1
|
Delcour C, Khawaja N, Gonzalez-Duque S, Lebon S, Talbi A, Drira L, Chevenne D, Ajlouni K, de Roux N. Estrogen Receptor α Inactivation in 2 Sisters: Different Phenotypic Severities for the Same Pathogenic Variant. J Clin Endocrinol Metab 2022; 107:e2553-e2562. [PMID: 35134944 DOI: 10.1210/clinem/dgac065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Estrogens play an essential role in reproduction. Their action is mediated by nuclear α and β receptors (ER) and by membrane receptors. Only 3 females and 2 males, from 3 families, with a loss of ERα function have been reported to date. OBJECTIVE We describe here a new family, in which 2 sisters display endocrine and ovarian defects of different severities despite carrying the same homozygous rare variant of ESR1. METHODS A 36-year-old woman from a consanguineous Jordanian family presented with primary amenorrhea and no breast development, with high plasma levels of 17β-estradiol (E2), follicle-stimulating hormone and luteinizing hormone, and enlarged multifollicular ovaries, strongly suggesting estrogen resistance. Her 18-year-old sister did not enter puberty and had moderately high levels of E2, high plasma gonadotropin levels, and normal ovaries. RESULTS Genetic analysis identified a homozygous variant of ESR1 leading to the replacement of a highly conserved glutamic acid with a valine (ERα-E385V). The transient expression of ERα-E385V in HEK293A and MDA-MB231 cells revealed highly impaired ERE-dependent transcriptional activation by E2. The analysis of the KISS1 promoter activity revealed that the E385V substitution induced a ligand independent activation of ERα. Immunofluorescence analysis showed that less ERα-E385V than ERα-WT was translocated into the nucleus in the presence of E2. CONCLUSION These 2 new cases are remarkable given the difference in the severity of their ovarian and hormonal phenotypes. This phenotypic discrepancy may be due to a mechanism partially compensating for the ERα loss of function.
Collapse
Affiliation(s)
- Clémence Delcour
- Université de Paris, INSERM UMR 1141 NeuroDiderot, 75019 Paris, France
| | - Nahla Khawaja
- National Center for Diabetes, Endocrinology and Genetics, Amman 11942, Jordan
| | - Sergio Gonzalez-Duque
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Sophie Lebon
- Université de Paris, INSERM UMR 1141 NeuroDiderot, 75019 Paris, France
| | - Abir Talbi
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Leila Drira
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Didier Chevenne
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Kamel Ajlouni
- National Center for Diabetes, Endocrinology and Genetics, Amman 11942, Jordan
| | - Nicolas de Roux
- Université de Paris, INSERM UMR 1141 NeuroDiderot, 75019 Paris, France
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| |
Collapse
|
2
|
Wang X, Zhang Y, Li Y, Tang M, Deng Q, Mao J, Du L. Estrogen Regulates Glucose Metabolism in Cattle Neutrophils Through Autophagy. Front Vet Sci 2021; 8:773514. [PMID: 34912878 PMCID: PMC8666889 DOI: 10.3389/fvets.2021.773514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Hypoglycemia resulting from a negative energy balance (NEB) in periparturient cattle is the major reason for a reduced glycogen content in polymorphonuclear neutrophils (PMNs). The lack of glycogen induces PMNs dysfunction and is responsible for the high incidence of perinatal diseases. The perinatal period is accompanied by dramatic changes in sex hormones levels of which estrogen (17β-estradiol, E2) has been shown to be closely associated with PMNs function. However, the precise regulatory mechanism of E2 on glucose metabolism in cattle PMNs has not been elucidated. Cattle PMNs were cultured in RPMI 1640 with 2.5 (LG), 5.5 (NG) and 25 (HG) mM glucose and E2 at 20 (EL), 200 (EM) and 450 (EH) pg/mL. We found that E2 maintained PMNs viability in different glucose conditions, and promoted glycogen synthesis by inhibiting PFK1, G6PDH and GSK-3β activity in LG while enhancing PFK1 and G6PDH activity and inhibiting GSK-3β activity in HG. E2 increased the ATP content in LG but decreased it in HG. This indicated that the E2-induced increase/decrease of ATP content may be independent of glycolysis and the pentose phosphate pathway (PPP). Further analysis showed that E2 promoted the activity of hexokinase (HK) and GLUT1, GLUT4 and SGLT1 expression in LG, while inhibiting GLUT1, GLUT4 and SGLT1 expression in HG. Finally, we found that E2 increased LC3, ATG5 and Beclin1 expression, inhibited p62 expression, promoting AMPK-dependent autophagy in LG, but with the opposite effect in HG. Moreover, E2 increased the Bcl-2/Bax ratio and decreased the apoptosis rate of PMNs in LG but had the opposite effect in HG. These results showed that E2 could promote AMPK-dependent autophagy and inhibit apoptosis in response to glucose-deficient environments. This study elucidated the detailed mechanism by which E2 promotes glycogen storage through enhancing glucose uptake and retarding glycolysis and the PPP in LG. Autophagy is essential for providing ATP to maintain the survival and immune potential of PMNs. These results provided significant evidence for further understanding the effects of E2 on PMNs immune potential during the hypoglycemia accompanying perinatal NEB in cattle.
Collapse
Affiliation(s)
- Xinbo Wang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yuming Zhang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yansong Li
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Mingyu Tang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Qinghua Deng
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Jingdong Mao
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Liyin Du
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| |
Collapse
|
3
|
Poulard C, Jacquemetton J, Trédan O, Cohen PA, Vendrell J, Ghayad SE, Treilleux I, Marangoni E, Le Romancer M. Oestrogen Non-Genomic Signalling is Activated in Tamoxifen-Resistant Breast Cancer. Int J Mol Sci 2019; 20:ijms20112773. [PMID: 31195751 PMCID: PMC6600329 DOI: 10.3390/ijms20112773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Endocrine therapies targeting oestrogen signalling have significantly improved breast cancer management. However, their efficacy is limited by intrinsic and acquired resistance to treatment, which remains a major challenge for oestrogen receptor α (ERα)-positive tumours. Though many studies using in vitro models of endocrine resistance have identified putative actors of resistance, no consensus has been reached. We demonstrated previously that oestrogen non-genomic signalling, characterized by the formation of the ERα/Src/PI3K complex, is activated in aggressive breast cancers (BC). We wondered herein whether the activation of this pathway is also involved in resistance to endocrine therapies. We studied the interactions between ERα and Src or PI3K by proximity ligation assay (PLA) in in-vitro and in-vivo endocrine therapy-resistant breast cancer models. We reveal an increase in ERα/Src and ERα/PI3K interactions in patient-derived xenografts (PDXs) with acquired resistance to tamoxifen, as well as in tamoxifen-resistant MCF-7 cells compared to parental counterparts. Moreover, no interactions were observed in breast cancer cells resistant to other endocrine therapies. Finally, the use of a peptide inhibiting the ERα–Src interaction partially restored tamoxifen sensitivity in resistant cells, suggesting that such components could constitute promising targets to circumvent resistance to tamoxifen in BC.
Collapse
Affiliation(s)
- Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
| | - Julien Jacquemetton
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
| | - Olivier Trédan
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Centre Léon Bérard, Medical Oncology Department, F-69000 Lyon, France.
| | - Pascale A Cohen
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
| | - Julie Vendrell
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Solid Tumor Laboratory, Department of Pathology and Oncobiology, CHU Montpellier, 34000 Montpellier, France.
| | - Sandra E Ghayad
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Department of Biology, Faculty of Science II, EDST, Lebanese University, Fanar 90656, Lebanon.
| | - Isabelle Treilleux
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Centre Léon Bérard, Pathology Department, F-69000 Lyon, France.
| | | | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
| |
Collapse
|
4
|
Tu L, Wang Y, Chen D, Xiang P, Shen J, Li Y, Wang S. Protective Effects of Notoginsenoside R1 via Regulation of the PI3K-Akt-mTOR/JNK Pathway in Neonatal Cerebral Hypoxic-Ischemic Brain Injury. Neurochem Res 2018; 43:1210-1226. [PMID: 29696512 PMCID: PMC5996020 DOI: 10.1007/s11064-018-2538-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/22/2018] [Accepted: 04/21/2018] [Indexed: 01/21/2023]
Abstract
Notoginsenoside R1 (NGR1) is a predominant phytoestrogen extracted from Panax notoginseng that has recently been reported to play important roles in the treatment of cardiac dysfunction, diabetic kidney disease, and acute liver failure. Studies have suggested that NGR1 may be a viable treatment of hypoxic-ischemic brain damage (HIBD) in neonates by reducing endoplasmic reticulum stress via estrogen receptors (ERs). However, whether NGR1 has other neuroprotective mechanisms or long-term neuroprotective effects is unclear. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons and unilateral ligation of the common carotid artery (CCL) in 7-day-old postnatal Sprague Dawley (SD) rats followed by exposure to a hypoxic environment were used to mimic an HIBD episode. We assessed the efficacy of NGR1 by measuring neuronal damage with MTT assay and assessed brain injury by TTC staining and brain water content detection 24–48 h after OGD/HIE. Simultaneously, we measured the long-term neurophysiological effects using the beam walking test (5 weeks after HI) and Morris water maze test 5–6 weeks after HI. Expression of PI3K-Akt-mTOR/JNK (24 h after HI or OGD/R) proteins was detected by Western blotting after stimulation with HI, NGR1, LY294002 (PI3K inhibitor), 740Y-P (PI3K agonist), or ICI 182780(estrogen receptors inhibitor). The results indicated that NGR1 exerted neuroprotective effects by inhibiting neuronal apoptosis and promoting cell survival via the PI3K-Akt-mTOR/JNK signaling pathways by targeting ER in neonatal hypoxic–ischemic injury.
