1
|
Lazo PA. Nuclear functions regulated by the VRK1 kinase. Nucleus 2024; 15:2353249. [PMID: 38753965 DOI: 10.1080/19491034.2024.2353249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
In the nucleus, the VRK1 Ser-Thr kinase is distributed in nucleoplasm and chromatin, where it has different roles. VRK1 expression increases in response to mitogenic signals. VRK1 regulates cyclin D1 expression at G0 exit and facilitates chromosome condensation at the end of G2 and G2/M progression to mitosis. These effects are mediated by the phosphorylation of histone H3 at Thr3 by VRK1, and later in mitosis by haspin. VRK1 regulates the apigenetic patterns of histones in processes requiring chromating remodeling, such as transcription, replication and DNA repair. VRK1 is overexpressed in tumors, facilitating tumor progression and resistance to genotoxic treatments. VRK1 also regulates the organization of Cajal bodies assembled on coilin, which are necessary for the assembly of different types of RNP complexes. VRK1 pathogenic variants cuase defects in Cajal bodies, functionally altering neurons with long axons and leading to neurological diseases, such as amyotrophic laterla sclerosis, spinal muscular atrophy, distal hereditay motor neuropathies and Charcot-Marie-Tooth.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Navarro-Carrasco E, Campos-Díaz A, Monte-Serrano E, Rolfs F, de Goeij-de Haas R, Pham TV, Piersma SR, Jiménez CR, Lazo PA. Loss of VRK1 alters the nuclear phosphoproteome in the DNA damage response to doxorubicin. Chem Biol Interact 2024; 391:110908. [PMID: 38367682 DOI: 10.1016/j.cbi.2024.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Dynamic chromatin remodeling requires regulatory mechanisms for its adaptation to different nuclear function, which are likely to be mediated by signaling proteins. In this context, VRK1 is a nuclear Ser-Thr kinase that regulates pathways associated with transcription, replication, recombination, and DNA repair. Therefore, VRK1 is a potential regulatory, or coordinator, molecule in these processes. In this work we studied the effect that VRK1 depletion has on the basal nuclear and chromatin phosphoproteome, and their associated pathways. VRK1 depletion caused an alteration in the pattern of the nuclear phosphoproteome, which is mainly associated with nucleoproteins, ribonucleoproteins, RNA splicing and processing. Next, it was determined the changes in proteins associated with DNA damage that was induced by doxorubicin treatment. Doxorubicin alters the nuclear phosphoproteome affecting proteins implicated in DDR, including DSB repair proteins NBN and 53BP1, cellular response to stress and chromatin organization proteins. In VRK1-depleted cells, the effect of doxorubicin on protein phosphorylation was reverted to basal levels. The nuclear phosphoproteome patterns induced by doxorubicin are altered by VRK1 depletion, and is enriched in histone modification proteins and chromatin associated proteins. These results indicate that VRK1 plays a major role in processes requiring chromatin remodeling in its adaptation to different biological contexts.
Collapse
Affiliation(s)
- Elena Navarro-Carrasco
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007, Salamanca, Spain.
| | - Aurora Campos-Díaz
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007, Salamanca, Spain.
| | - Eva Monte-Serrano
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007, Salamanca, Spain.
| | - Frank Rolfs
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Richard de Goeij-de Haas
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Thang V Pham
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Sander R Piersma
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Connie R Jiménez
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007, Salamanca, Spain.
| |
Collapse
|
3
|
Puja R, Dutta S, Bose K. Elucidating the interaction of C-terminal domain of Vaccinia-Related Kinase 2A (VRK2A) with B-cell lymphoma-extra Large (Bcl-xL) to decipher its anti-apoptotic role in cancer. Biochem J 2023; 480:1871-1885. [PMID: 37943248 DOI: 10.1042/bcj20230349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Vaccinia-Related Kinase 2 (VRK2) is an anti-apoptotic Ser/Thr kinase that enhances drug sensitivity in cancer cells. This protein exists in two isoforms: VRK2A, the longer variant, and VRK2B, which lacks the C-terminal region and transmembrane domain. While the therapeutic importance of VRK2 family proteins is known, the specific roles of VRK2A and its interplay with apoptotic regulator Bcl-xL (B-cell lymphoma-extra Large) remain elusive. Bcl-xL regulates cell death by interacting with BAX (B-cell lymphoma-2 Associated X-protein), controlling its cellular localization and influencing BAX-associated processes and signaling pathways. As VRK2A interacts with the Bcl-xL-BAX complex, comprehending its regulatory engagement with Bcl-xL presents potential avenues for intervening in diseases. Using a multi-disciplinary approach, this study provides information on the cellular localization of VRK2A and establishes its interaction with Bcl-xL in the cellular milieu, pinpointing the interacting site and elucidating its anti-apoptotic property within the complex. Furthermore, this study also put forth a model that highlights the importance of VRK2A in stabilizing the ternary complex, formed with Bcl-xL and BAX, thereby impeding BAX dissociation and hence apoptosis. Therefore, further investigations associated with this important revelation will provide cues for designing cancer therapeutics in the future.
Collapse
Affiliation(s)
- Rashmi Puja
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shubhankar Dutta
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Zhang J, Lin XT, Yu HQ, Fang L, Wu D, Luo YD, Zhang YJ, Xie CM. Elevated FBXL6 expression in hepatocytes activates VRK2-transketolase-ROS-mTOR-mediated immune evasion and liver cancer metastasis in mice. Exp Mol Med 2023; 55:2162-2176. [PMID: 37653031 PMCID: PMC10618235 DOI: 10.1038/s12276-023-01060-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 09/02/2023] Open
Abstract
Metastatic hepatocellular carcinoma (HCC) is the most lethal malignancy and lacks effective treatment. FBXL6 is overexpressed in human hepatocellular carcinoma (HCC), but whether this change drives liver tumorigenesis and lung metastasis in vivo remains unknown. In this study, we aimed to identify FBXL6 (F-Box and Leucine Rich Repeat Protein 6) as a key driver of HCC metastasis and to provide a new paradigm for HCC therapy. We found that elevated FBXL6 expression in hepatocytes drove HCC lung metastasis and was a much stronger driver than Kras mutation (KrasG12D/+;Alb-Cre), p53 haploinsufficiency (p53+/-) or Tsc1 loss (Tsc1fl/fl;Alb-Cre). Mechanistically, VRK2 promoted Thr287 phosphorylation of TKT and then recruited FBXL6 to promote TKT ubiquitination and activation. Activated TKT further increased PD-L1 and VRK2 expression via the ROS-mTOR axis, leading to immune evasion and HCC metastasis. Targeting or knockdown of TKT significantly blocked FBXL6-driven immune evasion and HCC metastasis in vitro and in vivo. Notably, the level of active TKT (p-Thr287 TKT) was increased and was positively correlated with the FBXL6 and VRK2 expression levels in HCC patients. Our work provides novel mechanistic insights into FBXL6-driven HCC metastasis and suggests that targeting the TKT-ROS-mTOR-PD-L1/VRK2 axis is a new paradigm for treating patients with metastatic HCC with high FBXL6 expression.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuan-Deng Luo
