1
|
Kvergelidze E, Barbakadze T, Bátor J, Kalandadze I, Mikeladze D. Thyroid hormone T3 induces Fyn modification and modulates palmitoyltransferase gene expression through αvβ3 integrin receptor in PC12 cells during hypoxia. Transl Neurosci 2024; 15:20220347. [PMID: 39118829 PMCID: PMC11306964 DOI: 10.1515/tnsci-2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones (THs) are essential in neuronal and glial cell development and differentiation, synaptogenesis, and myelin sheath formation. In addition to nuclear receptors, TH acts through αvβ3-integrin on the plasma membrane, influencing transcriptional regulation of signaling proteins that, in turn, affect adhesion and survival of nerve cells in various neurologic disorders. TH exhibits protective properties during brain hypoxia; however, precise intracellular mechanisms responsible for the preventive effects of TH remain unclear. In this study, we investigated the impact of TH on integrin αvβ3-dependent downstream systems in normoxic and hypoxic conditions of pheochromocytoma PC12 cells. Our findings reveal that triiodothyronine (T3), acting through αvβ3-integrin, induces activation of the JAK2/STAT5 pathway and suppression of the SHP2 in hypoxic PC12 cells. This activation correlates with the downregulation of the expression palmitoyltransferase-ZDHHC2 and ZDHHC9 genes, leading to a subsequent decrease in palmitoylation and phosphorylation of Fyn tyrosine kinase. We propose that these changes may occur due to STAT5-dependent epigenetic silencing of the palmitoyltransferase gene, which in turn reduces palmitoylation/phosphorylation of Fyn with a subsequent increase in the survival of cells. In summary, our study provides the first evidence demonstrating the involvement of integrin-dependent JAK/STAT pathway, SHP2 suppression, and altered post-translational modification of Fyn in protective effects of T3 during hypoxia.
Collapse
Affiliation(s)
- Elisabed Kvergelidze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
| | - Tamar Barbakadze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - Judit Bátor
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, Pécs, 7624, Hungary
- Janos Szentagothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Irine Kalandadze
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - David Mikeladze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| |
Collapse
|
2
|
Chen M, Dong Y, Tian L, Zhou J, Zhu E, Yuan H, Li X, Wang B. Metastasis suppressor 1 interacts with protein tyrosine phosphatase receptor-δ to regulate adipogenesis. FASEB J 2023; 37:e22857. [PMID: 36906292 DOI: 10.1096/fj.202201322r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/13/2023]
Abstract
Adipogenesis is a finely controlled process and its dysfunction may contribute to metabolic disorders such as obesity. Metastasis suppressor 1 (MTSS1) is a player in tumorigenesis and metastasis of various types of cancers. To date, it is not known whether and how MTSS1 plays a role in adipocyte differentiation. In the current study, we found that MTSS1 was upregulated during adipogenic differentiation of established mesenchymal cell lines and primary cultured bone marrow stromal cells. Gain-of-function and loss-of-function experiments uncovered that MTSS1 facilitated adipocyte differentiation from mesenchymal progenitor cells. Mechanistic explorations revealed that MTSS1 bound and interacted with FYN, a member of Src family of tyrosine kinases (SFKs), and protein tyrosine phosphatase receptor-δ (PTPRD). We demonstrated that PTPRD was capable of inducing the differentiation of adipocytes. Overexpression of PTPRD attenuated the impaired adipogenesis induced by the siRNA targeting MTSS1. Both MTSS1 and PTPRD activated SFKs by suppressing the phosphorylation of SFKs at Tyr530 and inducing the phosphorylation of FYN at Tyr419. Further investigation showed that MTSS1 and PTPRD were able to activate FYN. Collectively, our study has for the first time unraveled that MTSS1 plays a role in adipocyte differentiation in vitro through interacting with PTPRD and thereby activating SFKs such as FYN tyrosine kinase.
