1
|
Pan M, Solozobova V, Kuznik NC, Jung N, Gräßle S, Gourain V, Heneka YM, Cramer von Clausbruch CA, Fuhr O, Munuganti RSN, Maddalo D, Blattner C, Neeb A, Sharp A, Cato L, Weiss C, Jeselsohn RM, Orian-Rousseau V, Bräse S, Cato ACB. Identification of an Imidazopyridine-based Compound as an Oral Selective Estrogen Receptor Degrader for Breast Cancer Therapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:1378-1396. [PMID: 37520743 PMCID: PMC10373600 DOI: 10.1158/2767-9764.crc-23-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
The pro-oncogenic activities of estrogen receptor alpha (ERα) drive breast cancer pathogenesis. Endocrine therapies that impair the production of estrogen or the action of the ERα are therefore used to prevent primary disease metastasis. Although recent successes with ERα degraders have been reported, there is still the need to develop further ERα antagonists with additional properties for breast cancer therapy. We have previously described a benzothiazole compound A4B17 that inhibits the proliferation of androgen receptor-positive prostate cancer cells by disrupting the interaction of the cochaperone BAG1 with the AR. A4B17 was also found to inhibit the proliferation of estrogen receptor-positive (ER+) breast cancer cells. Using a scaffold hopping approach, we report here a group of small molecules with imidazopyridine scaffolds that are more potent and efficacious than A4B17. The prototype molecule X15695 efficiently degraded ERα and attenuated estrogen-mediated target gene expression as well as transactivation by the AR. X15695 also disrupted key cellular protein-protein interactions such as BAG1-mortalin (GRP75) interaction as well as wild-type p53-mortalin or mutant p53-BAG2 interactions. These activities together reactivated p53 and resulted in cell-cycle block and the induction of apoptosis. When administered orally to in vivo tumor xenograft models, X15695 potently inhibited the growth of breast tumor cells but less efficiently the growth of prostate tumor cells. We therefore identify X15695 as an oral selective ER degrader and propose further development of this compound for therapy of ER+ breast cancers. Significance An imidazopyridine that selectively degrades ERα and is orally bioavailable has been identified for the development of ER+ breast cancer therapeutics. This compound also activates wild-type p53 and disrupts the gain-of-function tumorigenic activity of mutant p53, resulting in cell-cycle arrest and the induction of apoptosis.
Collapse
Affiliation(s)
- Mengwu Pan
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Valeria Solozobova
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Nane C. Kuznik
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems – Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems – Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Victor Gourain
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Yvonne M. Heneka
- Institute of Biological and Chemical Systems – Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Christina A. Cramer von Clausbruch
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Danilo Maddalo
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Christine Blattner
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Antje Neeb
- Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Carsten Weiss
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Rinath M. Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Veronique Orian-Rousseau
- Institute of Biological and Chemical Systems – Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems – Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andrew C. B. Cato
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Waudby CA, Alvarez-Teijeiro S, Josue Ruiz E, Suppinger S, Pinotsis N, Brown PR, Behrens A, Christodoulou J, Mylona A. An intrinsic temporal order of c-JUN N-terminal phosphorylation regulates its activity by orchestrating co-factor recruitment. Nat Commun 2022; 13:6133. [PMID: 36253406 PMCID: PMC9576782 DOI: 10.1038/s41467-022-33866-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Protein phosphorylation is a major regulatory mechanism of cellular signalling. The c-JUN proto-oncoprotein is phosphorylated at four residues within its transactivation domain (TAD) by the JNK family kinases, but the functional significance of c-JUN multisite phosphorylation has remained elusive. Here we show that c-JUN phosphorylation by JNK exhibits defined temporal kinetics, with serine63 and serine73 being phosphorylated more rapidly than threonine91 and threonine93. We identify the positioning of the phosphorylation sites relative to the kinase docking motif, and their primary sequence, as the main factors controlling phosphorylation kinetics. Functional analysis reveals three c-JUN phosphorylation states: unphosphorylated c-JUN recruits the MBD3 repressor, serine63/73 doubly-phosphorylated c-JUN binds to the TCF4 co-activator, whereas the fully phosphorylated form disfavours TCF4 binding attenuating JNK signalling. Thus, c-JUN phosphorylation encodes multiple functional states that drive a complex signalling response from a single JNK input.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, UK
- School of Pharmacy, University College London, London, UK
| | - Saul Alvarez-Teijeiro
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - E Josue Ruiz
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
| | - Simon Suppinger
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Paul R Brown
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College, London, UK
| | - Axel Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK
- CR-UK Convergence Science Centre, Imperial College, London, SW7 2BU, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
| | - Anastasia Mylona
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
- Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK.