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu-Jun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Monte-Serrano E, Morejón-García P, Campillo-Marcos I, Campos-Díaz A, Navarro-Carrasco E, Lazo PA. The pattern of histone H3 epigenetic posttranslational modifications is regulated by the VRK1 chromatin kinase. Epigenetics Chromatin 2023; 16:18. [PMID: 37179361 PMCID: PMC10182654 DOI: 10.1186/s13072-023-00494-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Dynamic chromatin remodeling is associated with changes in the epigenetic pattern of histone acetylations and methylations required for processes based on dynamic chromatin remodeling and implicated in different nuclear functions. These histone epigenetic modifications need to be coordinated, a role that may be mediated by chromatin kinases such as VRK1, which phosphorylates histones H3 and H2A. METHODS The effect of VRK1 depletion and VRK1 inhibitor, VRK-IN-1, on the acetylation and methylation of histone H3 in K4, K9 and K27 was determined under different conditions, arrested or proliferating cells, in A549 lung adenocarcinoma and U2OS osteosarcoma cells. RESULTS Chromatin organization is determined by the phosphorylation pattern of histones mediated by different types of enzymes. We have studied how the VRK1 chromatin kinase can alter the epigenetic posttranslational modifications of histones by using siRNA, a specific inhibitor of this kinase (VRK-IN-1), and of histone acetyl and methyl transferases, as well as histone deacetylase and demethylase. Loss of VRK1 implicated a switch in the state of H3K9 posttranslational modifications. VRK1 depletion/inhibition causes a loss of H3K9 acetylation and facilitates its methylation. This effect is similar to that of the KAT inhibitor C646, and to KDM inhibitors as iadademstat (ORY-1001) or JMJD2 inhibitor. Alternatively, HDAC inhibitors (selisistat, panobinostat, vorinostat) and KMT inhibitors (tazemetostat, chaetocin) have the opposite effect of VRK1 depletion or inhibition, and cause increase of H3K9ac and a decrease of H3K9me3. VRK1 stably interacts with members of these four enzyme families. However, VRK1 can only play a role on these epigenetic modifications by indirect mechanisms in which these epigenetic enzymes are likely targets to be regulated and coordinated by VRK1. CONCLUSIONS The chromatin kinase VRK1 regulates the epigenetic patterns of histone H3 acetylation and methylation in lysines 4, 9 and 27. VRK1 is a master regulator of chromatin organization associated with its specific functions, such as transcription or DNA repair.
Collapse
Affiliation(s)
- Eva Monte-Serrano
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Patricia Morejón-García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Ignacio Campillo-Marcos
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Aurora Campos-Díaz
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Elena Navarro-Carrasco
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Moore EK, Strazza M, Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front Immunol 2022; 13:927265. [PMID: 35911672 PMCID: PMC9330480 DOI: 10.3389/fimmu.2022.927265] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer remains the second leading cause of death in the US, accounting for 25% of all deaths nationwide. Immunotherapy techniques bolster the immune cells' ability to target malignant cancer cells and have brought immense improvements in the field of cancer treatments. One important inhibitory protein in T cells, programmed cell death protein 1 (PD-1), has become an invaluable target for cancer immunotherapy. While anti-PD-1 antibody therapy is extremely successful in some patients, in others it fails or even causes further complications, including cancer hyper-progression and immune-related adverse events. Along with countless translational studies of the PD-1 signaling pathway, there are currently close to 5,000 clinical trials for antibodies against PD-1 and its ligand, PD-L1, around 80% of which investigate combinations with other therapies. Nevertheless, more work is needed to better understand the PD-1 signaling pathway and to facilitate new and improved evidence-based combination strategies. In this work, we consolidate recent discoveries of PD-1 signaling mediators and their therapeutic potential in combination with anti-PD-1/PD-L1 agents. We focus on the phosphatases SHP2 and PTPN2; the kinases ITK, VRK2, GSK-3, and CDK4/6; and the signaling adaptor protein PAG. We discuss their biology both in cancer cells and T cells, with a focus on their role in relation to PD-1 to determine their potential in therapeutic combinations. The literature discussed here was obtained from a search of the published literature and ClinicalTrials.gov with the following key terms: checkpoint inhibition, cancer immunotherapy, PD-1, PD-L1, SHP2, PTPN2, ITK, VRK2, CDK4/6, GSK-3, and PAG. Together, we find that all of these proteins are logical and promising targets for combination therapy, and that with a deeper mechanistic understanding they have potential to improve the response rate and decrease adverse events when thoughtfully used in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Emily K. Moore
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Marianne Strazza
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Puja R, Chakraborty A, Dutta S, Bose K. Purification, Characterization and Functional Site Prediction of the Vaccinia-related Kinase 2A Small Transmembrane Domain. MethodsX 2022; 9:101704. [PMID: 35518920 PMCID: PMC9062753 DOI: 10.1016/j.mex.2022.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
Vaccinia-related kinases (VRK) are serine-threonine kinases that regulate several signaling pathways. The isoform-VRK2A of one such kinase VRK2 controls cell stress response by interacting with TAK1, a mitogen-activated protein 3 kinase (MAP3K), via its partly cytosolic C-terminal transmembrane domain (VTMD). To establish the driving force and identify the key residues of the VRK2A-TAK1 interaction, we expressed and purified the standalone 3.6 kDa VTMD in the bacterial system using a unique and atypical two-step approach, when the effort to obtain full-length VRK2A remained unsuccessful. Characterization of biophysical properties demonstrated that VTMD domain maintains its structural integrity. Furthermore, dissecting the VRK2A-TAK1 binding interface using in silico tools provided important cues toward engineering the VRK2A-TAK1 interface to modulate its functions with desired characteristics. Most importantly, this novel purification strategy demonstrates its universal applicability in protein biochemistry research by serving as a model system for obtaining difficult-to-purify small proteins or domains.VRK2A is a highly disordered transmembrane (TM) kinase, whose TM domain interacts with TAK1 (transforming growth factor-β-activated kinase). The standalone VRK2A-TM domain (VTMD) was purified using affinity chromatography followed by two-step centricon based approach. Biophysical and in silico analyses confirmed structural integrity of the domain.