Collapse
Affiliation(s)
- Meng Chen
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuan Dong
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijie Tian
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Bima AIH, Elsamanoudy AZ, Albaqami WF, Khan Z, Parambath SV, Al-Rayes N, Kaipa PR, Elango R, Banaganapalli B, Shaik NA. Integrative system biology and mathematical modeling of genetic networks identifies shared biomarkers for obesity and diabetes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2310-2329. [PMID: 35240786 DOI: 10.3934/mbe.2022107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
Obesity and type 2 and diabetes mellitus (T2D) are two dual epidemics whose shared genetic pathological mechanisms are still far from being fully understood. Therefore, this study is aimed at discovering key genes, molecular mechanisms, and new drug targets for obesity and T2D by analyzing the genome wide gene expression data with different computational biology approaches. In this study, the RNA-sequencing data of isolated primary human adipocytes from individuals who are lean, obese, and T2D was analyzed by an integrated framework consisting of gene expression, protein interaction network (PIN), tissue specificity, and druggability approaches. Our findings show a total of 1932 unique differentially expressed genes (DEGs) across the diabetes versus obese group comparison (p≤0.05). The PIN analysis of these 1932 DEGs identified 190 high centrality network (HCN) genes, which were annotated against 3367 GO terms and functional pathways, like response to insulin signaling, phosphorylation, lipid metabolism, glucose metabolism, etc. (p≤0.05). By applying additional PIN and topological parameters to 190 HCN genes, we further mapped 25 high confidence genes, functionally connected with diabetes and obesity traits. Interestingly, ERBB2, FN1, FYN, HSPA1A, HBA1, and ITGB1 genes were found to be tractable by small chemicals, antibodies, and/or enzyme molecules. In conclusion, our study highlights the potential of computational biology methods in correlating expression data to topological parameters, functional relationships, and druggability characteristics of the candidate genes involved in complex metabolic disorders with a common etiological basis.
Collapse
Affiliation(s)
- Abdulhadi Ibrahim H Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Zaky Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa F Albaqami
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Zeenath Khan
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | | | - Nuha Al-Rayes
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prabhakar Rao Kaipa
- Department of Genetics, College of Science, Osmania University, Hyderabad, India
| | - Ramu Elango
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A Shaik
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Cellular energy stress induces AMPK-mediated regulation of glioblastoma cell proliferation by PIKE-A phosphorylation. Cell Death Dis 2019; 10:222. [PMID: 30833542 PMCID: PMC6399291 DOI: 10.1038/s41419-019-1452-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 01/21/2023]
Abstract
Phosphoinositide 3-kinase enhancer-activating Akt (PIKE-A), which associates with and potentiates Akt activity, is a pro-oncogenic factor that play vital role in cancer cell survival and growth. However, PIKE-A physiological functions under energy/nutrient deficiency are poorly understood. The AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that is a principal regulator of energy homeostasis and has a critical role in metabolic disorders and cancers. In this present study, we show that cellular energy stress induces PIKE-A phosphorylation mediated by AMPK activation, thereby preventing its carcinogenic action. Moreover, AMPK directly phosphorylates PIKE-A Ser-351 and Ser-377, which become accessible for the interaction with 14-3-3β, and in turn stimulates nuclear translocation of PIKE-A. Nuclear PIKE-A associates with CDK4 and then disrupts CDK4-cyclinD1 complex and inhibits the Rb pathway, resulting in cancer cell cycle arrest. Our data uncover a molecular mechanism and functional significance of PIKE-A phosphorylation response to cellular energy status mediated by AMPK.