| |
Collapse
|
3
|
Adinew GM, Messeha SS, Taka E, Badisa RB, Antonie LM, Soliman KFA. Thymoquinone Alterations of the Apoptotic Gene Expressions and Cell Cycle Arrest in Genetically Distinct Triple-Negative Breast Cancer Cells. Nutrients 2022; 14:2120. [PMID: 35631261 PMCID: PMC9144154 DOI: 10.3390/nu14102120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, and it is one of the leading causes of cancer death in women. triple-negative breast Cancer (TNBC), a subtype of BC, is typically associated with the highest pathogenic grade and incidence in premenopausal and young African American (AA) women. Chemotherapy, the most common treatment for TNBC today, can lead to acquired resistance and ineffective treatment. Therefore, novel therapeutic approaches are needed to combat medication resistance and ineffectiveness in TNBC patients. Thymoquinone (TQ) is shown to have a cytotoxic effect on human cancer cells in vitro. However, TQ's mode of action and precise mechanism in TNBC disease in vitro have not been adequately investigated. Therefore, TQ's effects on the genetically different MDA-MB-468 and MDA-MB-231 human breast cancer cell lines were assessed. The data obtained show that TQ displayed cytotoxic effects on MDA-MB-468 and MDA-MB-231 cells in a time- and concentration-dependent manner after 24 h, with IC50 values of 25.37 µM and 27.39 µM, respectively. Moreover, MDA-MB-231 and MDA-MB-468 cells in a scratched wound-healing assay displayed poor wound closure, inhibiting invasion and migration via cell cycle blocking after 24 h. TQ arrested the cell cycle phase in MDA-MB-231 and MDA-MB-468 cells. The three cell cycle stages in MDA-MB-468 cells were significantly affected at 15 and 20 µM for G0/G1 and S phases, as well as all TQ concentrations for G2/M phases. In MDA-MB-468 cells, there was a significant decrease in G0/G1 phases with a substantial increase in the S phase and G2/M phases. In contrast, MDA-MB-231 showed a significant effect only during the two cell cycle stages (S and G2/M), at concentrations of 15 and 20 µM for S phases and all TQ values for G2/M phases. The TQ effect on the apoptotic gene profiles indicated that TQ upregulated 15 apoptotic genes in MDA-MB-231 TNBC cells, including caspases, GADD45A, TP53, DFFA, DIABLO, BNIP3, TRAF2/3, and TNFRSF10A. In MDA-MB-468 cells, 16 apoptotic genes were upregulated, including TNFRSF10A, TNF, TNFRSF11B, FADD TNFRSF10B, CASP2, and TRAF2, all of which are important for the apoptotic pathway andsuppress the expression of one anti-apoptotic gene, BIRC5, in MDA-MB-231 cells. Compared to MDA-MB-231 cells, elevated levels of TNF and their receptor proteins may contribute to their increased sensitivity to TQ-induced apoptosis. It was concluded from this study that TQ targets the MDA-MB-231 and MDA-MB-468 cells differently. Additionally, due to the aggressive nature of TNBC and the lack of specific therapies in chemoresistant TNBC, our findings related to the identified apoptotic gene profile may point to TQ as a potential agent for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.S.M.); (E.T.); (R.B.B.); (L.M.A.)