Collapse
|
8
|
Zhu H, Li Q, Zhao Y, Peng H, Guo L, Zhu J, Jiang Z, Zeng Z, Xu B, Chen S. Vaccinia-related kinase 2 drives pancreatic cancer progression by protecting Plk1 from Chfr-mediated degradation. Oncogene 2021; 40:4663-4674. [PMID: 34140642 DOI: 10.1038/s41388-021-01893-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
As a key cell cycle regulator, polo-like kinase 1 (Plk1) has been recognized as a crucial factor involved in the progression of pancreatic cancer (PC). However, its regulatory mechanism is poorly understood. Here, we present evidence that Plk1 is a novel substrate of vaccinia-related kinase 2 (VRK2), a serine-threonine kinase that is highly expressed and predicts poor prognosis in PC. VRK2 phosphorylates Plk1 at threonine 210 and protects it from ubiquitin-dependent proteasomal degradation. We showed that mechanistically complement factor H-related protein (CFHR), as a major E3 ligase, promotes Plk1 degradation by ubiquitinating it at lysine 209. Phosphorylation of Plk1 at threonine 210 by VRK2 interferes with the interaction of Chfr with Plk1 and antagonizes Plk1 ubiquitination, thereby stabilizing the Plk1 protein. Taken together, our data reveal a mechanism of Plk1 overexpression in PC and provide evidence for targeting VRK2 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Hengqing Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Thyroid Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yulan Zhao
- Department of Ultrasound in Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Peng
- Department of Colorectal Surgery, 908th Hospital of Chinese People's Liberation Army Joint, Nanchang, China
| | - Liangyun Guo
- Department of Ultrasound, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhu
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi Jiang
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Zeng
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Xu
- Department of Burns, First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Sisi Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
9
|
Chen S, Du Y, Xu B, Li Q, Yang L, Jiang Z, Zeng Z, Chen L. Vaccinia-related kinase 2 blunts sorafenib's efficacy against hepatocellular carcinoma by disturbing the apoptosis-autophagy balance. Oncogene 2021; 40:3378-3393. [PMID: 33875785 DOI: 10.1038/s41388-021-01780-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with limited treatment options. Sorafenib is the only Food and Drug Administration (FDA)-approved first-line targeted drug for the treatment of advanced HCC. However, its effect on patient survival is limited. Recently, studies have demonstrated that the imbalance between apoptosis and autophagy plays a critical role in chemoresistance, and it is hypothesised that restoring the balance between these processes is a potential treatment strategy for improving chemoresistance in cancer. However, there is currently no evidence supporting this hypothesis. We aimed to investigate if vaccinia-related kinase 2 (VRK2), a serine/threonine protein kinase, confers sorafenib resistance in HCC cells. Here, we found that VRK2 was enriched in sorafenib-resistant HCC cells and patient-derived xenografts. Both in vivo and in vitro evidences showed that VRK2 blunts the efficacy of sorafenib against hepatocellular carcinoma by disturbing the balance between apoptosis and autophagy. Mechanistically, VRK2 promotes the phosphorylation of Bcl-2 by activating JNK1/MAPK8, thereby enhancing the dissociation of Bcl-2 from Beclin-1 and promoting the formation of the Beclin-1-Atg14-Vps34 complex, which facilitates autophagy. Furthermore, VRK2-induced phosphorylation of Bcl-2 promotes the interaction of Bcl-2 with BAX, thereby inhibiting apoptosis. In conclusion, targeting VRK2 for modulation of the balance between autophagy and apoptosis may be a novel strategy for overcoming sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Sisi Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunyan Du
- Department of Medical, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Bin Xu
- Department of Burns, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yang
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi Jiang
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Zeng
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
10
|
Rodríguez Stewart RM, Raghuram V, Berry JTL, Joshi GN, Mainou BA. Noncanonical Cell Death Induction by Reassortant Reovirus. J Virol 2020; 94:e01613-20. [PMID: 32847857 PMCID: PMC7592226 DOI: 10.1128/jvi.01613-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) constitutes 10 to 15% of all breast cancer and is associated with worse prognosis than other subtypes of breast cancer. Current therapies are limited to cytotoxic chemotherapy, radiation, and surgery, leaving a need for targeted therapeutics to improve outcomes for TNBC patients. Mammalian orthoreovirus (reovirus) is a nonenveloped, segmented, double-stranded RNA virus in the Reoviridae family. Reovirus preferentially kills transformed cells and is in clinical trials to assess its efficacy against several types of cancer. We previously engineered a reassortant reovirus, r2Reovirus, that infects TNBC cells more efficiently and induces cell death with faster kinetics than parental reoviruses. In this study, we sought to understand the mechanisms by which r2Reovirus induces cell death in TNBC cells. We show that r2Reovirus infection of TNBC cells of a mesenchymal stem-like (MSL) lineage downregulates the mitogen-activated protein kinase/extracellular signal-related kinase pathway and induces nonconventional cell death that is caspase-dependent but caspase 3-independent. Infection of different MSL lineage TNBC cells with r2Reovirus results in caspase 3-dependent cell death. We map the enhanced oncolytic properties of r2Reovirus in TNBC to epistatic interactions between the type 3 Dearing M2 gene segment and type 1 Lang genes. These findings suggest that the genetic composition of the host cell impacts the mechanism of reovirus-induced cell death in TNBC. Together, our data show that understanding host and virus determinants of cell death can identify novel properties and interactions between host and viral gene products that can be exploited for the development of improved viral oncolytics.IMPORTANCE TNBC is unresponsive to hormone therapies, leaving patients afflicted with this disease with limited treatment options. We previously engineered an oncolytic reovirus (r2Reovirus) with enhanced infective and cytotoxic properties in TNBC cells. However, how r2Reovirus promotes TNBC cell death is not known. In this study, we show that reassortant r2Reovirus can promote nonconventional caspase-dependent but caspase 3-independent cell death and that the mechanism of cell death depends on the genetic composition of the host cell. We also map the enhanced oncolytic properties of r2Reovirus in TNBC to interactions between a type 3 M2 gene segment and type 1 genes. Our data show that understanding the interplay between the host cell environment and the genetic composition of oncolytic viruses is crucial for the development of efficacious viral oncolytics.
Collapse
Affiliation(s)
- Roxana M Rodríguez Stewart
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jameson T L Berry
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bernardo A Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Yang S, Wu Y, Wang S, Xu P, Deng Y, Wang M, Liu K, Tian T, Zhu Y, Li N, Zhou L, Dai Z, Kang H. HPV-related methylation-based reclassification and risk stratification of cervical cancer. Mol Oncol 2020; 14:2124-2141. [PMID: 32408396 PMCID: PMC7463306 DOI: 10.1002/1878-0261.12709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/01/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) is a clear etiology of cervical cancer (CC). However, the associations between HPV infection and DNA methylation have not been thoroughly investigated. Additionally, it remains unknown whether HPV‐related methylation signatures can identify subtypes of CC and stratify the prognosis of CC patients. DNA methylation profiles were obtained from The Cancer Genome Atlas to identify HPV‐related methylation sites. Unsupervised clustering analysis of HPV‐related methylation sites was performed to determine the different CC subtypes. CC patients were categorized into cluster 1 (Methylation‐H), cluster 2 (Methylation‐M), and cluster 3 (Methylation‐L). Compared to Methylation‐M and Methylation‐L, Methylation‐H exhibited a significantly improved overall survival (OS). Gene set enrichment analysis (GSEA) was conducted to investigate the functions that correlated with different CC subtypes. GSEA indicated that the hallmarks of tumors, including KRAS signaling, TNFα signaling via NF‐κB, inflammatory response, epithelial–mesenchymal transition, and interferon‐gamma response, were enriched in Methylation‐M and Methylation‐L. Based on mutation and copy number variation analyses, we found that aberrant mutations, amplifications, and deletions among the MYC, Notch, PI3K‐AKT, and RTK‐RAS pathways were most frequently detected in Methylation‐H. Additionally, mutations, amplifications, and deletions within the Hippo, PI3K‐AKT, and TGF‐β pathways were presented in Methylation‐M. Genes within the cell cycle, Notch, and Hippo pathways possessed aberrant mutations, amplifications, and deletions in Methylation‐L. Moreover, the analysis of tumor microenvironments revealed that Methylation‐H was characterized by a relatively low degree of immune cell infiltration. Finally, a prognostic signature based on six HPV‐related methylation sites was developed and validated. Our study revealed that CC patients could be classified into three heterogeneous clusters based on HPV‐related methylation signatures. Additionally, we derived a prognostic signature using six HPV‐related methylation sites that stratified the OS of patients with CC into high‐ and low‐risk groups.