Collapse
Affiliation(s)
- Liu Tu
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ping Xiang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jingjing Shen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
5
|
Kulkoyluoglu E, Madak-Erdogan Z. Nuclear and extranuclear-initiated estrogen receptor signaling crosstalk and endocrine resistance in breast cancer. Steroids 2016; 114:41-47. [PMID: 27394959 DOI: 10.1016/j.steroids.2016.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
Abstract
Estrogens regulate function of reproductive and non-reproductive tissues in healthy and diseased states including breast cancer. They mainly work through estrogen receptor alpha (ERα) and/or estrogen receptor beta (ERβ). There are various ERα targeting agents that have been used for treatment of ER (+) breast tumors. The impact of direct nuclear activity of ER is very well characterized in ER (+) breast cancers and development and progression of endocrine resistance. Recent studies also suggested important roles for extranuclear-initiated ERα pathways, which would decrease the potency and efficiency of ERα targeting agents. In this mini-review, we will discuss the role of nuclear and extra-nuclear ER signaling and how they relate to therapy resistance in breast cancer.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, USA.
| |
Collapse
|
6
|
Chu M, Sun C, Chen W, Jin G, Gong J, Zhu M, Yuan J, Dai J, Wang M, Pan Y, Song Y, Ding X, Guo X, Du M, Xia Y, Kan H, Zhang Z, Hu Z, Wu T, Shen H. Personal exposure to PM2.5, genetic variants and DNA damage: a multi-center population-based study in Chinese. Toxicol Lett 2015; 235:172-178. [PMID: 25889363 DOI: 10.1016/j.toxlet.2015.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 01/06/2023]
Abstract
Exposure to particulate matter (e.g., PM2.5) may result in DNA damage, a major culprit in mutagenesis and environmental toxicity. DNA damage levels may vary among individuals simultaneously exposed to PM2.5, however, the genetic determinants are still unclear. To explore whether PM2.5 exposure and genetic variants contribute to the alteration in DNA damage, we recruited 328 subjects from three independent cohorts (119 from Zhuhai, 123 from Wuhan and 86 from Tianjin) in southern, central and northern China with different PM2.5 exposure levels. Personal 24-h PM2.5 exposure levels and DNA damage levels of peripheral blood lymphocytes were evaluated. Genotyping were performed using Illumina Human Exome BeadChip with 241,305 single nucleotide variants (SNVs). The DNA damage levels are consistent with the PM2.5 exposure levels of each cohort. A total of 35 SNVs were consistently associated with DNA damage levels among the three cohorts with pooled P values less than 1.00×10(-3) after adjustment for age, gender, smoking status and PM2.5 exposure levels, of which, 18 SNVs together with gender and PM2.5 exposure levels were independent factors contributing to DNA damage. Gene-based test revealed 3 genes significantly associated with DNA damage levels (P=5.11×10(-3) for POLH, P=2.88×10(-3) for RIT2 and P=2.29×10(-2) for CNTN4). Gene ontology (GO) analyses indicated that the identified variants were significantly enriched in DNA damage response pathway. Our findings highlight the importance of genetic variation as well as personal PM2.5 exposure in modulating individual DNA damage levels.
Collapse
Affiliation(s)
- Minjie Chu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology and Biostatistics, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Chongqi Sun
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihong Chen
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianhang Gong
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yuan
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Pan
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanchao Song
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Ding
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yankai Xia
- Key Laboratory of Modern Toxicology of Ministry of Education, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tangchun Wu
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol 2015; 36:72-89. [PMID: 25159586 DOI: 10.1016/j.yfrne.2014.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
Abstract
There is now a growing appreciation that estrogens are capable of rapidly activating a number of signaling cascades within the central nervous system. In addition, there are an increasing number of studies reporting that 17β-estradiol, the major biologically active estrogen, can modulate cognition within a rapid time frame. Here we review recent studies that have begun to uncover the molecular and cellular framework which contributes to estrogens ability to rapidly modulate cognition. We first describe the mechanisms by which estrogen receptors (ERs) can couple to intracellular signaling cascades, either directly, or via the transactivation of other receptors. Subsequently, we review the evidence that estrogen can rapidly modulate both neuronal function and structure in the hippocampus and the cortex. Finally, we will discuss how estrogens may influence cognitive function through the modulation of neuronal structure, and the implications this may have on the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Katherine Sellers
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK.
| |
Collapse
|
8
|
Sosa LDV, Gutiérrez S, Petiti JP, Vaca AM, De Paul AL, Torres AI. Cooperative effect of E₂ and FGF2 on lactotroph proliferation triggered by signaling initiated at the plasma membrane. Am J Physiol Endocrinol Metab 2013; 305:E41-9. [PMID: 23651845 DOI: 10.1152/ajpendo.00027.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present work, we investigated the effect of 17β-estradiol (E₂) and basic fibroblast growth factor 2 (FGF2) on the lactotroph cell-proliferative response and the related membrane-initiated signaling pathway. Anterior pituitary mixed-cell cultures of random, cycling 3-mo-old female rats were treated with 10 nM E₂, E₂ membrane-impermeable conjugated BSA (E₂-BSA), PPT (ERα agonist), and DPN (ERβ agonist) alone or combined with FGF2 (10 ng/ml) for 30 min or 4 h. Although our results showed that the uptake of BrdU into the nucleus of lactotrophs was not modified by E₂ or FGF2 alone, a significant increase in the lactotroph uptake of BrdU was observed after E₂/FGF2 coincubation, with this effect being mimicked by PPT/FGF2. These proliferative effects were blocked by ICI 182,780 or PD-98059. The involvement of membrane ER in the proliferative response of prolactin cells induced by the steroid and FGF2 coincubation was confirmed using E₂-BSA, and the association between ERα and FGF receptor was observed after E₂/FGF2 treatment by immunoprecipitation. A significant increase in the ERK1/2 expression was noted after E₂, E₂-BSA, PPT, and FGF2 alone, which was more noticeable after E₂-BSA/FGF2, E₂/FGF2, or PPT/FGF2 treatments. This study provides evidence that E₂ and FGF2 exert a cooperative effect on the lactotroph proliferation principally by signaling initiated at the plasma membrane triggering a genomic effect mediated by MEK/ERK1/2, a common signaling pathway, that finally regulates the lactotroph population, thus contributing to pituitary plasticity.
Collapse
Affiliation(s)
- Liliana del V Sosa
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
9
|
Hermani A, Shukla A, Medunjanin S, Werner H, Mayer D. Insulin-like growth factor binding protein-4 and -5 modulate ligand-dependent estrogen receptor-α activation in breast cancer cells in an IGF-independent manner. Cell Signal 2013; 25:1395-402. [PMID: 23499909 DOI: 10.1016/j.cellsig.2013.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are modulators of numerous cellular processes including cell proliferation. Although IGFBPs classically act by sequestration of extracellular insulin-like growth factors (IGFs), thereby contributing to the fine-tuning of growth factor signals, IGF-independent actions of IGFBPs have also been described. In the breast, growth factor signaling in association with estradiol (E2)-stimulated estrogen receptor function is organized in a complex cross-talk. The importance of phosphatidylinositol 3-kinase/protein kinase B (Akt/PKB) pathway components for the E2-induced activation of estrogen receptor-alpha (ERα) is well accepted. Here we show that in the absence of IGFs, IGFBP-4 or IGFBP-5, either overexpressed in MCF-7 breast cancer cells or added exogenously, decreased the capability of E2 to induce ERα transcriptional activity. In addition, overexpression or addition of recombinant IGFBP-4 or IGFBP-5 resulted in reduction of E2-induced phosphorylation of Akt/PKB, GSK-3α/β and ERα in MCF-7 cells. The activation of the Akt/PKB-pathway describes a non-genomic effect of E2, which did not involve activation/phosphorylation of the IGF-I receptor (IGF-IR). Furthermore, knockdown of the IGF-IR did not affect the inhibition of E2-induced ERα phosphorylation by IGFBP-4 and 5. Moreover, IGFBP-4 and IGFBP-5 strongly decreased E2-triggered growth of MCF-7 cells. Our data suggest that IGFBPs interfere with the E2-induced activation of the Akt/PKB-pathway and prevent full hormone-dependent activation of ERα and breast cancer cell growth in an IGF- and IGF-IR-independent manner.