Collapse
|
5
|
Doush Y, Surani AA, Navarro-Corcuera A, McArdle S, Billett EE, Montiel-Duarte C. SP1 and RARα regulate AGAP2 expression in cancer. Sci Rep 2019; 9:390. [PMID: 30674964 PMCID: PMC6344547 DOI: 10.1038/s41598-018-36888-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023] Open
Abstract
AGAP2 (Arf GAP with GTP-binding protein-like domain, Ankyrin repeat and PH domain 2) isoform 2 is considered a proto-oncogene, but not much is known about AGAP2 gene expression regulation. To get some insight into this process, AGAP2 proximal promoter was cloned and characterised using reporter assays. We have identified SP1 as a transcription factor bound to AGAP2 promoter and required for AGAP2 expression in two different types of cancer cells (KU812, a chronic myeloid leukaemia cell line; and DU145, a prostate cancer cell line): silencing SP1 decreased AGAP2 protein levels. We have also found that all-trans retinoic acid (ATRA) treatment increased AGAP2 protein levels in both cell lines whilst curcumin treatment reduced ATRA-mediated AGAP2 increase. Furthermore, chromatin immunoprecipitation studies revealed the presence of RARα, RXRα and the lysine acetyl transferase PCAF in AGAP2 promoter. Our results provide a novel understanding of AGAP2 expression regulation that could be beneficial to those patients with cancers where AGAP2 is overexpressed.
Collapse
Affiliation(s)
- Yegor Doush
- College of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Arif A Surani
- College of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Amaia Navarro-Corcuera
- College of Science and Technology, Nottingham Trent University, Nottingham, UK.,Department of Biochemistry and Genetics, University of Navarra, 31008, Pamplona, Spain
| | - Stephanie McArdle
- The John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - E Ellen Billett
- College of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | |
Collapse
|
6
|
Zhu Z, Chen X, Xiao Y, Wen J, Chen J, Wang K, Chen G. Gestational diabetes mellitus alters DNA methylation profiles in pancreas of the offspring mice. J Diabetes Complications 2019; 33:15-22. [PMID: 30522793 DOI: 10.1016/j.jdiacomp.2018.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/03/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
Gestational diabetes mellitus (GDM), which has an increasing global prevalence, contributes to the susceptibility to metabolic dysregulation and obesity in the offspring via epigenetic modifications. However, the underlying mechanism remains largely obscure. The current study established a GDM mice model to investigate the alternations in the metabolic phenotypes and genomic DNA methylation in the pancreas of the offspring. We found that in the GDM offspring, intrauterine hyperglycemia induced dyslipidemia, insulin resistance, and glucose intolerance. Meanwhile, altered DNA methylation patterns were exhibited in the pancreas and many differentially methylated regions (DMRs)-related genes were involved in glycolipids metabolism and related signaling pathways, including Agap2, Plcbr, Hnf1b, Gnas, Fbp2, Cdh13, Wnt2, Kcnq1, Lhcgr, Irx3, etc. Additionally, the overall hypermethylation of Agap2, verified by bisulfite sequencing PCR (BSP), was negatively correlated with its mRNA expression level. In conclusion, these findings suggest that the DNA methylation changes in the pancreatic genome of the GDM offspring may be associated with the glycolipid metabolism abnormalities, T2DM susceptibility, and obesity in the adult GDM offspring.
Collapse
Affiliation(s)
- Zhuangli Zhu
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiongfeng Chen
- Department of Scientific Research, Fujian Provincial Hospital, Fuzhou, Fujian, China.
| | - Yiqing Xiao
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Junping Wen
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Jinyan Chen
- Department of Scientific Research, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| | - Kun Wang
- Department of Scientific Research, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| | - Gang Chen
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; Department of Scientific Research, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Able AA, Richard AJ, Stephens JM. Loss of DBC1 (CCAR2) affects TNFα-induced lipolysis and Glut4 gene expression in murine adipocytes. J Mol Endocrinol 2018; 61:195-205. [PMID: 30139876 PMCID: PMC6193813 DOI: 10.1530/jme-18-0154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/20/2018] [Revised: 07/30/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023]
Abstract
STAT5A (signal transducer and activator of transcription 5A) is a transcription factor that plays a role in adipocyte development and function. In this study, we report DBC1 (deleted in breast cancer 1; also known as CCAR2) as a novel STAT5A-interacting protein. DBC1 has been primarily studied in tumor cells, but there is evidence that loss of this protein may promote metabolic health in mice. Currently, the functions of DBC1 in mature adipocytes are largely unknown. Using immunoprecipitation and immunoblotting techniques, we confirmed that there is an association between endogenous STAT5A and DBC1 proteins under physiological conditions in the adipocyte nucleus that is not dependent upon STAT5A tyrosine phosphorylation. We used siRNA to knockdown DBC1 in 3T3-L1 adipocytes to determine the impact on STAT5A activity, adipocyte gene expression, and TNFα (tumor necrosis factor α)-regulated lipolysis. The loss of DBC1 did not affect the expression of several STAT5A target genes including Socs3, Cish, Bcl6, Socs2, and Igf1 However, we did observe decreased levels of TNFα-induced glycerol and free fatty acids released from adipocytes with reduced DBC1 expression. In addition, DBC1-knockdown adipocytes had increased Glut4 expression. In summary, DBC1 can associate with STAT5A in adipocyte nucleus, but it does not appear to impact regulation of STAT5A target genes. Loss of adipocyte DBC1 modestly increases Glut4 gene expression and reduces TNFα-induced lipolysis. These observations are consistent with in vivo observations that show loss of DBC1 promotes metabolic health in mice.