Collapse
Affiliation(s)
- Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tian Tian
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyao Zhu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
The FBXW2-MSX2-SOX2 axis regulates stem cell property and drug resistance of cancer cells. Proc Natl Acad Sci U S A 2019; 116:20528-20538. [PMID: 31548378 DOI: 10.1073/pnas.1905973116] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SOX2 is a key transcription factor that plays critical roles in maintaining stem cell property and conferring drug resistance. However, the underlying mechanisms by which SOX2 level is precisely regulated remain elusive. Here we report that MLN4924, also known as pevonedistat, a small-molecule inhibitor of neddylation currently in phase II clinical trials, down-regulates SOX2 expression via causing accumulation of MSX2, a known transcription repressor of SOX2 expression. Mechanistic characterization revealed that MSX2 is a substrate of FBXW2 E3 ligase. FBXW2 binds to MSX2 and promotes MSX2 ubiquitylation and degradation. Likewise, FBXW2 overexpression shortens the protein half-life of MSX2, whereas FBXW2 knockdown extends it. We further identified hypoxia as a stress condition that induces VRK2 kinase to facilitate MSX2-FBXW2 binding and FBXW2-mediated MSX2 ubiquitylation and degradation, leading to SOX2 induction via derepression. Biologically, expression of FBXW2 or SOX2 promotes tumor sphere formation, which is blocked by MSX2 expression. By down-regulating SOX2 through inactivation of FBXW2 E3 ligase, MLN4924 sensitizes breast cancer cells to tamoxifen in both in vitro and in vivo cancer cell models. Thus, a negative cascade of the FBXW2-MSX2-SOX2 axis was established, which regulates stem cell property and drug resistance. Finally, an inverse correlation of expression was found between FBXW2 and MSX2 in lung and breast cancer tissues. Collectively, our study revealed an anticancer mechanism of MLN4924. By inactivating FBXW2, MLN4924 caused MSX2 accumulation to repress SOX2 expression, leading to suppression of stem cell property and sensitization of breast cancer cells to tamoxifen.
Collapse
|
13
|
Ryu HG, Kim S, Lee S, Lee E, Kim HJ, Kim DY, Kim KT. HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. J Neurochem 2019; 149:413-426. [PMID: 30488434 DOI: 10.1111/jnc.14638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/22/2022]
Abstract
Misfolded proteins with abnormal polyglutamine (polyQ) expansion cause neurodegenerative disorders, including Huntington's disease. Recently, it was found that polyQ aggregates accumulate as a result of vaccinia-related kinase 2 (VRK2)-mediated degradation of TCP-1 ring complex (TRiC)/chaperonin-containing TCP-1 (CCT), which has an essential role in the prevention of polyQ protein aggregation and cytotoxicity. The levels of VRK2 are known to be much higher in actively proliferating cells but are maintained at a low level in the brain via an unknown mechanism. Here, we found that basal levels of neuronal cell-specific VRK2 mRNA are maintained by post-transcriptional, rather than transcriptional, regulation. Moreover, heterogeneous nuclear ribonucleoprotein Q (HNRNP Q) specifically binds to the 3'untranslated region of VRK2 mRNA in neuronal cells to reduce the mRNA stability. As a result, we found a dramatic decrease in CCT4 protein levels in response to a reduction in HNRNP Q levels, which was followed by an increase in polyQ aggregation in human neuroblastoma cells and mouse cortical neurons. Taken together, these results provide new insights into how neuronal HNRNP Q decreases VRK2 mRNA stability and contributes to the prevention of Huntington's disease, while also identifying new prognostic markers of HD.
Collapse
Affiliation(s)
- Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saebom Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eunju Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Advanced Bio Convergence Center, Pohang Technopark, Pohang, Korea
| | - Hyo-Jin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,SL BIGEN, Seongnam, Korea
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
14
|
Azimi T, Ghafouri-Fard S, Davood Omrani M, Mazdeh M, Arsang-Jang S, Sayad A, Taheri M. Vaccinia Related Kinase 2 (VRK2) expression in neurological disorders: schizophrenia, epilepsy and multiple sclerosis. Mult Scler Relat Disord 2017; 19:15-19. [PMID: 29100046 DOI: 10.1016/j.msard.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Schizophrenia (SCZ), epilepsy and Multiple Sclerosis (MS) are neurological disorders with increasing prevalence disturb the patients' lives and are regarded as burdens to the society. As multifactorial disorders, genetic susceptibility factors are involved in their pathogenesis. The Vaccinia-Related Kinase 2 (VRK2) gene codes for a serine threonine kinase recently reported to be contributed in the pathogenesis of some neurological disorders. In the present case-control study we compared the VRK2 gene expression in peripheral blood samples from SCZ, epilepsy and MS patients with normal subjects. METHOD A total of 300 subjects comprising 50 patients in each disease category (SCZ, epilepsy and MS) as well as 150 healthy individuals (50 matched controls for each disorder) participated in the current study. RESULT The VRK2 blood mRNA expression level was measured using the TaqMan real time PCR. The results demonstrated significant down-regulation of VRK2 gene in SCZ (P<0.0001), epilepsy (P=0.008) and MS (P=0.029) compared with the healthy subjects. CONCLUSION Consequently, VRK2 is suggested as a candidate gene for neurological disorders through its role in signaling pathway, the neuronal loss and stress response.
Collapse
Affiliation(s)
- Tahereh Azimi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| | - Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Tang CSM, Gui H, Kapoor A, Kim JH, Luzón-Toro B, Pelet A, Burzynski G, Lantieri F, So MT, Berrios C, Shin HD, Fernández RM, Le TL, Verheij JBGM, Matera I, Cherny SS, Nandakumar P, Cheong HS, Antiñolo G, Amiel J, Seo JM, Kim DY, Oh JT, Lyonnet S, Borrego S, Ceccherini I, Hofstra RMW, Chakravarti A, Kim HY, Sham PC, Tam PKH, Garcia-Barceló MM. Trans-ethnic meta-analysis of genome-wide association studies for Hirschsprung disease. Hum Mol Genet 2017; 25:5265-5275. [PMID: 27702942 DOI: 10.1093/hmg/ddw333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/28/2016] [Indexed: 02/04/2023] Open
Abstract
Hirschsprung disease (HSCR) is the most common cause of neonatal intestinal obstruction. It is characterized by the absence of ganglia in the nerve plexuses of the lower gastrointestinal tract. So far, three common disease-susceptibility variants at the RET, SEMA3 and NRG1 loci have been detected through genome-wide association studies (GWAS) in Europeans and Asians to understand its genetic etiologies. Here we present a trans-ethnic meta-analysis of 507 HSCR cases and 1191 controls, combining all published GWAS results on HSCR to fine-map these loci and narrow down the putatively causal variants to 99% credible sets. We also demonstrate that the effects of RET and NRG1 are universal across European and Asian ancestries. In contrast, we detected a European-specific association of a low-frequency variant, rs80227144, in SEMA3 [odds ratio (OR) = 5.2, P = 4.7 × 10-10]. Conditional analyses on the lead SNPs revealed a secondary association signal, corresponding to an Asian-specific, low-frequency missense variant encoding RET p.Asp489Asn (rs9282834, conditional OR = 20.3, conditional P = 4.1 × 10-14). When in trans with the RET intron 1 enhancer risk allele, rs9282834 increases the risk of HSCR from 1.1 to 26.7. Overall, our study provides further insights into the genetic architecture of HSCR and has profound implications for future study designs.
