1
|
Ingles ED, Deakin JE. Telomeres, species differences, and unusual telomeres in vertebrates: presenting challenges and opportunities to understanding telomere dynamics. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThere has been increasing interest in the use of telomeres as biomarkers of stress, cellular ageing and life-histories. However, the telomere landscape is a diverse feature, with noticeable differences between species, a fact which is highlighted by the unusual telomeres of various vertebrate organisms. We broadly review differences in telomere dynamics among vertebrates, and emphasize the need to understand more about telomere processes and trends across species. As part of these species differences, we review unusual telomeres in vertebrates. This includes mega-telomeres, which are present across a diverse set of organisms, but also focusing on the unusual telomeres traits of marsupials and monotremes, which have seen little to no prior discussion, yet uniquely stand out from other unusual telomere features discovered thus far. Due to the presence of at least two unique telomere features in the marsupial family Dasyuridae, as well as to the presence of physiological strategies semelparity and torpor, which have implications for telomere life-histories in these species, we suggest that this family has a very large potential to uncover novel information on telomere evolution and dynamics.
Collapse
Affiliation(s)
- Emory D. Ingles
- Institute of Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Janine E. Deakin
- Institute of Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Comparative Cytogenetic Mapping and Telomere Analysis Provide Evolutionary Predictions for Devil Facial Tumour 2. Genes (Basel) 2020; 11:genes11050480. [PMID: 32354058 PMCID: PMC7290341 DOI: 10.3390/genes11050480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/06/2020] [Accepted: 04/26/2020] [Indexed: 01/20/2023] Open
Abstract
The emergence of a second transmissible tumour in the Tasmanian devil population, devil facial tumour 2 (DFT2), has prompted questions on the origin and evolution of these transmissible tumours. We used a combination of cytogenetic mapping and telomere length measurements to predict the evolutionary trajectory of chromosome rearrangements in DFT2. Gene mapping by fluorescence in situ hybridization (FISH) provided insight into the chromosome rearrangements in DFT2 and identified the evolution of two distinct DFT2 lineages. A comparison of devil facial tumour 1 (DFT1) and DFT2 chromosome rearrangements indicated that both started with the fusion of a chromosome, with potentially critically short telomeres, to chromosome 1 to form dicentric chromosomes. In DFT1, the dicentric chromosome resulted in breakage–fusion–bridge cycles leading to highly rearranged chromosomes. In contrast, the silencing of a centromere on the dicentric chromosome in DFT2 stabilized the chromosome, resulting in a less rearranged karyotype than DFT1. DFT2 retains a bimodal distribution of telomere length dimorphism observed on Tasmanian devil chromosomes, a feature lost in DFT1. Using long term cell culture, we observed homogenization of telomere length over time. We predict a similar homogenization of telomere lengths occurred in DFT1, and that DFT2 is unlikely to undergo further substantial rearrangements due to maintained telomere length.
Collapse
|
3
|
Zhdanova NS, Vaskova EA, Karamysheva TV, Minina JM, Rubtsov NB, Zakian SM. Dysfunction telomeres in embryonic fibroblasts and cultured in vitro pluripotent stem cells of Rattus norvegicus (Rodentia, Muridae). COMPARATIVE CYTOGENETICS 2019; 13:1-14. [PMID: 31404388 PMCID: PMC6684521 DOI: 10.3897/compcytogen.v13i3.34732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
We studied the level of spontaneous telomere dysfunction in Rattus norvegicus (Berkenhout, 1769) (Rodentia, Muridae) embryonic fibroblasts (rEFs) and in cultured in vitro rat pluripotent stem cells (rPSCs), embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs), on early passages and after prolonged cultivation. Among studied cell lines, rESCs showed the lowest level of telomere dysfunction, while the riPSCs demonstrated an elevated level on early passages of cultivation. In cultivation, the frequency of dysfunctional telomeres has increased in all studied cell lines; this is particularly true for dysfunctional telomeres occurring in G1 stage in riPSCs. The obtained data are mainly discussed in the connection with the specific structure of the telomere regions and their influence on the differential DNA damage response in them.
Collapse
Affiliation(s)
- Natalya S. Zhdanova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
| | - Evgenia A. Vaskova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
| | - Tatyana V. Karamysheva
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
| | - Julia M. Minina
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
| | - Nykolay B. Rubtsov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
- E.N. Meshalkin National medical research center, Ministry of Health of the Russian Federation, Rechkunovskaya st. 15, 630055, Novosibirsk, RussiaMinistry of Health of the Russian FederationNovosibirskRussia
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentjeva av. 8, 630090, Novosibirsk, RussiaInstitute of Chemical Biology and Fundamental Medicine SB RASNovosibirskRussia
| |
Collapse
|
4
|
Minina JM, Karamysheva TV, Rubtsov NB, Zhdanova NS. Replication timing of large Sorex granarius (Soricidae, Eulipotyphla) telomeres. PROTOPLASMA 2018; 255:1477-1486. [PMID: 29627866 DOI: 10.1007/s00709-018-1244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Previously, we described the unique feature of telomeric regions in Iberian shrew Sorex granarius: its telomeres have two ranges of size, very small (3.8 kb of telomeric repeats on average) and very large discontinuous telomeres (213 kb) interrupted with 18S rDNA. In this study, we have demonstrated extraordinary replication pattern of S. granarius large telomeres that have not been shown before in other studied mammal. Using the ReD-FISH procedure, we observed prolonged, through S period, large telomere replication. Furthermore, revealed ReD-FISH asymmetric signals were probably caused by partial replication of telomeres within an hour of 5-bromodeoxyuridine treatment due to the large size and special organization. We also found that in contrast to the telomeric halo from primary fibroblasts of bovine, mink, and common shrew, telomere halo of S. granarius consists of multiple loops bundled together, some of which contain rDNA. Here, we suggested several replicons firing possibly stochastic in each large telomere. Finally, we performed the TIF assay to reveal DNA damage responses at the telomeres, and along with TIF in nuclei, we found large bodies of telomeric DNA and ɤ-H2AX in the cytoplasm and on the surface of fibroblasts. We discuss the possibility of additional origin activation together with recombination-dependent replication pathways, mainly homologous recombination including BIR for replication fork stagnation overcoming and further S. granarius large telomere replication.