Collapse
Affiliation(s)
- Ashley A. Able
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- To whom correspondence should be addressed, Jacqueline Stephens, Louisiana State University, Pennington Biomedical Research Center, Baton Rouge, LA 70808, Phone (225)-763-2648, FAX (225)-763-0273,
| |
Collapse
|
8
|
Tse MCL, Herlea-Pana O, Brobst D, Yang X, Wood J, Hu X, Liu Z, Lee CW, Zaw AM, Chow BKC, Ye K, Chan CB. Tumor Necrosis Factor-α Promotes Phosphoinositide 3-Kinase Enhancer A and AMP-Activated Protein Kinase Interaction to Suppress Lipid Oxidation in Skeletal Muscle. Diabetes 2017; 66:1858-1870. [PMID: 28404596 PMCID: PMC5482076 DOI: 10.2337/db16-0270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/26/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is an inflammatory cytokine that plays a central role in obesity-induced insulin resistance. It also controls cellular lipid metabolism, but the underlining mechanism is poorly understood. We report in this study that phosphoinositide 3-kinase enhancer A (PIKE-A) is a novel effector of TNF-α to facilitate its metabolic modulation in the skeletal muscle. Depletion of PIKE-A in C2C12 myotubes diminished the inhibitory activities of TNF-α on mitochondrial respiration and lipid oxidation, whereas PIKE-A overexpression exacerbated these cellular responses. We also found that TNF-α promoted the interaction between PIKE-A and AMP-activated protein kinase (AMPK) to suppress its kinase activity in vitro and in vivo. As a result, animals with PIKE ablation in the skeletal muscle per se display an upregulation of AMPK phosphorylation and a higher preference to use lipid as the energy production substrate under high-fat diet feeding, which mitigates the development of diet-induced hyperlipidemia, ectopic lipid accumulation, and muscle insulin resistance. Hence, our data reveal PIKE-A as a new signaling factor that is important for TNF-α-initiated metabolic changes in skeletal muscle.