Collapse
Affiliation(s)
- Clara Sze-Man Tang
- Department of Surgery.,Centre for Genomic Sciences.,Dr Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong SAR, China
| | | | - Ashish Kapoor
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeong-Hyun Kim
- Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Anna Pelet
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Grzegorz Burzynski
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Courtney Berrios
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyoung Doo Shin
- Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea.,Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Thuy-Linh Le
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Joke B G M Verheij
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ivana Matera
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Stacey S Cherny
- Centre for Genomic Sciences.,Department of Psychiatry.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Priyanka Nandakumar
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul 121-742, Republic of Korea
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Jeong-Meen Seo
- Division of Pediatric Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Dae-Yeon Kim
- Department of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jung-Tak Oh
- Department of Pediatric Surgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Robert M W Hofstra
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre UCL Institute of Child Health, London, UK
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Children's Hospital, Seoul 110-744, Republic of Korea
| | - Pak Chung Sham
- Centre for Genomic Sciences.,Department of Psychiatry.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Paul K H Tam
- Department of Surgery.,Dr Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong SAR, China
| | | |
Collapse
|
16
|
Birendra Kc, May DG, Benson BV, Kim DI, Shivega WG, Ali MH, Faustino RS, Campos AR, Roux KJ. VRK2A is an A-type lamin-dependent nuclear envelope kinase that phosphorylates BAF. Mol Biol Cell 2017. [PMID: 28637768 PMCID: PMC5555652 DOI: 10.1091/mbc.e17-03-0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
By the use of comparative BioID of nuclear envelope (NE) proteins lamin A and Sun2, as well as a minimal inner nuclear membrane targeting motif, VRK2 is identified as a novel constituent of the NE. A-type lamins retain the transmembrane kinase VRK2 at the NE, where it phosphorylates and regulates the nuclear mobility of BAF. The nuclear envelope (NE) is critical for numerous fundamental cellular functions, and mutations in several NE constituents can lead to a heterogeneous spectrum of diseases. We used proximity biotinylation to uncover new constituents of the inner nuclear membrane (INM) by comparative BioID analysis of lamin A, Sun2 and a minimal INM-targeting motif. These studies identify vaccinia-related kinase-2 (VRK2) as a candidate constituent of the INM. The transmembrane VRK2A isoform is retained at the NE by association with A-type lamins. Furthermore, VRK2A physically interacts with A-type, but not B-type, lamins. Finally, we show that VRK2 phosphorylates barrier to autointegration factor (BAF), a small and highly dynamic chromatin-binding protein, which has roles including NE reassembly, cell cycle, and chromatin organization in cells, and subtly alters its nuclear mobility. Together these findings support the value of using BioID to identify unrecognized constituents of distinct subcellular compartments refractory to biochemical isolation and reveal VRK2A as a transmembrane kinase in the NE that regulates BAF.
Collapse
Affiliation(s)
- Birendra Kc
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Danielle G May
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Benjamin V Benson
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Dae In Kim
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Winnie G Shivega
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Manaal H Ali
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Randolph S Faustino
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| | - Alexandre R Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104 .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| |
Collapse
|
17
|
Del Puerto-Nevado L, Marin-Arango JP, Fernandez-Aceñero MJ, Arroyo-Manzano D, Martinez-Useros J, Borrero-Palacios A, Rodriguez-Remirez M, Cebrian A, Gomez Del Pulgar T, Cruz-Ramos M, Carames C, Lopez-Botet B, Garcia-Foncillas J. Predictive value of vrk 1 and 2 for rectal adenocarcinoma response to neoadjuvant chemoradiation therapy: a retrospective observational cohort study. BMC Cancer 2016; 16:519. [PMID: 27456229 PMCID: PMC4960836 DOI: 10.1186/s12885-016-2574-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022] Open
Abstract
Background Neoadjuvant chemoradiotherapy (NACRT) followed by surgical resection is the standard therapy for locally advanced rectal cancer. However, tumor response following NACRT varies, ranging from pathologic complete response to disease progression. We evaluated the kinases VRK1 and VRK2, which are known to play multiple roles in cellular proliferation, cell cycle regulation, and carcinogenesis, and as such are potential predictors of tumor response and may aid in identifying patients who could benefit from NACRT. Methods Sixty-seven pretreatment biopsies were examined for VRK1 and VRK2 expression using tissue microarrays. VRK1 and VRK2 Histoscores were combined by linear addition, resulting in a new variable designated as “composite score”, and the statistical significance of this variable was assessed by univariate and multivariate logistic regression. The Hosmer-Lemeshow goodness-of-fit test and area under the ROC curve (AUC) analysis were carried out to evaluate calibration and discrimination, respectively. A nomogram was also developed. Results Univariate logistic regression showed that tumor size as well as composite score were statistically significant. Both variables remained significant in the multivariate analysis, obtaining an OR for tumor size of 0.65 (95 % CI, 0.45–0.94; p = 0.021) and composite score of 1.24 (95 % CI, 1.07–1.48; p = 0.005). Hosmer-Lemeshow test showed an adequate model calibration (p = 0.630) and good discrimination was also achieved, AUC 0.79 (95 % CI, 0.68–0.90). Conclusions This study provides novel data on the role of VRK1 and VRK2 in predicting tumor response to NACRT, and we propose a model with high predictive ability which could have a substantial impact on clinical management of locally advanced rectal cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2574-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Juan Pablo Marin-Arango
- Radiotherapy Department, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avda Reyes Catolicos, 2, Madrid, 28040, Spain
| | - Maria Jesus Fernandez-Aceñero
- Pathology Department, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, Madrid, 28040, Spain.,Present address at University Hospital Clinico San Carlos, Profesor Martin Lagos, S/N, Madrid, 28040, Spain
| | - David Arroyo-Manzano
- Clinical Biostatistics Unit, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Viejo km. 9,100, 28034 Madrid, Spain and CIBER of Epidemiology and Public Health (CIBERESP), C/Melchor Fernández Almagro, 3-5, Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Aurea Borrero-Palacios
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Maria Rodriguez-Remirez
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Arancha Cebrian
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Teresa Gomez Del Pulgar
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Marlid Cruz-Ramos
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Cristina Carames
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Begoña Lopez-Botet
- Radiotherapy Department, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avda Reyes Catolicos, 2, Madrid, 28040, Spain
| | - Jesús Garcia-Foncillas
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Vaccinia-Related Kinase 2 Controls the Stability of the Eukaryotic Chaperonin TRiC/CCT by Inhibiting the Deubiquitinating Enzyme USP25. Mol Cell Biol 2015; 35:1754-62. [PMID: 25755282 DOI: 10.1128/mcb.01325-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/25/2015] [Indexed: 11/20/2022] Open
Abstract
Molecular chaperones monitor the proper folding of misfolded proteins and function as the first line of defense against mutant protein aggregation in neurodegenerative diseases. The eukaryotic chaperonin TRiC is a potent suppressor of mutant protein aggregation and toxicity in early stages of disease progression. Elucidation of TRiC functional regulation will enable us to better understand the pathological mechanisms of neurodegeneration. We have previously shown that vaccinia-related kinase 2 (VRK2) downregulates TRiC protein levels through the ubiquitin-proteasome system by recruiting the E3 ligase COP1. However, although VRK2 activity was necessary in TRiC downregulation, the phosphorylated substrate was not determined. Here, we report that USP25 is a novel TRiC interacting protein that is also phosphorylated by VRK2. USP25 catalyzed deubiquitination of the TRiC protein and stabilized the chaperonin, thereby reducing accumulation of misfolded polyglutamine protein aggregates. Notably, USP25 deubiquitinating activity was suppressed when VRK2 phosphorylated the Thr(680), Thr(727), and Ser(745) residues. Impaired USP25 deubiquitinating activity after VRK2-mediated phosphorylation may be a critical pathway in TRiC protein destabilization.