Collapse
Affiliation(s)
- Alexander Hermani
- Hormones and Signal Transduction Group, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Welsh AW, Lannin DR, Young GS, Sherman ME, Figueroa JD, Henry NL, Ryden L, Kim C, Love RR, Schiff R, Rimm DL. Cytoplasmic estrogen receptor in breast cancer. Clin Cancer Res 2011; 18:118-26. [PMID: 21980134 DOI: 10.1158/1078-0432.ccr-11-1236] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE In addition to genomic signaling, it is accepted that estrogen receptor-α (ERα) has nonnuclear signaling functions, which correlate with tamoxifen resistance in preclinical models. However, evidence for cytoplasmic ER localization in human breast tumors is less established. We sought to determine the presence and implications of nonnuclear ER in clinical specimens. EXPERIMENTAL DESIGN A panel of ERα-specific antibodies (SP1, MC20, F10, 60c, and 1D5) was validated by Western blot and quantitative immunofluorescent (QIF) analysis of cell lines and patient controls. Then eight retrospective cohorts collected on tissue microarrays were assessed for cytoplasmic ER. Four cohorts were from Yale (YTMA 49, 107, 130, and 128) and four others (NCI YTMA 99, South Swedish Breast Cancer Group SBII, NSABP B14, and a Vietnamese Cohort) from other sites around the world. RESULTS Four of the antibodies specifically recognized ER by Western and QIF analysis, showed linear increases in amounts of ER in cell line series with progressively increasing ER, and the antibodies were reproducible on YTMA 49 with Pearson correlations (r(2) values) ranging from 0.87 to 0.94. One antibody with striking cytoplasmic staining (MC20) failed validation. We found evidence for specific cytoplasmic staining with the other four antibodies across eight cohorts. The average incidence was 1.5%, ranging from 0 to 3.2%. CONCLUSIONS Our data show ERα is present in the cytoplasm in a number of cases using multiple antibodies while reinforcing the importance of antibody validation. In nearly 3,200 cases, cytoplasmic ER is present at very low incidence, suggesting its measurement is unlikely to be of routine clinical value.
Collapse
Affiliation(s)
- Allison W Welsh
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zheng S, Huang J, Zhou K, Zhang C, Xiang Q, Tan Z, Wang T, Fu X. 17β-Estradiol enhances breast cancer cell motility and invasion via extra-nuclear activation of actin-binding protein ezrin. PLoS One 2011; 6:e22439. [PMID: 21818323 PMCID: PMC3144228 DOI: 10.1371/journal.pone.0022439] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/27/2011] [Indexed: 12/21/2022] Open
Abstract
Estrogen promotes breast cancer metastasis. However, the detailed mechanism remains largely unknown. The actin binding protein ezrin is a key component in tumor metastasis and its over-expression is positively correlated to the poor outcome of breast cancer. In this study, we investigate the effects of 17β-estradiol (E2) on the activation of ezrin and its role in estrogen-dependent breast cancer cell movement. In T47-D breast cancer cells, E2 rapidly enhances ezrin phosphorylation at Thr567 in a time- and concentration-dependent manner. The signalling cascade implicated in this action involves estrogen receptor (ER) interaction with the non-receptor tyrosine kinase c-Src, which activates the phosphatidylinositol-3 kinase/Akt pathway and the small GTPase RhoA/Rho-associated kinase (ROCK-2) complex. E2 enhances the horizontal cell migration and invasion of T47-D breast cancer cells in three-dimensional matrices, which is reversed by transfection of cells with specific ezrin siRNAs. In conclusion, E2 promotes breast cancer cell movement and invasion by the activation of ezrin. These results provide novel insights into the effects of estrogen on breast cancer progression and highlight potential targets to treat endocrine-sensitive breast cancers.
Collapse
Affiliation(s)
- Shuhui Zheng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinghe Huang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chengxi Zhang
- Department of Cardiovascular Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuling Xiang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi Tan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (XDF); (THW)
| | - Xiaodong Fu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (XDF); (THW)
| |
Collapse
|
12
|
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) exerts multiple functions in determination of cell fate, tissue metabolism, and host immunity. Two synthetic PPARγ ligands (rosiglitazone and pioglitazone) were approved for the therapy of type-2 diabetes mellitus and are expected to serve as novel cures for inflammatory diseases and cancer. However, PPARγ and its ligands exhibit a janus-face behaviour as tumor modulators in various systems, resulting in either tumor suppression or tumor promotion. This may be in part due to signaling crosstalk to the mitogen-activated protein kinase (MAPK) cascades. The genomic activity of PPARγ is modulated, in addition to ligand binding, by phosphorylation of a serine residue by MAPKs, such as extracellular signal-regulated protein kinases-1/2 (ERK-1/2), or by nucleocytoplasmic compartmentalization through the ERK activators MAPK kinases-1/2 (MEK-1/2). PPARγ ligands themselves activate the ERK cascade through nongenomic and often PPARγ-independent signaling. In the current review, we discuss the molecular mechanisms and physiological implications of the crosstalk of PPARγ with MEK-ERK signaling and its potential as a novel drug target for cancer therapy in patients.
Collapse
|
13
|
Krug AW, Pojoga LH, Williams GH, Adler GK. Cell Membrane–Associated Mineralocorticoid Receptors? Hypertension 2011; 57:1019-25. [DOI: 10.1161/hypertensionaha.110.159459] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexander W. Krug
- From the Brigham and Women's Hospital/Harvard Medical School, Department of Endocrinology, Diabetes, and Hypertension, Boston, MA
| | - Luminita H. Pojoga
- From the Brigham and Women's Hospital/Harvard Medical School, Department of Endocrinology, Diabetes, and Hypertension, Boston, MA
| | - Gordon H. Williams
- From the Brigham and Women's Hospital/Harvard Medical School, Department of Endocrinology, Diabetes, and Hypertension, Boston, MA
| | - Gail K. Adler
- From the Brigham and Women's Hospital/Harvard Medical School, Department of Endocrinology, Diabetes, and Hypertension, Boston, MA
| |
Collapse
|
14
|
Wang C, Tian L, Popov VM, Pestell RG. Acetylation and nuclear receptor action. J Steroid Biochem Mol Biol 2011; 123:91-100. [PMID: 21167281 PMCID: PMC3056342 DOI: 10.1016/j.jsbmb.2010.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 01/06/2023]
Abstract
Acetylation is an essential post-translational modification featuring an acetyl group that is covalently conjugated to a protein substrate. Histone acetylation was first proposed nearly half a century ago by Dr. Vincent Allfrey. Subsequent studies have shown that the acetylated core histones are often associated with transcriptionally active chromatin. Acetylation at lysine residues of histone tails neutralizes the positive charge, which decreases their binding ability to DNA and increases the accessibility of transcription factors and coactivators to the chromatin template. In addition to histones, a number of non-histone substrates are acetylated. Acetylation of non-histone proteins governs biological processes, such as cellular proliferation and survival, transcriptional activity, and intracellular trafficking. We demonstrated that acetylation of transcription factors can regulate cellular growth. Furthermore, we showed that nuclear receptors (NRs) are acetylated at a phylogenetically conserved motif. Since our initial observations with the estrogen and androgen receptors, more than a dozen NRs have been shown to function as substrates for acetyltransferases with diverse functional consequences. This review focuses on the acetylation of NRs and the effect of acetylation on NR function. We discuss the potential role of acetylation in disease initiation and progression with an emphasis on tumorigenesis.