Collapse
Affiliation(s)
- Margaret Chui Ling Tse
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Oana Herlea-Pana
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Daniel Brobst
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiuying Yang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Drug Screening Center, Institute of Materia Medica, Beijing, People's Republic of China
| | - John Wood
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiang Hu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zhixue Liu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Chi Wai Lee
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Aung Moe Zaw
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
9
|
|
10
|
BDNF Contributes to Spinal Long-Term Potentiation and Mechanical Hypersensitivity Via Fyn-Mediated Phosphorylation of NMDA Receptor GluN2B Subunit at Tyrosine 1472 in Rats Following Spinal Nerve Ligation. Neurochem Res 2017; 42:2712-2729. [DOI: 10.1007/s11064-017-2274-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2016] [Revised: 04/01/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
|
11
|
Abstract
Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hardy Hang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
12
|
Able AA, Burrell JA, Stephens JM. STAT5-Interacting Proteins: A Synopsis of Proteins that Regulate STAT5 Activity. BIOLOGY 2017; 6:biology6010020. [PMID: 28287479 PMCID: PMC5372013 DOI: 10.3390/biology6010020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/20/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/17/2023]
Abstract
Signal Transducers and Activators of Transcription (STATs) are key components of the JAK/STAT pathway. Of the seven STATs, STAT5A and STAT5B are of particular interest for their critical roles in cellular differentiation, adipogenesis, oncogenesis, and immune function. The interactions of STAT5A and STAT5B with cytokine/hormone receptors, nuclear receptors, transcriptional regulators, proto-oncogenes, kinases, and phosphatases all contribute to modulating STAT5 activity. Among these STAT5 interacting proteins, some serve as coactivators or corepressors to regulate STAT5 transcriptional activity and some proteins can interact with STAT5 to enhance or repress STAT5 signaling. In addition, a few STAT5 interacting proteins have been identified as positive regulators of STAT5 that alter serine and tyrosine phosphorylation of STAT5 while other proteins have been identified as negative regulators of STAT5 via dephosphorylation. This review article will discuss how STAT5 activity is modulated by proteins that physically interact with STAT5.
Collapse
Affiliation(s)
- Ashley A Able
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jasmine A Burrell
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
The application of transcriptomic data in the authentication of beef derived from contrasting production systems. BMC Genomics 2016; 17:746. [PMID: 27654331 PMCID: PMC5031250 DOI: 10.1186/s12864-016-2851-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differences between cattle production systems can influence the nutritional and sensory characteristics of beef, in particular its fatty acid (FA) composition. As beef products derived from pasture-based systems can demand a higher premium from consumers, there is a need to understand the biological characteristics of pasture produced meat and subsequently to develop methods of authentication for these products. Here, we describe an approach to authentication that focuses on differences in the transcriptomic profile of muscle from animals finished in different systems of production of practical relevance to the Irish beef industry. The objectives of this study were to identify a panel of differentially expressed (DE) genes/networks in the muscle of cattle raised outdoors on pasture compared to animals raised indoors on a concentrate based diet and to subsequently identify an optimum panel which can classify the meat based on a production system. RESULTS A comparison of the muscle transcriptome of outdoor/pasture-fed and Indoor/concentrate-fed cattle resulted in the identification of 26 DE genes. Functional analysis of these genes identified two significant networks (1: Energy Production, Lipid Metabolism, Small Molecule Biochemistry; and 2: Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry), both of which are involved in FA metabolism. The expression of selected up-regulated genes in the outdoor/pasture-fed animals correlated positively with the total n-3 FA content of the muscle. The pathway and network analysis of the DE genes indicate that peroxisome proliferator-activated receptor (PPAR) and FYN/AMPK could be implicit in the regulation of these alterations to the lipid profile. In terms of authentication, the expression profile of three DE genes (ALAD, EIF4EBP1 and NPNT) could almost completely separate the samples based on production system (95 % authentication for animals on pasture-based and 100 % for animals on concentrate- based diet) in this context. CONCLUSIONS The majority of DE genes between muscle of the outdoor/pasture-fed and concentrate-fed cattle were related to lipid metabolism and in particular β-oxidation. In this experiment the combined expression profiles of ALAD, EIF4EBP1 and NPNT were optimal in classifying the muscle transcriptome based on production system. Given the overall lack of comparable studies and variable concordance with those that do exist, the use of transcriptomic data in authenticating production systems requires more exploration across a range of contexts and breeds.