Collapse
|
19
|
Salzano M, Vázquez-Cedeira M, Sanz-García M, Valbuena A, Blanco S, Fernández IF, Lazo PA. Vaccinia-related kinase 1 (VRK1) confers resistance to DNA-damaging agents in human breast cancer by affecting DNA damage response. Oncotarget 2015; 5:1770-8. [PMID: 24731990 PMCID: PMC4039124 DOI: 10.18632/oncotarget.1678] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vaccinia-related kinase 1 (VRK1) belongs to a group of sixteen kinases associated to a poorer prognosis in human breast carcinomas, particularly in estrogen receptor positive cases based on gene expression arrays. In this work we have studied the potential molecular mechanism by which the VRK1 protein can contribute to a poorer prognosis in this disease. For this aim it was first analyzed by immunohistochemistry the VRK1 protein level in normal breast and in one hundred and thirty six cases of human breast cancer. The effect of VRK1 to protect against DNA damage was determined by studying the effect of its knockdown on the formation of DNA repair foci assembled on 53BP1 in response to treatment with ionizing radiation or doxorubicin in two breast cancer cell lines. VRK1 protein was detected in normal breast and in breast carcinomas at high levels in ER and PR positive tumors. VRK1 protein level was significantly lower in ERBB2 positive cases. Next, to identify a mechanism that can link VRK1 to poorer prognosis, VRK1 was knocked-down in two breast cancer cell lines that were treated with ionizing radiation or doxorubicin, both inducing DNA damage. Loss of VRK1 resulted in reduced formation of DNA-damage repair foci complexes assembled on the 53BP1 scaffold protein, and this effect was independent of damaging agent or cell type. This observation is consistent with detection of high VRK1 protein levels in ER and PR positive breast cancers. We conclude that VRK1 can contribute to make these tumors more resistant to DNA damage-based therapies, such as ionizing radiation or doxorubicin, which is consistent with its association to a poor prognosis in ER positive breast cancer. VRK1 is potential target kinase for development of new specific inhibitors which can facilitate sensitization to other treatments in combination therapies; or alternatively be used as a new cancer drugs.
Collapse
Affiliation(s)
- Marcella Salzano
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Ashton-Beaucage D, Udell CM, Gendron P, Sahmi M, Lefrançois M, Baril C, Guenier AS, Duchaine J, Lamarre D, Lemieux S, Therrien M. A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila. PLoS Biol 2014; 12:e1001809. [PMID: 24643257 PMCID: PMC3958334 DOI: 10.1371/journal.pbio.1001809] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
A global RNAi screening approach in Drosophila cells identifies a large group of transcription and splicing factors that modulate RAS/MAPK signaling by altering the expression of MAPK. The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway—including a new protein complex modulating RAF activation—we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing components can also specifically impact alternative splicing. The RAS/MAPK pathway is a cornerstone of the cell proliferation signaling apparatus. It has a notable involvement in cancer as mutations in the components of the pathway are associated with aberrant proliferation. Previous work has focused predominantly on post-translational regulation of RAS/MAPK signaling such that a large and intricate network of factors is now known to act on core pathway components. However, regulation at the pre-translational level has not been examined nearly as extensively and is comparatively poorly understood. In this study, we used an unbiased and global screening approach to survey the Drosophila genome—using Drosophila cultured cells—for novel regulators of this pathway. Surprisingly, a majority of our hits were associated to either transcription or mRNA splicing. We used a series of secondary screening assays to determine which part of the RAS/MAPK pathway these candidates target. We found that these factors were not equally distributed along the pathway, but rather converged predominantly on mapk mRNA expression and processing. Our findings raise the intriguing possibility that regulation of mapk transcript production is a key step for a diverse set of regulatory inputs, and may play an important part in RAS/MAPK signaling dynamics.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Christian M. Udell
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Caroline Baril
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Anne-Sophie Guenier
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Vaccinia-related kinase 2 mediates accumulation of polyglutamine aggregates via negative regulation of the chaperonin TRiC. Mol Cell Biol 2013; 34:643-52. [PMID: 24298020 DOI: 10.1128/mcb.00756-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Misfolding of proteins containing abnormal expansions of polyglutamine (polyQ) repeats is associated with cytotoxicity in several neurodegenerative disorders, including Huntington's disease. Recently, the eukaryotic chaperonin TRiC hetero-oligomeric complex has been shown to play an important role in protecting cells against the accumulation of misfolded polyQ protein aggregates. It is essential to elucidate how TRiC function is regulated to better understand the pathological mechanism of polyQ aggregation. Here, we propose that vaccinia-related kinase 2 (VRK2) is a critical enzyme that negatively regulates TRiC. In mammalian cells, overexpression of wild-type VRK2 decreased endogenous TRiC protein levels by promoting TRiC ubiquitination, but a VRK2 kinase-dead mutant did not. Interestingly, VRK2-mediated downregulation of TRiC increased aggregate formation of a polyQ-expanded huntingtin fragment. This effect was ameliorated by rescue of TRiC protein levels. Notably, small interference RNA-mediated knockdown of VRK2 enhanced TRiC protein stability and decreased polyQ aggregation. The VRK2-mediated reduction of TRiC protein levels was subsequent to the recruitment of COP1 E3 ligase. Among the members of the COP1 E3 ligase complex, VRK2 interacted with RBX1 and increased E3 ligase activity on TRiC in vitro. Taken together, these results demonstrate that VRK2 is crucial to regulate the ubiquitination-proteosomal degradation of TRiC, which controls folding of polyglutamine proteins involved in Huntington's disease.
Collapse
|
22
|
Rodríguez-Hernández I, Vázquez-Cedeira M, Santos-Briz A, García JL, Fernández IF, Gómez-Moreta JA, Martin-Vallejo J, González-Sarmiento R, Lazo PA. VRK2 identifies a subgroup of primary high-grade astrocytomas with a better prognosis. BMC Clin Pathol 2013; 13:23. [PMID: 24079673 PMCID: PMC3849739 DOI: 10.1186/1472-6890-13-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/27/2013] [Indexed: 11/22/2022] Open
Abstract
Background Malignant astrocytomas are the most common primary brain tumors and one of the most lethal among human cancers despite optimal treatment. Therefore, the characterization of molecular alterations underlying the aggressive behavior of these tumors and the identification of new markers are thus an important step towards a better patient stratification and management. Methods and results VRK1 and VRK2 (Vaccinia-related kinase-1, -2) expression, as well as proliferation markers, were determined in a tissue microarray containing 105 primary astrocytoma biopsies. Kaplan Meier and Cox models were used to find clinical and/or molecular parameters related to overall survival. The effects of VRK protein levels on proliferation were determined in astrocytoma cell lines. High levels of both protein kinases, VRK1 or VRK2, correlated with proliferation markers, p63 or ki67. There was no correlation with p53, reflecting the disruption of the VRK-p53-DRAM autoregulatory loop as a consequence of p53 mutations. High VRK2 protein levels identified a subgroup of astrocytomas that had a significant improvement in survival. The potential effect of VRK2 was studied by analyzing the growth characteristics of astrocytoma cell lines with different EGFR/VRK2 protein ratios. Conclusion High levels of VRK2 resulted in a lower growth rate suggesting these cells are more indolent. In high-grade astrocytomas, VRK2 expression constitutes a good prognostic marker for patient survival.