Collapse
Affiliation(s)
- Chenguang Wang
- Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - Lifeng Tian
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - Vladimir M. Popov
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - Richard G. Pestell
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Le Romancer M, Treilleux I, Bouchekioua-Bouzaghou K, Sentis S, Corbo L. Methylation, a key step for nongenomic estrogen signaling in breast tumors. Steroids 2010; 75:560-4. [PMID: 20116391 DOI: 10.1016/j.steroids.2010.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
Estrogen receptor alpha (ERalpha) is a member of a large conserved superfamily of steroid hormone nuclear receptors which regulates many physiological pathways by acting as a ligand-dependent transcription factor. Evidence is emerging that estrogens also induce rapid signaling to the downstream kinase cascades; however the mechanisms underlying this nongenomic function remain poorly understood. We have recently shown that ERalpha is methylated specifically by the arginine methyltransferase PRMT1 at arginine 260 in the DNA-binding domain of the receptor. This methylation event is required for mediating the extra-nuclear function of the receptor which would thereby interact with Src/FAK and p85 and propagate the signal to downstream transduction cascades that orchestrate cell proliferation and survival. Of particular interest, a possible role of methylated ERalpha in mammary tumorigenesis is also evident by the fact that, as demonstrated by immunohistochemical studies on a cohort of breast cancer patients, ERalpha is methylated in normal epithelial breast cells and is hypermethylated in a subset of breast cancers. Hypermethylation of ERalpha in breast cancer might cause hyperactivation of cellular kinase signaling, notably of Akt, described as a selective survival advantage for primary tumor cells even in the presence of anti-estrogens. A detailed understanding of the molecular mechanisms that control estrogen signaling in breast cancer is a crucial step in identifying new effective therapies.
Collapse
Affiliation(s)
- M Le Romancer
- Equipe labellisée La Ligue, U590 INSERM, Centre Léon Bérard, 28 rue Laennec, Lyon F-69008, France.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Chakravarty D, Tekmal RR, Vadlamudi RK. PELP1: A novel therapeutic target for hormonal cancers. IUBMB Life 2010; 62:162-9. [PMID: 20014005 DOI: 10.1002/iub.287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies implicate that the estrogen receptor (ER) coregulator proline-, glutamic acid-, and leucine-rich protein (PELP) 1 as playing critical roles in ER-genomic, ER-nongenomic, and ER-signaling cross talk with growth factor signaling pathways. PELP1 expression is deregulated in hormonal cancers and recent studies further elucidated the molecular mechanisms by which PELP1 regulates hormone therapy response. Although PELP1 is important for normal functions of the ER, the possibility to target ER-PELP1 axis appears to be an effective strategy for preventing hormonal carcinogenesis and therapy resistance. Thus, PELP1 may be useful as prognostic marker for hormonal cancers and PELP1 signaling may be useful to generate targeted therapeutics to overcome hormonal therapy resistance.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | |
Collapse
|
18
|
Abstract
The endothelium is a dynamic interface between the blood vessel and the circulating blood that plays a pivotal role in vascular homeostasis. As such, studies on sex steroid regulation of endothelial function are critical to understanding the role of sex steroids in cardiovascular health and disease. The classical model of steroid action involves liganded steroid receptors binding to specific response elements on target genes to regulate gene transcription. In whole organisms, the time lag between steroid administration and observable effects produced by newly synthesized protein is typically in the order of hours to days. And yet, some effects of steroids, such as vasodilatation, occur within seconds to minutes of steroid administration. Studies in multiple cell types have also shown that steroids can cause the rapid initiation of multiple signaling cascades and second messenger systems, prompting investigations into alternate, transcription independent mechanisms of steroid action. Studies of the endothelium over the past two decades have revealed fundamental mechanisms in rapid sex steroid signaling. In particular, endothelium-dependent vasodilatation by estradiol-induced activation of endothelial nitric oxide synthase has proven to be an uniquely informative model to study sex steroid signaling via classical sex steroid receptors localized to the cell membrane. Despite the complexity of feedback and cross talk between rapid sex steroid signaling and other modes of steroid action, recent studies in this field are facilitating the development of steroidal drugs that selectively target the ability of sex steroids to initiate signaling cascades.
Collapse
Affiliation(s)
- Renee W Y Chow
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia
| | | | | |
Collapse
|
19
|
Grossmann C, Husse B, Mildenberger S, Schreier B, Schuman K, Gekle M. Colocalization of mineralocorticoid and EGF receptor at the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:584-90. [DOI: 10.1016/j.bbamcr.2010.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/08/2010] [Accepted: 02/22/2010] [Indexed: 01/06/2023]
|
20
|
Teyssier C, Le Romancer M, Sentis S, Jalaguier S, Corbo L, Cavaillès V. Protein arginine methylation in estrogen signaling and estrogen-related cancers. Trends Endocrinol Metab 2010; 21:181-9. [PMID: 20005732 DOI: 10.1016/j.tem.2009.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/13/2009] [Accepted: 11/13/2009] [Indexed: 12/18/2022]
Abstract
Estrogen signaling pathways regulate multiple cellular processes including proliferation and differentiation, and dysregulation of these pathways underlies several human pathologies. Post-translational modifications (PTMs) play an important role in estrogen signaling. This review focuses on recent findings pertinent to arginine methylation of non-histone proteins and their implications in estrogen signaling. We describe protein arginine methyltransferases and demethylases, the role of methylarginine proteins in estrogen action and crosstalk with other PTMs such as phosphorylation and lysine methylation. The relationships between various PTMs form a specific code that is likely to play an important role in hormone signaling. In addition, dysregulation of arginine methylation or of enzymes responsible for these modifications could be key events in estrogen-dependent cancers such as breast cancer.
Collapse
|
21
|
Vadlamudi RK, Rajhans R, Chakravarty D, Nair BC, Nair SS, Evans DB, Chen S, Tekmal RR. Regulation of aromatase induction by nuclear receptor coregulator PELP1. J Steroid Biochem Mol Biol 2010; 118:211-8. [PMID: 19800002 PMCID: PMC2826517 DOI: 10.1016/j.jsbmb.2009.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/18/2009] [Accepted: 09/18/2009] [Indexed: 11/16/2022]
Abstract
Estradiol (E2), estrogen receptor (ER), ER-coregulators have been implicated in the development and progression of breast cancer. In situ E2 synthesis is implicated in tumor cell proliferation through autocrine or paracrine mechanisms, especially in post-menopausal women. Several recent studies demonstrated activity of aromatase P450 (Cyp19), a key enzyme that plays critical role in E2 synthesis in breast tumors. The mechanism by which tumors enhance aromatase expression is not completely understood. Recent studies from our laboratory suggested that PELP1 (Proline, Glutamic acid, Leucine rich Protein 1), a novel ER-coregulator, functions as a potential proto-oncogene and promotes tumor growth in nude mice models without exogenous E2 supplementation. In this study, we found that PELP1 deregulation contributes to increased expression of aromatase, local E2 synthesis and PELP1 cooperates with growth factor signaling components in the activation of aromatase. PELP1 deregulation uniquely up-regulated aromatase expression via activation of aromatase promoter I.3/II. Analysis of PELP1 driven mammary tumors in xenograft as well as in transgenic mouse models revealed increased aromatase expression. PELP1-mediated induction of aromatase requires functional Src and PI3K pathways. Chromatin immuno precipitation (ChIP) assays revealed that PELP1 is recruited to the Aro 1.3/II aromatase promoter. HER2 signaling enhances PELP1 recruitment to the aromatase promoter and PELP1 plays a critical role in HER2-mediated induction of aromatase expression. Mechanistic studies revealed that PELP1 interactions with orphan receptor ERRalpha, and histone demethylases play a role in the activation of aromatase promoter. Accordingly, ChIP analysis showed alterations in histone modifications at the aromatase promoter in the model cells that exhibit local E2 synthesis. Immunohistochemical analysis of breast tumor progression tissue arrays suggested that deregulation of aromatase expression occurs in advanced-stage and node-positive tumors, and that cooverexpression of PELP1 and aromatase occur in a sub set of tumors. Collectively, our results suggest that PELP1 regulation of aromatase represent a novel mechanism for in situ estrogen synthesis leading to tumor proliferation by autocrine loop and open a new avenue for ablating local aromatase activity in breast tumors.
Collapse
Affiliation(s)
- Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, and CTRC, San Antonio, TX, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rangasamy V, Mishra R, Mehrotra S, Sondarva G, Ray RS, Rao A, Chatterjee M, Rana B, Rana A. Estrogen suppresses MLK3-mediated apoptosis sensitivity in ER+ breast cancer cells. Cancer Res 2010; 70:1731-40. [PMID: 20145118 PMCID: PMC2963191 DOI: 10.1158/0008-5472.can-09-3492] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Little knowledge exists about the mechanisms by which estrogen can impede chemotherapy-induced cell death of breast cancer cells. 17beta-Estradiol (E(2)) hinders cytotoxic drug-induced cell death in estrogen receptor-positive (ER(+)) breast cancer cells. We noted that the activity of the proapoptotic mixed lineage kinase 3 (MLK3) kinase was relatively higher in estrogen receptor-negative (ER(-)) breast tumors, suggesting that E(2) might inhibit MLK3 activity. The kinase activities of MLK3 and its downstream target, c-Jun NH(2)-terminal kinase, were rapidly inhibited by E(2) in ER(+) but not in ER(-) cells. Specific knockdown of AKT1/2 prevented MLK3 inhibition by E(2), indicating that AKT mediated this event. Furthermore, MLK3 inhibition by E(2) involved phosphorylation of MLK3 Ser(674) by AKT, attenuating the proapoptotic function of MLK3. We found that a pan-MLK inhibitor (CEP-11004) limited Taxol-induced cell death and that E(2) accentuated this limitation. Taken together, our findings indicate that E(2) inhibits the proapoptotic function of MLK3 as a mechanism to limit cytotoxic drug-induced death of ER(+) breast cancer cells.