Collapse
|
14
|
Zhang S, Qi Q, Chan CB, Zhou W, Chen J, Luo HR, Appin C, Brat DJ, Ye K. Fyn-phosphorylated PIKE-A binds and inhibits AMPK signaling, blocking its tumor suppressive activity. Cell Death Differ 2015; 23:52-63. [PMID: 26001218 DOI: 10.1038/cdd.2015.66] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2015] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
The AMP-activated protein kinase, a key regulator of energy homeostasis, has a critical role in metabolic disorders and cancers. AMPK is mainly regulated by cellular AMP and phosphorylation by upstream kinases. Here, we show that PIKE-A binds to AMPK and blocks its tumor suppressive actions, which are mediated by tyrosine kinase Fyn. PIKE-A directly interacts with AMPK catalytic alpha subunit and impairs T172 phosphorylation, leading to repression of its kinase activity on the downstream targets. Mutation of Fyn phosphorylation sites on PIKE-A, depletion of Fyn, or pharmacological inhibition of Fyn blunts the association between PIKE-A and AMPK, resulting in loss of its inhibitory effect on AMPK. Cell proliferation and oncogenic assays demonstrate that PIKE-A antagonizes tumor suppressive actions of AMPK. In human glioblastoma samples, PIKE-A expression inversely correlates with the p-AMPK levels, supporting that PIKE-A negatively regulates AMPK activity in cancers. Thus, our findings provide additional layer of molecular regulation of the AMPK signaling pathway in cancer progression.
Collapse
Affiliation(s)
- S Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - Q Qi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - C B Chan
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104 OK, USA
| | - W Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, 30322 GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - J Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, 30322 GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - H R Luo
- Department of Pathology and Lab Medicine, Harvard Medical School and Children's Hospital, Boston, 02115 MA, USA
| | - C Appin
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - D J Brat
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - K Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, 30322 GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, 30322 GA, USA
| |
Collapse
|
15
|
Lee CG, Koo JH, Kim SG. Phytochemical regulation of Fyn and AMPK signaling circuitry. Arch Pharm Res 2015; 38:2093-105. [PMID: 25951818 DOI: 10.1007/s12272-015-0611-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023]
Abstract
During the past decades, phytochemical terpenoids, polyphenols, lignans, flavonoids, and alkaloids have been identified as antioxidative and cytoprotective agents. Adenosine monophosphate-activated protein kinase (AMPK) is a kinase that controls redox-state and oxidative stress in the cell, and serves as a key molecule regulating energy metabolism. Many phytochemicals directly or indirectly alter the AMPK pathway in distinct manners, exerting catabolic metabolism. Some of them are considered promising in the treatment of metabolic diseases such as type II diabetes, obesity, and hyperlipidemia. Another important kinase that regulates energy metabolism is Fyn kinase, a member of the Src family kinases that plays a role in various cellular responses such as insulin signaling, cell growth, oxidative stress and apoptosis. Phytochemical inhibition of Fyn leads to AMPK-mediated protection of the cell in association with increased antioxidative capacity and mitochondrial biogenesis. The kinases may work together to form a signaling circuitry for the homeostasis of energy conservation and expenditure, and may serve as targets of phytochemicals. This review is intended as a compilation of recent advancements in the pharmacological research of phytochemicals targeting Fyn and AMPK circuitry, providing information for the prevention and treatment of metabolic diseases and the accompanying tissue injuries.
Collapse
Affiliation(s)
- Chan Gyu Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| |
Collapse
|
16
|
Huang RC, Garratt ES, Pan H, Wu Y, Davis EA, Barton SJ, Burdge GC, Godfrey KM, Holbrook JD, Lillycrop KA. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood. Epigenetics 2015; 10:995-1005. [PMID: 26646899 PMCID: PMC4844195 DOI: 10.1080/15592294.2015.1080411] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2014] [Revised: 07/27/2015] [Accepted: 08/01/2015] [Indexed: 12/24/2022] Open
Abstract
Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.