Collapse
Affiliation(s)
- Irene Rodríguez-Hernández
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain.,Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Marta Vázquez-Cedeira
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Angel Santos-Briz
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.,Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Juan L García
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Isabel F Fernández
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Juan A Gómez-Moreta
- Departamento de Neurocirugía, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | - Rogelio González-Sarmiento
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain.,Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
23
|
Barcia-Sanjurjo I, Vázquez-Cedeira M, Barcia R, Lazo PA. Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals. J Biol Inorg Chem 2013; 18:473-82. [DOI: 10.1007/s00775-013-0992-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/26/2013] [Indexed: 01/22/2023]
|
24
|
Abstract
VRK2 is a novel Ser-Thr kinase whose VRK2A isoform is located in the endoplasmic reticulum and mitochondrial membranes. We have studied the potential role that VRK2A has in the regulation of mitochondrial-mediated apoptosis. VRK2A can regulate the intrinsic apoptotic pathway in two different ways. The VRK2A protein directly interacts with Bcl-xL, but not with Bcl-2, Bax, Bad, PUMA or Binp-3L. VRK2A does not compete with Bax for interaction with Bcl-xL, and these proteins can form a complex that reduces apoptosis. Thus, high VRK2 levels confer protection against apoptosis. In addition, VRK2 knockdown results in an increased expression of BAX gene expression that is mediated by its proximal promoter, thus VRK2A behaves as a negative regulator of BAX. Low levels of VRK2A causes an increase in mitochondrial Bax protein level, leading to an increase in the release of cytochrome C and caspase activation, detected by PARP processing. VRK2A loss results in an increase in cell death that can be detected by an increase in annexinV+ cells. Low levels of VRK2A increase cell sensitivity to induction of apoptosis by chemotherapeutic drugs like camptothecin or doxorubicin. We conclude that VRK2A protein is a novel modulator of apoptosis.
Collapse
|
25
|
A whole-genome RNA interference screen for human cell factors affecting myxoma virus replication. J Virol 2013; 87:4623-41. [PMID: 23408614 DOI: 10.1128/jvi.02617-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxoma virus (MYXV) provides an important model for investigating host-pathogen interactions. Recent studies have also highlighted how mutations in transformed human cells can expand the host range of this rabbit virus. Although virus growth depends upon interactions between virus and host proteins, the nature of these interactions is poorly understood. To address this matter, we performed small interfering RNA (siRNA) screens for genes affecting MYXV growth in human MDA-MB-231 cells. By using siRNAs targeting the whole human genome (21,585 genes), a subset of human phosphatases and kinases (986 genes), and also a custom siRNA library targeting selected statistically significant genes ("hits") and nonsignificant genes ("nonhits") of the whole human genome screens (88 genes), we identified 711 siRNA pools that promoted MYXV growth and 333 that were inhibitory. Another 32 siRNA pools (mostly targeting the proteasome) were toxic. The overall overlap in the results was about 25% for the hits and 75% for the nonhits. These pro- and antiviral genes can be clustered into pathways and related groups, including well-established inflammatory and mitogen-activated protein kinase pathways, as well as clusters relating to β-catenin and the Wnt signaling cascade, the cell cycle, and cellular metabolism. The validity of a subset of these hits was independently confirmed. For example, treating cells with siRNAs that might stabilize cells in G(1), or inhibit passage into S phase, stimulated MYXV growth, and these effects were reproduced by trapping cells at the G(1)/S boundary with an inhibitor of cyclin-dependent kinases 4/6. By using 2-deoxy-D-glucose and plasmids carrying the gene for phosphofructokinase, we also confirmed that infection is favored by aerobic glycolytic metabolism. These studies provide insights into how the growth state and structure of cells affect MYXV growth and how these factors might be manipulated to advantage in oncolytic virus therapy.
Collapse
|
26
|
Fernández IF, Pérez-Rivas LG, Blanco S, Castillo-Dominguez AA, Lozano J, Lazo PA. VRK2 anchors KSR1-MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling. Cell Mol Life Sci 2012; 69:3881-93. [PMID: 22752157 PMCID: PMC11114894 DOI: 10.1007/s00018-012-1056-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/16/2012] [Accepted: 06/11/2012] [Indexed: 12/30/2022]
Abstract
The spatial and temporal regulation of intracellular signaling is determined by the spatial and temporal organization of complexes assembled on scaffold proteins, which can be modulated by their interactions with additional proteins as well as subcellular localization. The scaffold KSR1 protein interacts with MAPK forming a complex that conveys a differential signaling in response to growth factors. The aim of this work is to determine the unknown mechanism by which VRK2A downregulates MAPK signaling. We have characterized the multiprotein complex formed by KSR1 and the Ser-Thr kinase VRK2A. VRK2A is a protein bound to the endoplasmic reticulum (ER) and retains a fraction of KSR1 complexes on the surface of this organelle. Both proteins, VRK2A and KSR1, directly interact by their respective C-terminal regions. In addition, MEK1 is also incorporated in the basal complex. MEK1 independently interacts with the CA5 region of KSR1 and with the N-terminus of VRK2A. Thus, VRK2A can form a high molecular size (600-1,000 kDa) stable complex with both MEK1 and KSR1. Knockdown of VRK2A resulted in disassembly of these high molecular size complexes. Overexpression of VRK2A increased the amount of KSR1 in the particulate fraction and prevented the incorporation of ERK1/2 into the complex after stimulation with EGF. Neither VRK2A nor KSR1 interact with the VHR, MKP1, MKP2, or MKP3 phosphatases. The KSR1 complex assembled and retained by VRK2A in the ER can have a modulatory effect on the signal mediated by MAPK, thus locally affecting the magnitude of its responses, and can explain differential responses depending on cell type.