Collapse
Affiliation(s)
- Velusamy Rangasamy
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Rajakishore Mishra
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Suneet Mehrotra
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Gautam Sondarva
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Rajarshi S. Ray
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Arundhati Rao
- Department of Pathology, Scott and White Hospital and Texas A & M Health Science Center, College of Medicine, Temple, Texas 76504
| | - Malay Chatterjee
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Basabi Rana
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
- Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| | - Ajay Rana
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
- Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| |
Collapse
|
23
|
Thyroid-hormone-dependent activation of the phosphoinositide 3-kinase/Akt cascade requires Src and enhances neuronal survival. Biochem J 2009; 424:201-9. [PMID: 19747164 DOI: 10.1042/bj20090643] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have reported previously a non-genomic action of T3 (3,3',5-tri-iodothyronine), which stimulates the PI3K (phosphoinositide 3-kinase)/Akt pathway via p85alpha, the regulatory subunit of PI3K, in human skin fibroblasts. The aim of the present study was to elucidate the mechanism by which T3 activates PI3K, and to investigate the physiological role of this T3 action in neuronal cells. We found that T3 activates PI3K/Akt through Src. First, T3 rapidly induced the activation of Src and Akt in N2a cells expressing TRalpha1 (thyroid hormone receptor alpha1; N2aTRalpha), and both were attenuated by either the addition of a Src inhibitor or Src siRNA. In contrast, a PI3K inhibitor could only block the activation of Akt. Secondly, T3 enhanced TRalpha1-p85alpha-Src complex formation, which was also abrogated by a Src inhibitor. The activation of Src and PI3K/Akt contributes to the anti-apoptotic effect of T3 in N2aTRalpha cells. Moreover, it was also observed in primary cerebral cortical neurons that T3 induced the activation of PI3K/Akt and suppressed serum-deprivation-induced apoptosis. Together, the findings of the present study demonstrate a novel non-genomic action of T3 on neuronal cell survival, and provide new insights into the mechanism underlying this action, which involves Src activation and TRalpha1-p85alpha-Src complex formation.
Collapse
|
24
|
Grisouard J, Mayer D. Specific involvement of glycogen synthase kinase-3 in the function and activity of sex steroid hormone receptors reveals the complexity of their regulation. J Steroid Biochem Mol Biol 2009; 117:87-92. [PMID: 19703560 DOI: 10.1016/j.jsbmb.2009.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 12/15/2022]
Abstract
Protein kinases represent key nodes for the integration of multiple intracellular signalling pathways, resulting in modulation of both ligand-dependent and ligand-independent mechanisms of sex steroid receptor (sSR) signalling cascades. The proline-directed Ser/Thr kinases including mitogen-activated protein kinases and cyclin dependent kinases were especially reported to contribute to the function and activity of sSRs. The relevant effects of these kinases are well-documented but the impact of glycogen synthase kinase-3 (GSK-3), another member of this kinase family, has been underestimated. Indeed, the specific role of GSK-3 regarding the different sSRs will help to understand further the complexity of sSR signalling. So far, AR and ERalpha were identified as GSK-3 substrates. Additionally, the docking properties of GSK-3 were demonstrated to play a crucial role in sSR signal transduction. Reciprocally, GSK-3 was described as a potential target of non-genomic effects of sSRs. Therefore, GSK-3 regulates and is regulated by sSRs. This review focuses on the emerging and promising involvements of GSK-3 regarding the signalling cascade of the respective sSRs. This review represents a necessary complement of information to highlight the importance of GSK-3 regarding sSR function and activity.
Collapse
Affiliation(s)
- Jean Grisouard
- Hormones and Signal Transduction Group, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | |
Collapse
|
25
|
do Nascimento GRA, Barros YVR, Wells AK, Khalil RA. Research into Specific Modulators of Vascular Sex Hormone Receptors in the Management of Postmenopausal Cardiovascular Disease. Curr Hypertens Rev 2009; 5:283-306. [PMID: 20694192 DOI: 10.2174/157340209789587717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiovascular disease (CVD) is more common in men and postmenopausal women than premenopausal women, suggesting vascular benefits of female sex hormones. Studies on the vasculature have identified estrogen receptors ERα, ERβ and a novel estrogen binding membrane protein GPR30, that mediate genomic and/or non-genomic effects. Estrogen promotes endothelium-dependent relaxation by inducing the production/activity of nitric oxide, prostacyclin, and hyperpolarizing factor, and inhibits the mechanisms of vascular smooth muscle contraction including [Ca(2+)](i), protein kinase C, Rho kinase and mitogen-activated protein kinase. Additional effects of estrogen on the cytoskeleton, matrix metalloproteinases and inflammatory factors contribute to vascular remodeling. However, the experimental evidence did not translate into vascular benefits of menopausal hormone therapy (MHT), and the HERS, HERS-II and WHI clinical trials demonstrated adverse cardiovascular events. The discrepancy has been partly related to delayed MHT and potential changes in the vascular ER amount, integrity, affinity, and downstream signaling pathways due to the subjects' age and preexisting CVD. The adverse vascular effects of MHT also highlighted the need of specific modulators of vascular sex hormone receptors. The effectiveness of MHT can be improved by delineating the differences in phramcokinetics and pharmacodynamics of natural, synthetic, and conjugated equine estrogens. Estriol, "hormone bioidenticals" and phytoestrogens are potential estradiol substitutes. The benefits of low dose MHT, and transdermal or vaginal estrogens over oral preparations are being evaluated. Specific ER modulators (SERMs) and ER agonists are being developed to maximize the effects on vascular ERs. Also, the effects of estrogen are being examined in the context of the whole body hormonal environment and the levels of progesterone and androgens. Thus, the experimental vascular benefits of estrogen can be translated to the outcome of MHT in postmenopausal CVD, as more specific modulators of sex hormone receptors become available and are used at the right dose, route of administration and timing, depending on the subject's age and preexisting cardiovascular condition.
Collapse
|
26
|
Popov VM, Zhou J, Shirley LA, Quong J, Yeow WS, Wright JA, Wu K, Rui H, Vadlamudi RK, Jiang J, Kumar R, Wang C, Pestell RG. The cell fate determination factor DACH1 is expressed in estrogen receptor-alpha-positive breast cancer and represses estrogen receptor-alpha signaling. Cancer Res 2009; 69:5752-60. [PMID: 19605405 DOI: 10.1158/0008-5472.can-08-3992] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Dachshund (dac) gene, initially cloned as a dominant inhibitor of the Drosophila hyperactive EGFR mutant ellipse, encodes a key component of the cell fate determination pathway involved in Drosophila eye development. Analysis of more than 2,200 breast cancer samples showed improved survival by some 40 months in patients whose tumors expressed DACH1. Herein, DACH1 and estrogen receptor-alpha (ERalpha) expressions were inversely correlated in human breast cancer. DACH1 bound and inhibited ERalpha function. Nuclear DACH1 expression inhibited estradiol (E(2))-induced DNA synthesis and cellular proliferation. DACH1 bound ERalpha in immunoprecipitation-Western blotting, associated with ERalpha in chromatin immunoprecipitation, and inhibited ERalpha transcriptional activity, requiring a conserved DS domain. Proteomic analysis identified proline, glutamic acid, and leucine rich protein 1 (PELP1) as a DACH1-binding protein. The DACH1 COOH terminus was required for binding to PELP1. DACH1 inhibited induction of ERalpha signaling. E(2) recruited ERalpha and disengaged corepressors from DACH1 at an endogenous ER response element, allowing PELP1 to serve as an ERalpha coactivator. DACH1 expression, which is lost in poor prognosis human breast cancer, functions as an endogenous inhibitor of ERalpha function.
