1
|
Gurumurthy A, Wu Q, Nar R, Paulsen K, Trumbull A, Fishman RC, Brand M, Strouboulis J, Qian Z, Bungert J. TFII-I/Gtf2i and Erythro-Megakaryopoiesis. Front Physiol 2020; 11:590180. [PMID: 33101065 PMCID: PMC7546208 DOI: 10.3389/fphys.2020.590180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022] Open
Abstract
TFII-I is a ubiquitously expressed transcription factor that positively or negatively regulates gene expression. TFII-I has been implicated in neuronal and immunologic diseases as well as in thymic epithelial cancer. Williams–Beuren Syndrome (WBS) is caused by a large hemizygous deletion on chromosome 7q11.23 which encompasses 26–28 genes, including GTF2I, the human gene encoding TFII-I. A subset of WBS patients has recently been shown to present with macrocytosis, a mild anemia characterized by enlarged erythrocytes. We conditionally deleted the TFII-I/Gtf2i gene in adult mice by tamoxifen induced Cre-recombination. Bone marrow cells revealed defects in erythro-megakaryopoiesis and an increase in expression of the adult β-globin gene. The data show that TFII-I acts as a repressor of β–globin gene transcription and that it is implicated in the differentiation of erythro-megakaryocytic cells.
Collapse
Affiliation(s)
- Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Qiong Wu
- Division of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Rukiye Nar
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Kimberly Paulsen
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Alexis Trumbull
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Ryan C Fishman
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - John Strouboulis
- Comprehensive Cancer Center, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Zhijian Qian
- Division of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
McCleary-Wheeler AL, Paradise BD, Almada LL, Carlson AJ, Marks DL, Vrabel A, Vera RE, Sigafoos AN, Olson RL, Fernandez-Zapico ME. TFII-I-mediated polymerase pausing antagonizes GLI2 induction by TGFβ. Nucleic Acids Res 2020; 48:7169-7181. [PMID: 32544250 PMCID: PMC7367210 DOI: 10.1093/nar/gkaa476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
The modulation of GLI2, an oncogenic transcription factor commonly upregulated in cancer, is in many cases not due to genetic defects, suggesting dysregulation through alternative mechanisms. The identity of these molecular events remains for the most part unknown. Here, we identified TFII-I as a novel repressor of GLI2 expression. Mapping experiments suggest that the INR region of the GLI2 promoter is necessary for GLI2 repression. ChIP studies showed that TFII-I binds to this INR. TFII-I knockdown decreased the binding of NELF-A, a component of the promoter–proximal pausing complex at this site, and enriched phosphorylated RNAPII serine 2 in the GLI2 gene body. Immunoprecipitation studies demonstrate TFII-I interaction with SPT5, another pausing complex component. TFII-I overexpression antagonized GLI2 induction by TGFβ, a known activator of GLI2 in cancer cells. TGFβ reduced endogenous TFII-I binding to the INR and increased RNAPII SerP2 in the gene body. We demonstrate that this regulatory mechanism is not exclusive of GLI2. TGFβ-induced genes CCR7, TGFβ1 and EGR3 showed similar decreased TFII-I and NELF-A INR binding and increased RNAPII SerP2 in the gene body post-TGFβ treatment. Together these results identify TFII-I as a novel repressor of a subset of TGFβ-responsive genes through the regulation of RNAPII pausing.
Collapse
Affiliation(s)
- Angela L McCleary-Wheeler
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Brooke D Paradise
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Annika J Carlson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - David L Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Anne Vrabel
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ashley N Sigafoos
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel L Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
3
|
DNA·RNA triple helix formation can function as a cis-acting regulatory mechanism at the human β-globin locus. Proc Natl Acad Sci U S A 2019; 116:6130-6139. [PMID: 30867287 DOI: 10.1073/pnas.1900107116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have identified regulatory mechanisms in which an RNA transcript forms a DNA duplex·RNA triple helix with a gene or one of its regulatory elements, suggesting potential auto-regulatory mechanisms in vivo. We describe an interaction at the human β-globin locus, in which an RNA segment embedded in the second intron of the β-globin gene forms a DNA·RNA triplex with the HS2 sequence within the β-globin locus control region, a major regulator of globin expression. We show in human K562 cells that the triplex is stable in vivo. Its formation causes displacement from HS2 of major transcription factors and RNA Polymerase II, and consequently in loss of factors and polymerase that bind to the human ε- and γ-globin promoters, which are activated by HS2 in K562 cells. This results in reduced expression of these genes. These effects are observed when a small length of triplex-forming RNA is introduced into cells, or when a full-length intron-containing human β-globin transcript is expressed. Related results are obtained in human umbilical cord blood-derived erythroid progenitor-2 cells, in which β-globin expression is similarly affected by triplex formation. These results suggest a model in which RNAs conforming to the strict sequence rules for DNA·RNA triplex formation may participate in feedback regulation of genes in cis.