Collapse
Affiliation(s)
- Isabel F. Fernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Luis G. Pérez-Rivas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain
- Laboratorio de Oncología Molecular, Fundación IMABIS, Hospital Clínico Universitario Virgen de la Victoria, Malaga, Spain
| | - Sandra Blanco
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Adrián A. Castillo-Dominguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain
- Laboratorio de Oncología Molecular, Fundación IMABIS, Hospital Clínico Universitario Virgen de la Victoria, Malaga, Spain
| | - José Lozano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain
- Laboratorio de Oncología Molecular, Fundación IMABIS, Hospital Clínico Universitario Virgen de la Victoria, Malaga, Spain
| | - Pedro A. Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
27
|
Vázquez-Cedeira M, Lazo PA. Human VRK2 (vaccinia-related kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J Biol Chem 2012; 287:42739-50. [PMID: 23105117 DOI: 10.1074/jbc.m112.404285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human VRK2 (vaccinia-related kinase 2), a kinase that emerged late in evolution, affects different signaling pathways, and some carcinomas express high levels of VRK2. Invasion by cancer cells has been associated with NFAT1 (nuclear factor of activated T cells) activation and expression of the COX-2 (cyclooxygenase 2) gene. We hypothesized that VRK proteins might play a regulatory role in NFAT1 activation in tumor cells. We demonstrate that VRK2 directly interacts and phosphorylates NFAT1 in Ser-32 within its N-terminal transactivation domain. VRK2 increases NFAT1-dependent transcription by phosphorylation, and this effect is only detected following cell phorbol 12-myristate 13-acetate and ionomycin stimulation and calcineurin activation. This NFAT1 hyperactivation by VRK2 increases COX-2 gene expression through the proximal NFAT1 binding site in the COX-2 gene promoter. Furthermore, VRK2A down-regulation by RNA interference reduces COX-2 expression at transcriptional and protein levels. Therefore, VRK2 down-regulation reduces cell invasion by tumor cells, such as MDA-MB-231 and MDA-MB-435, upon stimulation with phorbol 12-myristate 13-acetate plus ionomycin. These findings identify the first reported target and function of human VRK2 as an active kinase playing a role in regulation of cancer cell invasion through the NFAT pathway and COX-2 expression.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | |
Collapse
|
28
|
Zhang H, Photiou A, Grothey A, Stebbing J, Giamas G. The role of pseudokinases in cancer. Cell Signal 2012; 24:1173-84. [PMID: 22330072 DOI: 10.1016/j.cellsig.2012.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 01/12/2023]
Abstract
Kinases play a critical role in regulating many cellular functions including development, differentiation and proliferation. To date, over 518 proteins with kinase activity, comprising ~2-3% of total cellular proteins, have been identified from within the human kinome. Interestingly, approximately 10% of kinases are categorised as pseudokinases since they lack one or more conserved catalytic residues within their kinase domain and were originally thought to have no enzymatic activity. Recently, there has been strong evidence to suggest that some pseudokinsases can not only function as scaffold proteins, but may also possess kinase activity leading to modulation of cell signalling pathways. Altered activity of these pseudokinases can result in impaired cellular function, particularly in malignancies. In this review we are discussing recent evidence that apart from a scaffolding role, pseudokinases also orchestrate cellular processes as active kinases per se in signalling pathways of malignant cells.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cancer and Surgery, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | | | | | | | | |
Collapse
|
29
|
Sanz-García M, Vázquez-Cedeira M, Kellerman E, Renbaum P, Levy-Lahad E, Lazo PA. Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications. J Proteomics 2011; 75:548-60. [PMID: 21920476 DOI: 10.1016/j.jprot.2011.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation by kinases plays a central role in the regulation and coordination of multiple biological processes. In general, knowledge on kinase specificity is restricted to substrates identified in the context of specific cellular responses, but kinases are likely to have multiple additional substrates and be integrated in signaling networks that might be spatially and temporally different, and in which protein complexes and subcellular localization can play an important role. In this report the substrate specificity of atypical human vaccinia-related kinases (VRK1 and VRK2) using a human peptide-array containing 1080 sequences phosphorylated in known signaling pathways has been studied. The two kinases identify a subset of potential peptide targets, all of them result in a consensus sequence composed of at least four basic residues in peptide targets. Linear peptide arrays are therefore a useful approach in the characterization of kinases and substrate identification, which can contribute to delineate the signaling network in which VRK proteins participate. One of these target proteins is coilin; a basic protein located in nuclear Cajal bodies. Coilin is phosphorylated in Ser184 by both VRK1 and VRK2. Coilin colocalizes and interacts with VRK1 in Cajal bodies, but not with the mutant VRK1 (R358X). VRK1 (R358X) is less active than VRK1. Altered regulation of coilin might be implicated in several neurological diseases such as ataxias and spinal muscular atrophies.
Collapse
Affiliation(s)
- Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas(CSIC)-Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Vázquez-Cedeira M, Barcia-Sanjurjo I, Sanz-García M, Barcia R, Lazo PA. Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS One 2011; 6:e23235. [PMID: 21829721 PMCID: PMC3150407 DOI: 10.1371/journal.pone.0023235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/10/2011] [Indexed: 01/13/2023] Open
Abstract
Human vaccinia-related kinases (VRK1 and VRK2) are atypical active Ser-Thr kinases implicated in control of cell cycle entry, apoptosis and autophagy, and affect signalling by mitogen activated protein kinases (MAPK). The specific structural differences in VRK catalytic sites make them suitable candidates for development of specific inhibitors. In this work we have determined the sensitivity of VRK1 and VRK2 to kinase inhibitors, currently used in biological assays or in preclinical studies, in order to discriminate between the two proteins as well as with respect to the vaccinia virus B1R kinase. Both VRK proteins and vaccinia B1R are poorly inhibited by inhibitors of different types targeting Src, MEK1, B-Raf, JNK, p38, CK1, ATM, CHK1/2 and DNA-PK, and most of them have no effect even at 100 µM. Despite their low sensitivity, some of these inhibitors in the low micromolar range are able to discriminate between VRK1, VRK2 and B1R. VRK1 is more sensitive to staurosporine, RO-31-8220 and TDZD8. VRK2 is more sensitive to roscovitine, RO 31–8220, Cdk1 inhibitor, AZD7762, and IC261. Vaccinia virus B1R is more sensitive to staurosporine, KU55933, and RO 31–8220, but not to IC261. Thus, the three kinases present a different pattern of sensitivity to kinase inhibitors. This differential response to known inhibitors can provide a structural framework for VRK1 or VRK2 specific inhibitors with low or no cross-inhibition. The development of highly specific VRK1 inhibitors might be of potential clinical use in those cancers where these kinases identify a clinical subtype with a poorer prognosis, as is the case of VRK1 in breast cancer.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Iria Barcia-Sanjurjo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Ramiro Barcia
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Pedro A. Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
31
|
Gu Y, Zhao W, Xia J, Zhang Y, Wu R, Wang C, Guo Z. Analysis of pathway mutation profiles highlights collaboration between cancer-associated superpathways. Hum Mutat 2011; 32:1028-35. [PMID: 21618647 DOI: 10.1002/humu.21541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/16/2011] [Indexed: 12/21/2022]
Abstract
The biological interpretation of the complexity of cancer somatic mutation profiles is a major challenge in current cancer research. It has been suggested that mutations in multiple genes that participate in different pathways are collaborative in conferring growth advantage to tumor cells. Here, we propose a powerful pathway-based approach to study the functional collaboration of gene mutations in carcinogenesis. We successfully identify many pairs of significantly comutated pathways for a large-scale somatic mutation profile of lung adenocarcinoma. We find that the coordinated pathway pairs detected by comutations are also likely to be coaltered by other molecular changes, such as alterations in multifunctional genes in cancer. Then, we cluster comutated pathways into comutated superpathways and show that the derived superpathways also tend to be significantly coaltered by DNA copy number alterations. Our results support the hypothesis that comprehensive cooperation among a few basic functions is required for inducing cancer. The results also suggest biologically plausible models for understanding the heterogeneous mechanisms of cancers. Finally, we suggest an approach to identify candidate cancer genes from the derived comutated pathways. Together, our results provide guidelines to distill the pathway collaboration in carcinogenesis from the complexity of cancer somatic mutation profiles.
Collapse
Affiliation(s)
- Yunyan Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|