Collapse
Affiliation(s)
- Vladimir M Popov
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Meyer MR, Haas E, Prossnitz ER, Barton M. Non-genomic regulation of vascular cell function and growth by estrogen. Mol Cell Endocrinol 2009; 308:9-16. [PMID: 19549587 PMCID: PMC2780565 DOI: 10.1016/j.mce.2009.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/22/2009] [Accepted: 03/05/2009] [Indexed: 12/21/2022]
Abstract
Estrogens exert rapid, non-genomic effects, which are mediated by plasma membrane-associated estrogen receptors (mER) mERalpha and mERbeta, and the intracellular transmembrane G protein-coupled estrogen receptor (GPER). Membrane-initiated responses contribute to transcriptional activation, resulting in a complex interplay of nuclear and extra-nuclear mechanisms that mediate the acute physiological responses to estrogens. Non-genomic estrogen signaling also activates a variety of intracellular estrogen signaling pathways that regulate vascular function and cell growth involving rapid but also long-term effects. This review discusses recent advances in understanding of the mechanisms of non-genomic estrogen receptor signaling in the vascular wall.
Collapse
Affiliation(s)
- Matthias R. Meyer
- Departement für Innere Medizin, Klinik und Poliklinik für Innere Medizin, Universitätsspital Zürich, Switzerland
| | - Elvira Haas
- Departement für Innere Medizin, Klinik und Poliklinik für Innere Medizin, Universitätsspital Zürich, Switzerland
| | - Eric R. Prossnitz
- Department of Cell Biology and Physiology, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, United States
| | - Matthias Barton
- Departement für Innere Medizin, Klinik und Poliklinik für Innere Medizin, Universitätsspital Zürich, Switzerland
- Molecular Internal Medicine, University of Zurich, 8057 Zurich
- Corresponding author: Matthias Barton, M.D., Professor and Head, Molecular Internal Medicine, University of Zurich, LTK Y44 G22, Winterthurer Strasse 190, 8057 Zurich, Switzerland. Tel. +41-44-635 5451 Fax +41-44-635 6875,
| |
Collapse
|
28
|
Klinge CM. Estrogen Regulation of MicroRNA Expression. Curr Genomics 2009; 10:169-83. [PMID: 19881910 PMCID: PMC2705850 DOI: 10.2174/138920209788185289] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/18/2009] [Accepted: 03/16/2009] [Indexed: 02/07/2023] Open
Abstract
Women outlive men, but life expectancy is not influenced by hormone replacement (estrogen + progestin) therapy. Estrogens appear to protect brain, cardiovascular tissues, and bone from aging. Estrogens regulate genes directly through binding to estrogen receptors alpha and beta (ERalpha and ERbeta) that are ligand-activated transcription factors and indirectly by activating plasma membrane-associated ER which, in turns, activates intracellular signaling cascades leading to altered gene expression. MicroRNAs (miRNAs) are short (19-25 nucleotides), naturally-occurring, non-coding RNA molecules that base-pair with the 3' untranslated region of target mRNAs. This interaction either blocks translation of the mRNA or targets the mRNA transcript to be degraded. The human genome contains ~ 700-1,200 miRNAs. Aberrant patterns of miRNA expression are implicated in human diseases including breast cancer. Recent studies have identified miRNAs regulated by estrogens in human breast cancer cells, human endometrial stromal and myometrial smooth muscle cells, rat mammary gland, and mouse uterus. The decline of estradiol levels in postmenopausal women has been implicated in various age-associated disorders. The role of estrogen-regulated miRNA expression, the target genes of these miRNAs, and the role of miRNAs in aging has yet to be explored.
Collapse
Affiliation(s)
- Carolyn M Klinge
- />Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
29
|
Tzelepi V, Grivas P, Kefalopoulou Z, Kalofonos H, Varakis JN, Sotiropoulou-Bonikou G. Expression of estrogen receptor co-regulators NCoR and PELP1 in epithelial cells and myofibroblasts of colorectal carcinomas: cytoplasmic translocation of NCoR in epithelial cells correlates with worse prognosis. Virchows Arch 2008; 454:41-53. [DOI: 10.1007/s00428-008-0708-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 11/16/2008] [Accepted: 11/18/2008] [Indexed: 02/03/2023]
|
30
|
Abstract
Estrogen controls multiple biological functions through binding to estrogen receptors (ERs). Traditionally, ERs have been regarded as transcription factors regulating the expression of target genes. However, growing evidence of rapid estrogen's actions in a number of tissues has been accumulating and alternative mechanisms of signal transduction have been proposed. These so called "extra-nuclear actions" do not require gene expression or protein synthesis and are independent of the nuclear localization of ERs. Indeed, some of these actions are elicited by ERs residing at or near the plasma membrane. Membrane-associated molecules such as ion channels, G proteins, the tyrosine kinase c-Src as well as growth factor receptors are modulated by liganded ERs within the membrane, leading to the activation of downstream cascades such as mitogen-activated protein kinase, phosphatidylinositol 3-OH kinase, protein kinase A, and protein kinase C. These cascades mediate some important rapid actions of estrogen, such as the activation of nitric oxide synthesis or the remodeling of actin cytoskeleton. In addition, these pathways are critical for the regulation of the expression of a number of target proteins implicated in cell proliferation, apoptosis, differentiation, movement, and homeostasis. In this manner, the extra-nuclear pathways are tightly integrated with the genomic pathways to orchestrate the full spectrum of estrogen's biological functions. The recent advancements in the characterization of the molecular basis of the extra-nuclear signaling of estrogen helps to understand the role of estrogen on human cells, and may in future turn out to be of relevance for clinical purposes.
Collapse
Affiliation(s)
- Xiao-Dong Fu
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | | |
Collapse
|
31
|
Nagpal JK, Nair S, Chakravarty D, Rajhans R, Pothana S, Brann DW, Tekmal RR, Vadlamudi RK. Growth factor regulation of estrogen receptor coregulator PELP1 functions via Protein Kinase A pathway. Mol Cancer Res 2008; 6:851-61. [PMID: 18505929 DOI: 10.1158/1541-7786.mcr-07-2030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PELP1 (proline-rich, glutamic acid-rich, and leucine-rich protein-1) is a potential proto-oncogene that functions as a coregulator of estrogen receptor (ER), and its expression is deregulated during breast cancer progression. Emerging evidence suggests growth factor signaling crosstalk with ER as one possible mechanism by which breast tumors acquire resistance to therapy. In this study, we examined mechanisms by which growth factors modulate PELP1 functions, leading to activation of ER. Using in vivo labeling assays, we have found that growth factors promote phosphorylation of PELP1. Utilizing a panel of substrate-specific phosphorylated antibodies, we discovered that growth factor stimulation promotes phosphorylation of PELP1 that is recognized by a protein kinase A (PKA) substrate-specific antibody. Accordingly, growth factor-mediated PELP1 phosphorylation was effectively blocked by PKA-specific inhibitor H89. Utilizing purified PKA enzyme and in vitro kinase assays, we obtained evidence of direct PELP1 phosphorylation by PKA. Using deletion and mutational analysis, we identified PELP1 domains that are phosphorylated by PKA. Interestingly, site-directed mutagenesis of the putative PKA site in PELP1 compromised growth factor-induced activation and subnuclear localization of PELP1 and also affected PELP1-mediated transactivation function. Utilizing MCF-7 cells expressing a PELP1 mutant that cannot be phosphorylated by PKA, we provide mechanistic insights by which growth factor signaling regulates ER transactivation in a PELP1-dependent manner. Collectively, these findings suggest that growth factor signals promote phosphorylation of ER coactivator PELP1 via PKA pathway, and such modification may have functional implications in breast tumors with deregulated growth factor signaling.
Collapse
Affiliation(s)
- Jatin K Nagpal
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dimple C, Nair SS, Rajhans R, Pitcheswara PR, Liu J, Balasenthil S, Le XF, Burow ME, Auersperg N, Tekmal RR, Broaddus RR, Vadlamudi RK. Role of PELP1/MNAR signaling in ovarian tumorigenesis. Cancer Res 2008; 68:4902-9. [PMID: 18559538 DOI: 10.1158/0008-5472.can-07-5698] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging evidence suggests that nuclear receptor (NR) coregulators have potential to act as master genes and their deregulation can promote oncogenesis. Proline-, glutamic acid-, and leucine-rich protein-1 (PELP1/MNAR) is a novel NR coregulator. Its expression is deregulated in hormone-driven cancers. However, the role of PELP1/MNAR in ovarian cancer progression remains unknown. Analysis of serial analysis of gene expression data suggested deregulation of PELP1/MNAR expression in ovarian tumors. Western analysis of PELP1/MNAR in normal and serous ovarian tumor tissues showed 3- to 4-fold higher PELP1/MNAR expression in serous tumors compared with normal ovarian tissues. To examine the significance of PELP1/MNAR in ovarian cancer progression, we have generated model cells that overexpress PELP1/MNAR and ovarian cancer cells in which PELP1/MNAR expression is down-regulated by stable expression of PELP1/MNAR-specific shRNA. Down-regulation of PELP1/MNAR in cancerous ovarian model cells (OVCAR3) resulted in reduced proliferation, affected the magnitude of c-Src and protein kinase B (AKT) signaling, and reduced tumorigenic potential of ovarian cancer cells in a nude mouse model. PELP1/MNAR overexpression in nontumorigenic immortalized surface epithelial cells (IOSE cells) promoted constitutive activation of c-Src and AKT signaling pathways and promoted anchorage-independent growth. Immunohistochemical studies using human ovarian cancer tissue arrays (n = 123) showed that PELP1/MNAR is 2- to 3-fold overexpressed in 60% of ovarian tumors, and PELP1/MNAR deregulation occurs in all different types of ovarian cancer. Collectively, these results suggest that PELP1/MNAR signaling plays a role in ovarian cancer cell proliferation and survival, and that its expression is deregulated in ovarian carcinomas.