Collapse
Affiliation(s)
- Julia M Minina
- The Federal Research Center Institute of Cytology and Genetics of SB RAS, Lavrentjeva av. 10, 630090, Novosibirsk, Russia.
| | - Tatjana V Karamysheva
- The Federal Research Center Institute of Cytology and Genetics of SB RAS, Lavrentjeva av. 10, 630090, Novosibirsk, Russia
| | - Nicolaj B Rubtsov
- The Federal Research Center Institute of Cytology and Genetics of SB RAS, Lavrentjeva av. 10, 630090, Novosibirsk, Russia
| | - Natalia S Zhdanova
- The Federal Research Center Institute of Cytology and Genetics of SB RAS, Lavrentjeva av. 10, 630090, Novosibirsk, Russia
| |
Collapse
|
5
|
Liehr T, Buleu O, Karamysheva T, Bugrov A, Rubtsov N. New Insights into Phasmatodea Chromosomes. Genes (Basel) 2017; 8:genes8110327. [PMID: 29149047 PMCID: PMC5704240 DOI: 10.3390/genes8110327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Currently, approximately 3000 species of stick insects are known; however, chromosome numbers, which range between 21 and 88, are known for only a few of these insects. Also, centromere banding staining (C-banding) patterns were described for fewer than 10 species, and fluorescence in situ hybridization (FISH) was applied exclusively in two Leptynia species. Interestingly, 10–25% of stick insects (Phasmatodea) are obligatory or facultative parthenogenetic. As clonal and/or bisexual reproduction can affect chromosomal evolution, stick insect karyotypes need to be studied more intensely. Chromosome preparation from embryos of five Phasmatodea species (Medauroidea extradentata, Sungaya inexpectata, Sipyloidea sipylus, Phaenopharos khaoyaiensis, and Peruphasma schultei) from four families were studied here by C-banding and FISH applying ribosomal deoxyribonucleic acid (rDNA) and telomeric repeat probes. For three species, data on chromosome numbers and structure were obtained here for the first time, i.e., S. inexpectata, P. khaoyaiensis, and P. schultei. Large C-positive regions enriched with rDNA were identified in all five studied, distantly related species. Some of these C-positive blocks were enriched for telomeric repeats, as well. Chromosomal evolution of stick insects is characterized by variations in chromosome numbers as well as transposition and amplification of repetitive DNA sequences. Here, the first steps were made towards identification of individual chromosomes in Phasmatodea.
Collapse
Affiliation(s)
- Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Olesya Buleu
- Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Tatyana Karamysheva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Alexander Bugrov
- Novosibirsk State University, 630090 Novosibirsk, Russia.
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Nikolai Rubtsov
- Novosibirsk State University, 630090 Novosibirsk, Russia.
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| |
Collapse
|
6
|
Henson JD, Lau LM, Koch S, Martin La Rotta N, Dagg RA, Reddel RR. The C-Circle Assay for alternative-lengthening-of-telomeres activity. Methods 2016; 114:74-84. [PMID: 27595911 DOI: 10.1016/j.ymeth.2016.08.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022] Open
Abstract
The C-Circle Assay has satisfied the need for a rapid, robust and quantitative ALT assay that responds quickly to changes in ALT activity. The C-Circle Assay involves (i) extraction or simple preparation (Quick C-Circle Preparation) of the cell's DNA, which includes C-Circles (ii) amplification of the self-primed C-Circles with a rolling circle amplification reaction and (iii) sequence specific detection of the amplification products by native telomeric DNA dot blot or telomeric qPCR. Here we detail the protocols and considerations required to perform the C-Circle Assay and its controls, which include exonuclease removal of linear telomeric DNA, production of the synthetic C-Circle C96 and modulation of ALT activity by γ-irradiation.
Collapse
Affiliation(s)
- Jeremy D Henson
- Cancer Cell Immortality Group, Adult Cancer Program, Prince of Wales Clinical School, UNSW Australia, NSW, Australia.
| | - Loretta M Lau
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Sylvia Koch
- Cancer Cell Immortality Group, Adult Cancer Program, Prince of Wales Clinical School, UNSW Australia, NSW, Australia
| | - Nancy Martin La Rotta
- Cancer Cell Immortality Group, Adult Cancer Program, Prince of Wales Clinical School, UNSW Australia, NSW, Australia
| | - Rebecca A Dagg
- Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
7
|
|