| |
Collapse
|
4
|
Kuznik NC, Solozobova V, Lee II, Jung N, Yang L, Nienhaus K, Ntim EA, Rottenberg JT, Muhle-Goll C, Kumar AR, Peravali R, Gräßle S, Gourain V, Deville C, Cato L, Neeb A, Dilger M, Cramer von Clausbruch CA, Weiss C, Kieffer B, Nienhaus GU, Brown M, Bräse S, Cato ACB. A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway. iScience 2022; 25:104175. [PMID: 35479411 PMCID: PMC9036123 DOI: 10.1016/j.isci.2022.104175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth. BAG1L interacts with a sequence overlapping a polyalanine tract in the AR NTD Knockdown of BAG1L increase AR dynamics in the nucleus BAG1L uses ROS pathway to regulate AR+ prostate cancer cell proliferation A small molecule BAG1 inhibitor inhibits prostate tumor growth in mouse xenografts
Collapse
Affiliation(s)
- Nane C Kuznik
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Valeria Solozobova
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Irene I Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicole Jung
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Linxiao Yang
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Emmanuel A Ntim
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jaice T Rottenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Claudia Muhle-Goll
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Amrish Rajendra Kumar
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ravindra Peravali
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Victor Gourain
- LabEx IGO "Immunotherapy, Graft, Oncology", Centre de Recherche en Transplantation et Immunologie - UMR1064, 44093 Nantes, France
| | - Célia Deville
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Antje Neeb
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Marco Dilger
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christina A Cramer von Clausbruch
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Bruno Kieffer
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - G Ulrich Nienhaus
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andrew C B Cato
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Marzullo L, Turco MC, Uversky VN. What's in the BAGs? Intrinsic disorder angle of the multifunctionality of the members of a family of chaperone regulators. J Cell Biochem 2021; 123:22-42. [PMID: 34339540 DOI: 10.1002/jcb.30123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
In humans, the family of Bcl-2 associated athanogene (BAG) proteins includes six members characterized by exceptional multifunctionality and engagement in the pathogenesis of various diseases. All of them are capable of interacting with a multitude of often unrelated binding partners. Such binding promiscuity and related functional and pathological multifacetedness cannot be explained or understood within the frames of the classical "one protein-one structure-one function" model, which also fails to explain the presence of multiple isoforms generated for BAG proteins by alternative splicing or alternative translation initiation and their extensive posttranslational modifications. However, all these mysteries can be solved by taking into account the intrinsic disorder phenomenon. In fact, high binding promiscuity and potential to participate in a broad spectrum of interactions with multiple binding partners, as well as a capability to be multifunctional and multipathogenic, are some of the characteristic features of intrinsically disordered proteins and intrinsically disordered protein regions. Such functional proteins or protein regions lacking unique tertiary structures constitute a cornerstone of the protein structure-function continuum concept. The aim of this paper is to provide an overview of the functional roles of human BAG proteins from the perspective of protein intrinsic disorder which will provide a means for understanding their binding promiscuity, multifunctionality, and relation to the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Liberato Marzullo