Collapse
Affiliation(s)
- Chakravarty Dimple
- Department of Obstetrics and Gynecology and Cancer Research and Therapy Center at The University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Brann DW, Zhang QG, Wang RM, Mahesh VB, Vadlamudi RK. PELP1--a novel estrogen receptor-interacting protein. Mol Cell Endocrinol 2008; 290:2-7. [PMID: 18571832 PMCID: PMC2578818 DOI: 10.1016/j.mce.2008.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 02/07/2023]
Abstract
PELP1 (proline-, glutamic acid-, and leucine-rich protein-1) is a novel estrogen receptor (ER)-interacting protein that has been implicated to be important for mediation of both the genomic and nongenomic signaling of 17beta-estradiol (E2). PELP1 contains ten nuclear receptor-interacting boxes (LXXLL motifs), which allow it to interact with ER and other nuclear hormone receptors, a zinc finger, a glutamic acid-rich domain, and two proline-rich domains. The proline-rich regions contain several consensus PXXP motifs, which allow PELP1 to couple the ER with SH3 domain-containing kinase signaling proteins, such as Src and PI3K P85 regulatory subunit. PELP1 is expressed in many different brain regions, including the hippocampus, hypothalamus, and cerebral cortex. Further work has demonstrated that PELP1 is colocalized with ER-alpha in neurons in various brain regions. PELP1 is primarily expressed in neurons, with some expression also observed in glia. Subcellular localization studies revealed that PELP1 is highly localized in the cell nucleus of neurons, with some cytoplasm localization as well, and PELP1 is also localized at synaptic sites. Work in other tissues has demonstrated that PELP1 is critical for nongenomic and genomic signaling by E2, as PELP1 knockdown studies significantly attenuates E2-induced activation of ERK and Akt signaling pathways, and inhibits E2 genomic transcriptional effects on gene expression in breast cancer cells. Preliminary studies in the brain, suggests that similar roles may exist for PELP1 in the brain, but this remains to be established, and further work to characterize the precise roles and functions of PELP1 in the brain are needed.
Collapse
Affiliation(s)
- Darrell W Brann
- Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
34
|
Le Romancer M, Treilleux I, Leconte N, Robin-Lespinasse Y, Sentis S, Bouchekioua-Bouzaghou K, Goddard S, Gobert-Gosse S, Corbo L. Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol Cell 2008; 31:212-21. [PMID: 18657504 DOI: 10.1016/j.molcel.2008.05.025] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 02/16/2008] [Accepted: 05/13/2008] [Indexed: 02/08/2023]
Abstract
Evidence is emerging that estrogen receptor alpha (ERalpha) is central to the rapid transduction of estrogen signaling to the downstream kinase cascades; however, the mechanisms underlying this nongenomic function are not fully understood. Here we report a paradigm of ERalpha regulation through arginine methylation by PRMT1, which transiently methylates arginine 260 within the ERalpha DNA-binding domain. This methylation event is required for mediating the extranuclear function of the receptor by triggering its interaction with the p85 subunit of PI3K and Src. Furthermore, we find that the focal adhesion kinase (FAK), a Src substrate involved in the migration process, is also recruited in this complex. Our data indicate that the methylation of ERalpha is a physiological process occurring in the cytoplasm of normal and malignant epithelial breast cells and that ERalpha is hypermethylated in a subset of breast cancers.
Collapse
Affiliation(s)
- Muriel Le Romancer
- Inserm, U590, Lyon F-69008, France; Université de Lyon, Lyon 1, ISPB and IFR62, Lyon F-69003, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim BC, Ryu MS, Oh SP, Lim IK. TIS21/(BTG2) negatively regulates estradiol-stimulated expansion of hematopoietic stem cells by derepressing Akt phosphorylation and inhibiting mTOR signal transduction. Stem Cells 2008; 26:2339-48. [PMID: 18556508 DOI: 10.1634/stemcells.2008-0327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been known that 12-O-tetradecanoyl phorbol-13-acetate-inducible sequence 21 (TIS21), ortholog of human B-cell translocation gene 2, regulates expansions of stage-specific thymocytes and hematopoietic progenitors. In the present study, lineage-negative (Lin(-))/stem cell antigen-1-positive (Sca-1+)/c-Kit+ (LSK) cell content was significantly elevated in bone marrow (BM) of TIS21-knockout (TIS21(-/-)) female mice, suggesting 17beta-estradiol (E(2))-regulated progenitor expansion. E(2) induced DNA synthesis and cell proliferation of mouse embryonic fibroblasts (MEFs) isolated from TIS21(-/-) mice, but not wild type (WT). In contrast to WT, E(2) failed to activate protein kinase B (Akt) in the TIS21(-/-) MEFs, independent of extracellular signal-regulated kinase 1/2 (Erk1/2) activation. Despite attenuation of Akt activation, mammalian target of rapamycin (mTOR) was constitutively activated in the TIS21(-/-) MEFs. Furthermore, mitogen-activated protein kinase 1/2 inhibitor or knockdown of Erk1 could restore activation of Akt and downregulate mTOR. Immunoprecipitation showed Akt preferentially bound to phosphorylated Erk1/2 (p-Erk1/2) in TIS21(-/-) cells, but reconstitution of TIS21 inhibited their interaction. E(2)-injected TIS21(-/-) male mice also increased LSK cells in BM. Taken together, expansion of hematopoietic progenitors in TIS21(-/-) female mice might be through inhibition of Akt activation, and constitutive activation of mTOR via preferential binding of TIS21 to E(2)-induced p-Erk1/2, compared with that of Akt. Our results suggest that TIS21 plays a pivotal role in maintaining the hematopoietic stem cell compartment and hematopoiesis.
Collapse
Affiliation(s)
- Bong Cho Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, Korea
| | | | | | | |
Collapse
|
36
|
Lee K, Liu Y, Mo JQ, Zhang J, Dong Z, Lu S. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer. BMC Cancer 2008; 8:158. [PMID: 18518979 PMCID: PMC2430719 DOI: 10.1186/1471-2407-8-158] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 06/02/2008] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERalpha)-mediated signaling axis. METHODS Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERalpha activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERalpha activation. Finally, the interaction of Vav3 and ERalpha was assessed by GST pull-down analysis. RESULTS We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERalpha partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERalpha activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERalpha. Consistent with its function for AR, the DH domain of Vav3 was essential for ERalpha activation. CONCLUSION Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERalpha and enhances ERalpha activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERalpha-mediated signaling axis and play a role in breast cancer development and/or progression.
Collapse
Affiliation(s)
- Kiwon Lee
- Department of Pathology, University of Cincinnati College of Medicine, 2120 E, Galbraith Road, Cincinnati, OH 45237, USA.
| | | | | | | | | | | |
Collapse
|
37
|
O'Malley BW, Qin J, Lanz RB. Cracking the coregulator codes. Curr Opin Cell Biol 2008; 20:310-5. [PMID: 18499426 DOI: 10.1016/j.ceb.2008.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/07/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
The study of the genetic code has collectively revealed that the biochemical basis of heredity is uniform for nearly all known forms of life. Genetic approaches have generated a much better appreciation and understanding of many aspects of biological processes-and in some cases provided strategies for the treatment of human diseases. Still, the enormous and undoubtedly impressive amount of information gathered on gene sequences, their myriad expression patterns and translation into proteins is insufficient to answer seemingly simpler questions such as to what sets us humans apart from much more undemanding species while sharing almost the same sets of genes. Regulation of the proteome by post-translational modifications (PTMs) is beginning to be understood as a major contributing factor to the structural and functional diversity in biology and for defining cellular mechanisms in particular. Covalent, PTMs provide an astonishingly rich and specific basis for an ultrafast regulation of cellular processes, many of which converge to transcription units to control gene expression. With this essay we intend to share with the reader the rapid growth of our knowledge of the many conjunctions that exist between PTMs and key cellular processes that have emerged by studying the nuclear receptors (NRs) and their transcriptional coregulators.
