact, ligation/activation of EGFR induces Src-dependent phosphorylation of two critical tyrosine residues of p130CAS, leading to assembly of a CAS/Nck1 complex that promotes Rap1 signaling. Importantly, GTP loading of Rap1 is specifically required for pancreatic carcinoma cell migration on vitronectin, but not on collagen. Furthermore, Rap1 activation is required for EGFR-mediated metastasis in vivo without impacting primary tumor growth. These findings identify a molecular pathway that promotes the invasive/metastatic properties of human pancreatic carcinomas driven by EGFR.
Collapse
Affiliation(s)
- M Huang
- Department of Pathology, Moores University of California San Diego Cancer Center, La Jolla, CA 92093-1503, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu J, Zhang Y, Frilot N, Kim JI, Kim WJ, Daaka Y. Prostaglandin E2 regulates renal cell carcinoma invasion through the EP4 receptor-Rap GTPase signal transduction pathway. J Biol Chem 2011; 286:33954-62. [PMID: 21832044 DOI: 10.1074/jbc.m110.187344] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023] Open
Abstract
Prognosis for patients with early stage kidney cancer has improved, but the treatment options for patients with locally advanced disease and metastasis remain few. Understanding the molecular mechanisms that regulate invasion and metastasis is critical for developing successful therapies to treat these patients. Proinflammatory prostaglandin E(2) plays an important role in cancer initiation and progression via activation of cognate EP receptors that belong to the superfamily of G protein-coupled receptors. Here we report that prostaglandin E(2) promotes renal cancer cell invasion through a signal transduction pathway that encompasses EP4 and small GTPase Rap. Inactivation of Rap signaling with Rap1GAP, like inhibition of EP4 signaling with ligand antagonist or knockdown with shRNA, reduces the kidney cancer cell invasion. Human kidney cells evidence increased EP4 and decreased Rap1GAP expression levels in the malignant compared with benign samples. These results support the idea that targeted inhibition of EP4 signaling and restoration of Rap1GAP expression constitute a new strategy to control kidney cancer progression.
Collapse
Affiliation(s)
- Juanjuan Wu
- Department of Pathology, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
44
|
Vuchak LA, Tsygankova OM, Meinkoth JL. Rap1GAP impairs cell-matrix adhesion in the absence of effects on cell-cell adhesion. Cell Adh Migr 2011; 5:323-31. [PMID: 21785277 DOI: 10.4161/cam.5.4.17041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
The significance of the widespread downregulation of Rap1GAP in human tumors is unknown. In previous studies we demonstrated that silencing Rap1GAP expression in human colon cancer cells resulted in sustained increases in Rap activity, enhanced spreading on collagen and the weakening of cell-cell contacts. The latter finding was unexpected based on the role of Rap1 in strengthening cell-cell adhesion and reports that Rap1GAP impairs cell-cell adhesion. We now show that Rap1GAP is a more effective inhibitor of cell-matrix compared to cell-cell adhesion. Overexpression of Rap1GAP in human colon cancer cells impaired Rap2 activity and the ability of cells to spread and migrate on collagen IV. Under the same conditions, Rap1GAP had no effect on cell-cell adhesion. Overexpression of Rap1GAP did not enhance the dissociation of cell aggregates nor did it impair the accumulation of β-catenin and E-cadherin at cell-cell contacts. To further explore the role of Rap1GAP in the regulation of cell-cell adhesion, Rap1GAP was overexpressed in non-transformed thyroid epithelial cells. Although the formation of cell-cell contacts required Rap1, overexpression of Rap1GAP did not impair cell-cell adhesion. These data indicate that transient, modest expression of Rap1GAP is compatible with cell-cell adhesion and that the role of Rap1GAP in the regulation of cell-cell adhesion may be more complex than is currently appreciated.
Collapse
Affiliation(s)
- Lisa A Vuchak
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
45
|
Dong X, Korch C, Meinkoth JL. Histone deacetylase inhibitors upregulate Rap1GAP and inhibit Rap activity in thyroid tumor cells. Endocr Relat Cancer 2011; 18:301-10. [PMID: 21367844 PMCID: PMC3531977 DOI: 10.1530/erc-10-0320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Increases in Rap activity have been associated with tumor progression. Although activating mutations in Rap have not been described, downregulation of Rap1GAP is frequent in human tumors including thyroid carcinomas. In this study, we explored whether endogenous Rap1GAP expression could be restored to thyroid tumor cells. The effects of deacetylase inhibitors and a demethylating agent, individually and in combination, were examined in four differentiated and six anaplastic thyroid carcinoma (ATC) cell lines. Treatment with the structurally distinct histone deacetylase (HDAC) inhibitors, sodium butyrate and trichostatin A, increased Rap1GAP expression in all the differentiated thyroid carcinoma cell lines and in four of the six ATC cell lines. The demethylating agent, 5-aza-deoxycytidine, restored Rap1GAP expression in one anaplastic cell line and enhanced the effects of HDAC inhibitors in a second anaplastic cell line. Western blotting indicated that Rap2 was highly expressed in human thyroid cancer cells. Importantly, treatment with HDAC inhibitors impaired Rap2 activity in both differentiated and anaplastic tumor cell lines. The mechanism through which Rap activity is repressed appears to entail effects on the expression of multiple Rap regulators, including RapGEFs and RapGAPs. These results suggest that HDAC inhibitors may provide a tractable approach to impair Rap activity in human tumor cells.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, 19104 Pennsylvania, USA
| | | | | |
Collapse
|
46
|
Banerjee R, Mani RS, Russo N, Scanlon CS, Tsodikov A, Jing X, Cao Q, Palanisamy N, Metwally T, Inglehart RC, Tomlins S, Bradford C, Carey T, Wolf G, Kalyana-Sundaram S, Chinnaiyan AM, Varambally S, D'Silva NJ. The tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression in invasive squamous cell carcinoma. Oncogene 2011; 30:4339-49. [PMID: 21532618 PMCID: PMC3154567 DOI: 10.1038/onc.2011.141] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Rap1GAP is a critical tumor suppressor gene that is downregulated in multiple aggressive cancers, such as head and neck squamous cell carcinoma, melanoma and pancreatic cancer. However, the mechanistic basis of rap1GAP downregulation in cancers is poorly understood. By employing an integrative approach, we demonstrate polycomb-mediated repression of rap1GAP that involves Enhancer of Zeste Homolog 2 (EZH2), a histone methyltransferase in head and neck cancers. We further demonstrate that the loss of miR-101 expression correlates with EZH2 upregulation, and the concomitant downregulation of rap1GAP in head and neck cancers. EZH2 represses rap1GAP by facilitating the trimethylation of histone 3 at lysine 27, a mark of gene repression, and also hypermethylation of rap1GAP promoter. These results provide a conceptual framework involving a microRNA-oncogene-tumor suppressor axis to understand head and neck cancer progression.
Collapse
Affiliation(s)
- R Banerjee
- Department of Periodontics and Oral Medicine, Medical School, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|