Collapse
Affiliation(s)
- R C Huang
- Telethon Institute for Child Health Research; University of Western Australia; Perth, Australia
| | - E S Garratt
- Academic Unit of Human Development and Health; Faculty of Medicine; University of Southampton; Southampton, UK
| | - H Pan
- Singapore Institute for Clinical Sciences (SICS); A*STAR; Brenner Center for Molecular Medicine; Singapore
- School of Computer Engineering; Nanyang Technological University (NTU); Singapore
| | - Y Wu
- Singapore Institute for Clinical Sciences (SICS); A*STAR; Brenner Center for Molecular Medicine; Singapore
| | - E A Davis
- Telethon Institute for Child Health Research; University of Western Australia; Perth, Australia
| | - S J Barton
- MRC Lifecourse Epidemiology Unit; University of Southampton; Southampton, UK
| | - G C Burdge
- Academic Unit of Human Development and Health; Faculty of Medicine; University of Southampton; Southampton, UK
| | - K M Godfrey
- MRC Lifecourse Epidemiology Unit; University of Southampton; Southampton, UK
- NIHR Southampton Biomedical Research Center; University of Southampton and University Hospital Southampton NHS Foundation Trust; Southampton, UK
| | - J D Holbrook
- Singapore Institute for Clinical Sciences (SICS); A*STAR; Brenner Center for Molecular Medicine; Singapore
- Yong Loo Lin School of Medicine; National University of Singapore (NUS); Singapore
| | - K A Lillycrop
- Academic Unit of Human Development and Health; Faculty of Medicine; University of Southampton; Southampton, UK
- Faculty of Natural and Environmental Sciences; University of Southampton; Southampton, UK
| |
Collapse
|
17
|
Sarr O, Thompson JA, Zhao L, Lee TY, Regnault TRH. Low birth weight male guinea pig offspring display increased visceral adiposity in early adulthood. PLoS One 2014; 9:e98433. [PMID: 24926663 PMCID: PMC4057084 DOI: 10.1371/journal.pone.0098433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2013] [Accepted: 05/03/2014] [Indexed: 12/25/2022] Open
Abstract
Uteroplacental insufficiency (UPI)-induced intrauterine growth restriction (IUGR) predisposes individuals to adult visceral obesity. We postulated that low birth weight (LBW) offspring, from UPI-induced IUGR pregnancies, would display a visceral adipose lipogenic molecular signature involving altered gene expression, phosphorylation status of proteins of the lipid synthesis pathway and microRNA (miR) expression profile, occurring in association with increased visceral adiposity. Normal birth weight (NBW) and LBW (obtained by uterine artery ablation) male guinea pig pups were fed a control diet from weaning to 145 days and sacrificed. Despite being lighter at birth, LBW pups displayed body weights similar to NBW offspring at 145 days. At this age, which represents young adulthood, the relative weights of LBW epididymal white adipose tissue (EWAT) and lipid content were increased; which was consistent with adipocyte hypertrophy in the LBW offspring. Additionally, the mRNA expression of lipid synthesis-related genes including acetyl-CoA carboxylase 1 (ACC1), diglyceride acyltransferase 2 (DGAT2) and peroxisome proliferator-activated receptor gamma 1 (PPARγ1), was increased in LBW EWAT. Further, LBW EWAT displayed decreased phospho-ACC (Ser79) and phospho-PPARγ (Ser273) proteins. Moreover, the mRNA expression of hormone-sensitive lipase (HSL) and fatty acid binding protein 4 (FABP4), both involved in promoting adipose lipid storage, was increased in LBW EWAT. Finally, miR-24 and miR-103-2, miRs related to adipocyte development, were both increased in LBW EWAT. These findings indicate that, following an adverse in utero environment, lipid synthesis-related genes and miR expression, along with phosphorylation status of key regulators of lipid synthesis, appear to be chronically altered and occur in association with increased visceral adiposity in young adult IUGR male offspring.
Collapse
Affiliation(s)
- Ousseynou Sarr
- Department of Obstetrics and Gynecology, Children's Health Research Institute, Lawson Health Research Institute, Western University, London, Ontario, Canada
- * E-mail:
| | - Jennifer A. Thompson
- Department of Physiology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Lin Zhao
- Department of Obstetrics and Gynecology, Children's Health Research Institute, Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Ting-Yim Lee
- Departments of Medical Imaging, Medical Biophysics, and Oncology, Western University, London, Ontario, Canada
- Lawson Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
| | - Timothy R. H. Regnault
- Department of Obstetrics and Gynecology, Children's Health Research Institute, Lawson Health Research Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|