Collapse
Affiliation(s)
- Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States.
| | | | | |
Collapse
|
38
|
Grossmann C, Freudinger R, Mildenberger S, Husse B, Gekle M. EF Domains Are Sufficient for Nongenomic Mineralocorticoid Receptor Actions. J Biol Chem 2008; 283:7109-16. [DOI: 10.1074/jbc.m708751200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
Klinge CM, Wickramasinghe NS, Ivanova MM, Dougherty SM. Resveratrol stimulates nitric oxide production by increasing estrogen receptor alpha-Src-caveolin-1 interaction and phosphorylation in human umbilical vein endothelial cells. FASEB J 2008; 22:2185-97. [PMID: 18296501 DOI: 10.1096/fj.07-103366] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epidemiological studies correlate moderate red wine consumption to reduced incidence of cardiovascular disease. Resveratrol is a polyphenolic compound in red wine that has cardioprotective effects in rodents. Although endothelial cell (EC) studies indicate that micromolar resveratrol has diverse biological activities, these concentrations are not physiologically relevant because human oral ingestion provides only brief exposure to nanomolar plasma levels. Previously, we reported that nanomolar resveratrol activated ERK1/2 signaling in bovine aortic ECs (BAECs). The goal of this study was to determine the mechanisms by which nanomolar resveratrol rapidly activates endothelial nitric oxide synthase (eNOS) in human umbilical vein ECs (HUVECs). We report for the first time that resveratrol increased interaction between estrogen receptor alpha (ER alpha), caveolin-1 (Cav-1) and c-Src, and increased phosphorylation of Cav-1, c-Src, and eNOS. Pretreatment with the lipid raft disruptor beta-methyl cyclodextrin or G alpha inhibitor pertussis toxin blocked resveratrol- and E(2)-induced eNOS activation and NO production. Depletion of endogenous ER alpha, not ERbeta, by siRNA attenuated resveratrol- and E(2)-induced ERK1/2, Src, and eNOS phosphorylation. Our data demonstrate that nanomolar resveratrol induces ER alpha-Cav-1-c-SRC interaction, resulting in NO production through a G alpha-protein-coupled mechanism. This study provides important new insights into mechanisms for the beneficial effects of resveratrol in ECs.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
40
|
Raz L, Khan MM, Mahesh VB, Vadlamudi RK, Brann DW. Rapid Estrogen Signaling in the Brain. Neurosignals 2008; 16:140-53. [DOI: 10.1159/000111559] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Hughes PJ, Lee JS, Reiner NE, Brown G. The vitamin D receptor-mediated activation of phosphatidylinositol 3-kinase (PI3Kα) plays a role in the 1α,25-dihydroxyvitamin D3-stimulated increase in steroid sulphatase activity in myeloid leukaemic cell lines. J Cell Biochem 2008; 103:1551-72. [PMID: 17879954 DOI: 10.1002/jcb.21545] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this article we show that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) stimulates the activity of the class IA phosphatidylinositol 3-kinase PI3Kalpha and its downstream target Akt in HL60, U937 and THP-1 myeloid leukaemic cell lines. Furthermore, we show that the classical nuclear vitamin D receptor (VDR(nuc)) is involved in this activation of the PI3K/Akt signalling in these cell lines. We have previously shown that the activity of steroid sulphatase is stimulated in HL60, U937 and THP-1 myeloid leukaemic cell lines by 1alpha,25(OH)(2)D(3) (Hughes et al., [2001] Biochem J 355:361-371; Hughes et al., [2005] J Cell Biochem 94:1175-1189; Hughes and Brown [2006] J Cell Biochem 98:590-617). In this article we show that the 1alpha,25(OH)(2)D(3)-stimulated increase in signalling via the PI3K/Akt pathway plays a role in the increase in steroid sulphatase activity in the HL60 U937 and THP-1 cell lines. We used a variety of pharmacological and biochemical approaches to show that activation of PI3Kalpha mediates the 1alpha,25(OH)(2)D(3)-stimulated increase in steroid sulphatase activity in myeloid leukaemic cells. We also show that the PI3K/Akt dependent activation of NF-kappaB plays a role in the 1alpha,25(OH)(2)D(3)-stimulated increase in steroid sulphatase activity in myeloid leukaemic cells.
Collapse
Affiliation(s)
- Philip J Hughes
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
42
|
Vadlamudi RK, Kumar R. Functional and biological properties of the nuclear receptor coregulator PELP1/MNAR. NUCLEAR RECEPTOR SIGNALING 2007; 5:e004. [PMID: 17525794 PMCID: PMC1876599 DOI: 10.1621/nrs.05004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 04/26/2007] [Indexed: 01/05/2023]
Abstract
Proline-, glutamic acid-, and leucine-rich protein (PELP)1, also known as modulator of nongenomic actions of the estrogen receptor (MNAR), is a novel nuclear receptor coregulator with a multitude of functions. PELP1/MNAR serves as a scaffolding protein that couples various signaling complexes with nuclear receptors and participates in genomic and nongenomic functions. Recent data suggest that PELP1/MNAR expression is deregulated in several cancers, including breast, endometrial, prostate, and ovarian cancer, and that PELP1/MNAR interacts with several oncogenes. In this review, we summarize the emerging biological properties and functions of PELP1/MNAR.
Collapse
Affiliation(s)
- Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| | | |
Collapse
|
43
|
Suzuki T, Yu HP, Hsieh YC, Choudhry MA, Bland KI, Chaudry IH. Estrogen-mediated activation of non-genomic pathway improves macrophages cytokine production following trauma-hemorrhage. J Cell Physiol 2007; 214:662-72. [PMID: 17786973 DOI: 10.1002/jcp.21255] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although 17beta-estradiol (E2) attenuates the alterations in Kupffer cells and splenic macrophages (MPhi) cytokine production following trauma-hemorrhage, the mechanism by which this occurs remains unknown. Utilizing a cell-impermeable E2 conjugated with BSA (E2-BSA), we examined the non-genomic effects of E2 on the above two cell population cytokine production, MAPK and transcription factors activation following trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean BP 40 mmHg for 90 min, then resuscitation). E2, E2-BSA (1 mg/kg E2) with or without an estrogen receptor antagonist (ICI 182,780), or vehicle was administrated during resuscitation. Two hrs thereafter, Kupffer cells and SMPhi production of IL-6, TNF-alpha, and IL-10, activation of MAPK (p38, ERK-1/2, and JNK), and transcription factors (NF-kappaB and AP-1) were determined. IL-6, TNF-alpha, and IL-10 productive capacity, MAPK, and transcription factors activation increased in Kupffer cells while they decreased in SMPhi following trauma-hemorrhage. However, E2 administration normalized all of these alterations. Although E2-BSA also attenuated the alterations in cytokine production/transcription factors, the values were higher in Kupffer cells and lower in SMPhi compared to shams. In contrast, E2-BSA prevented trauma-hemorrhage-mediated changes in MAPK activation to the same extent as E2. Co-administration of ICI 182,780 abolished E2-BSA effects. Although some MAPK inhibitors suppressed cytokine production, the inhibitor effectiveness was dependent on cytokine, cell type and animal condition (trauma-hemorrhage or sham). Thus, E2 effects on Kupffer cells and SMPhi cytokine production and transcription factors activation following trauma-hemorrhage are mediated at least in part via non-genomic pathway and these non-genomic effects are likely mediated via MAPK pathways.
Collapse
Affiliation(s)
- Takao Suzuki
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
By regulating activities and expression levels of key signaling molecules, estrogens control mechanisms that are responsible for crucial cellular functions. Ligand binding to estrogen receptor (ER) leads to conformational changes that regulate the receptor activity, its interaction with other proteins and DNA. In the cytoplasm, receptor interactions with kinases and scaffolding molecules regulate cell signaling cascades (extranuclear/nongenomic action). In the nucleus, estrogens control a repertoire of coregulators and other auxiliary proteins that are associated with ER, which in turn determines the nature of regulated genes and level of their expression (genomic action). The combination of genomic and nongenomic actions of estrogens ultimately confers the cell-type and tissue-type selectivity. Recent studies have revealed some important new insights into the molecular mechanisms underlying ER action, which may help to explain the functional basis of existing selective ER modulators (SERMs) and provide evidence into how ER might be selectively targeted to achieve specific therapeutic goals. In this review, we will summarize some new molecular details that relate to estrogen signaling. We will also discuss some new strategies that may potentially lead to the development of functionally selective ER modulators that can separate between the beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS as well as the "detrimental," proliferative effects in reproductive tissues and organs.
Collapse
Affiliation(s)
- Boris J Cheskis
- Women's Health and Musculoskeletal Biology, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | |
Collapse
|