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Maria C Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Gennaro VJ, Wedegaertner H, McMahon SB. Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer 2019; 19:258. [PMID: 30902071 PMCID: PMC6429775 DOI: 10.1186/s12885-019-5454-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background The oncoprotein MYC has the dual capacity to drive cell cycle progression or induce apoptosis, depending on the cellular context. BAG1 was previously identified as a transcriptional target of MYC that functions as a critical determinant of this cell fate decision. The BAG1 protein is expressed as multiple isoforms, each having an array of distinct biochemical functions; however, the specific effector function of BAG1 that directs MYC-dependent cell survival has not been defined. Methods In our studies the human osteosarcoma line U2OS expressing a conditional MYC-ER allele was used to induce oncogenic levels of MYC. We interrogated MYC-driven survival processes by modifying BAG1 protein expression. The function of the separate BAG1 isoforms was investigated by depleting cells of endogenous BAG1 and reintroducing the distinct isoforms. Flow cytometry and immunoblot assays were performed to analyze the effect of specific BAG1 isoforms on MYC-dependent apoptosis. These experiments were repeated to determine the role of the HSP70 chaperone complex in BAG1 survival processes. Finally, a proteomic approach was used to identify a set of specific pro-survival proteins controlled by the HSP70/BAG1 complex. Results Loss of BAG1 resulted in robust MYC-induced apoptosis. Expression of the larger isoforms of BAG1, BAG1L and BAG1M, were insufficient to rescue survival in cells with oncogenic levels of MYC. Alternatively, reintroduction of BAG1S significantly reduced the level of apoptosis. Manipulation of the BAG1S interaction with HSP70 revealed that BAG1S provides its pro-survival function by serving as a cofactor for the HSP70 chaperone complex. Via a proteomic approach we identified and classified a set of pro-survival proteins controlled by this HSP70/BAG1 chaperone complex that contribute to the BAG1 anti-apoptotic phenotype. Conclusions The small isoform of BAG1, BAG1S, in cooperation with the HSP70 chaperone complex, selectively mediates cell survival in MYC overexpressing tumor cells. We identified a set of specific pro-survival clients controlled by the HSP70/BAG1S chaperone complex. These clients define new nodes that could be therapeutically targeted to disrupt the survival of tumor cells driven by MYC activation. With MYC overexpression occurring in most human cancers, this introduces new strategies for cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5454-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Victoria J Gennaro
- Department of Biochemistry and Molecular Biology Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Helen Wedegaertner
- Department of Biochemistry and Molecular Biology Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Steven B McMahon
- Department of Biochemistry and Molecular Biology Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Wu Y, Guo Z, Liu F, Yao K, Gao M, Luo Y, Zhang Y. Sp110 enhances macrophage resistance to Mycobacterium tuberculosis via inducing endoplasmic reticulum stress and inhibiting anti-apoptotic factors. Oncotarget 2017; 8:64050-64065. [PMID: 28969051 PMCID: PMC5609983 DOI: 10.18632/oncotarget.19300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/10/2017] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis remains a leading health problem worldwide and still accounts for about 1.3 million deaths annually. Expression of the mouse Sp110 nuclear body protein (Sp110) upregulates the apoptotic pathway, which plays an essential role in enhancing host immunity to Mycobacterium tuberculosis (Mtb). However, the mechanism of this upregulation is unclear. Here, we have identified 253 proteins in mouse macrophages that interact with Sp110, of which 251 proteins were previously uncharacterized. The results showed that Sp110 interacts with heat shock protein 5 (Hspa5) to activate endoplasmic reticulum (ER) stress-induced apoptosis, and that this is essential for Sp110 enhanced macrophage resistance to Mtb. Inhibition of the ER stress pathway abolishing the Sp110-enhanced macrophage apoptosis and resulted in increased intracellular survival of Mtb in macrophages overexpressing Sp110 Further studies revealed that Sp110 also interacts with the RNA binding protein, Ncl to promote its degradation. Consequently, the expression of Bcl2, usually stabilized by Ncl, was downregulated in Sp110 overexpressing macrophages. Moreover, overexpression of Sp110 promotes degradation of ribosomal protein Rps3a, resulting in upregulation of the activity of the pro-apoptotic poly (ADP-ribose) polymerase (PARP). In addition, macrophages from transgenic cattle with increased Sp110 expression confirmed that activation of the ER stress response is the main pathway through which Sp110-enhanced macrophages impart resistance to Mtb. This work has revealed the mechanism of Sp110 enhanced macrophage apoptosis in response to Mtb infection, and provides new insights into the study of host-pathogen interactions.
Collapse
Affiliation(s)
- Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology, Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan 030001, Shanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fayang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kezhen Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingqing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Retrograde apoptotic signaling by the p75 neurotrophin receptor. Neuronal Signal 2017; 1:NS20160007. [PMID: 32714573 PMCID: PMC7373242 DOI: 10.1042/ns20160007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Neurotrophins are target-derived factors necessary for mammalian nervous system development and maintenance. They are typically produced by neuronal target tissues and interact with their receptors at axonal endings. Therefore, locally generated neurotrophin signals must be conveyed from the axon back to the cell soma. Retrograde survival signaling by neurotrophin binding to Trk receptors has been extensively studied. However, neurotrophins also bind to the p75 receptor, which can induce apoptosis in a variety of contexts. Selective activation of p75 at distal axon ends has been shown to generate a retrograde apoptotic signal, although the mechanisms involved are poorly understood. The present review summarizes the available evidence for retrograde proapoptotic signaling in general and the role of the p75 receptor in particular, with discussion of unanswered questions in the field. In-depth knowledge of the mechanisms of retrograde apoptotic signaling is essential for understanding the etiology of neurodegeneration in many diseases and injuries.
Collapse
|
9
|
Jehle K, Cato L, Neeb A, Muhle-Goll C, Jung N, Smith EW, Buzon V, Carbó LR, Estébanez-Perpiñá E, Schmitz K, Fruk L, Luy B, Chen Y, Cox MB, Bräse S, Brown M, Cato ACB. Coregulator control of androgen receptor action by a novel nuclear receptor-binding motif. J Biol Chem 2014; 289:8839-51. [PMID: 24523409 DOI: 10.1074/jbc.m113.534859] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.
Collapse
Affiliation(s)
- Katja Jehle
- From the Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sun G, Li Z, Wang X, Tang W, Wei Y. Modulation of MAPK and Akt signaling pathways in proximal segment of injured sciatic nerves. Neurosci Lett 2013; 534:205-10. [DOI: 10.1016/j.neulet.2012.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/26/2012] [Accepted: 12/12/2012] [Indexed: 12/18/2022]
|
11
|
BAG-1L promotes keratinocyte differentiation in organotypic culture models and changes in relative BAG-1 isoform abundance may lead to defective stratification. Exp Cell Res 2011; 317:2159-70. [PMID: 21723279 DOI: 10.1016/j.yexcr.2011.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/31/2011] [Accepted: 06/16/2011] [Indexed: 01/23/2023]
Abstract
In keratinocytes the human Bag-1 gene produces three different protein isoforms from a single messenger RNA, BAG-1L, BAG-1M and BAG-1S. In this study we questioned whether BAG-1L or the shorter isoforms would promote keratinocyte differentiation in organotypic cultures of HaCaT. HaCaT parental and vector cells showed stratification, but terminal differentiation was not complete. Cultures overexpressing BAG-1L isoform-specifically were of increased thickness, demonstrated pronounced expression of basal cytokeratin 5 and β1-integrin, suprabasal involucrin, cytokeratin 1 and plasma membrane-localised filaggrin, and a marked keratinized layer of cells at the surface. We were unable to overexpress BAG-1S and BAG-1M isoform-specifically. Overexpression of BAG-1M gave rise to organotypic cultures intermediate in differentiation to controls and those overexpressing BAG-1L. Cells overexpressing BAG-1S also exhibited elevated endogenous BAG-1. These produced slow growing cultures with high levels of basal cytokeratin 5, but little involucrin or cytokeratin 1. Suprabasal β1-integrin and Ki67 positive cells indicated defective stratification. The results suggest that BAG-1L potentiates epidermal differentiation, but disruption in the relative balance of isoforms towards overexpression of BAG-1S can lead to defective tissue patterning. Hence, a delicate balance of BAG-1 isoforms may be required to regulate normal epidermal stratification and differentiation, with important implications for aberrant differentiation in cancer.
Collapse
|
12
|
Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of IκBα and nuclear accumulation of NF-κB. Biochem Biophys Res Commun 2010; 401:406-11. [DOI: 10.1016/j.bbrc.2010.09.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/15/2010] [Indexed: 11/19/2022]
|