Collapse
|
4
|
Seguin A, Takahashi-Makise N, Yien YY, Huston NC, Whitman JC, Musso G, Wallace JA, Bradley T, Bergonia HA, Kafina MD, Matsumoto M, Igarashi K, Phillips JD, Paw BH, Kaplan J, Ward DM. Reductions in the mitochondrial ABC transporter Abcb10 affect the transcriptional profile of heme biosynthesis genes. J Biol Chem 2017; 292:16284-16299. [PMID: 28808058 DOI: 10.1074/jbc.m117.797415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/09/2017] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette subfamily B member 10 (Abcb10) is a mitochondrial ATP-binding cassette (ABC) transporter that complexes with mitoferrin1 and ferrochelatase to enhance heme biosynthesis in developing red blood cells. Reductions in Abcb10 levels have been shown to reduce mitoferrin1 protein levels and iron import into mitochondria, resulting in reduced heme biosynthesis. As an ABC transporter, Abcb10 binds and hydrolyzes ATP, but its transported substrate is unknown. Here, we determined that decreases in Abcb10 did not result in protoporphyrin IX accumulation in morphant-treated zebrafish embryos or in differentiated Abcb10-specific shRNA murine Friend erythroleukemia (MEL) cells in which Abcb10 was specifically silenced with shRNA. We also found that the ATPase activity of Abcb10 is necessary for hemoglobinization in MEL cells, suggesting that the substrate transported by Abcb10 is important in mediating increased heme biosynthesis during erythroid development. Inhibition of 5-aminolevulinic acid dehydratase (EC 4.2.1.24) with succinylacetone resulted in both 5-aminolevulinic acid (ALA) accumulation in control and Abcb10-specific shRNA MEL cells, demonstrating that reductions in Abcb10 do not affect ALA export from mitochondria and indicating that Abcb10 does not transport ALA. Abcb10 silencing resulted in an alteration in the heme biosynthesis transcriptional profile due to repression by the transcriptional regulator Bach1, which could be partially rescued by overexpression of Alas2 or Gata1, providing a mechanistic explanation for why Abcb10 shRNA MEL cells exhibit reduced hemoglobinization. In conclusion, our findings rule out that Abcb10 transports ALA and indicate that Abcb10's ATP-hydrolysis activity is critical for hemoglobinization and that the substrate transported by Abcb10 provides a signal that optimizes hemoglobinization.
Collapse
Affiliation(s)
- Alexandra Seguin
- From the Division of Microbiology and Immunology, Department of Pathology, and
| | | | | | | | | | - Gabriel Musso
- the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jared A Wallace
- From the Division of Microbiology and Immunology, Department of Pathology, and
| | - Thomas Bradley
- From the Division of Microbiology and Immunology, Department of Pathology, and
| | - Hector A Bergonia
- the Division of Hematology-Oncology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | | | - Mitsuyo Matsumoto
- the Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Kazuhiko Igarashi
- the Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - John D Phillips
- the Division of Hematology-Oncology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Barry H Paw
- the Division of Hematology and.,the Division of Hematology-Oncology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Jerry Kaplan
- From the Division of Microbiology and Immunology, Department of Pathology, and
| | - Diane M Ward
- From the Division of Microbiology and Immunology, Department of Pathology, and
| |
Collapse
|
5
|
Shen Y, Nar R, Fan AX, Aryan M, Hossain MA, Gurumurthy A, Wassel PC, Tang M, Lu J, Strouboulis J, Bungert J. Functional interrelationship between TFII-I and E2F transcription factors at specific cell cycle gene loci. J Cell Biochem 2017; 119:712-722. [PMID: 28657656 DOI: 10.1002/jcb.26235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022]
Abstract
Transcription factor TFII-I is a multifunctional protein implicated in the regulation of cell cycle and stress-response genes. Previous studies have shown that a subset of TFII-I associated genomic sites contained DNA-binding motifs for E2F family transcription factors. We analyzed the co-association of TFII-I and E2Fs in more detail using bioinformatics, chromatin immunoprecipitation, and co-immunoprecipitation experiments. The data show that TFII-I interacts with E2F transcription factors. Furthermore, TFII-I, E2F4, and E2F6 interact with DNA-regulatory elements of several genes implicated in the regulation of the cell cycle, including DNMT1, HDAC1, CDKN1C, and CDC27. Inhibition of TFII-I expression led to a decrease in gene expression and in the association of E2F4 and E2F6 with these gene loci in human erythroleukemia K562 cells. Finally, TFII-I deficiency reduced the proliferation of K562 cells and increased the sensitivity toward doxorubicin toxicity. The results uncover novel interactions between TFII-I and E2Fs and suggest that TFII-I mediates E2F function at specific cell cycle genes.
Collapse
Affiliation(s)
- Yong Shen
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Rukiye Nar
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Alex X Fan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Mahmoud Aryan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Paul C Wassel
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Ming Tang
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Guo Y, Fu X, Jin Y, Sun J, Liu Y, Huo B, Li X, Hu X. Histone demethylase LSD1-mediated repression of GATA-2 is critical for erythroid differentiation. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3153-62. [PMID: 26124638 PMCID: PMC4482369 DOI: 10.2147/dddt.s81911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background The transcription factor GATA-2 is predominantly expressed in hematopoietic stem and progenitor cells and counteracts the erythroid-specific transcription factor GATA-1, to modulate the proliferation and differentiation of hematopoietic cells. During hematopoietic cell differentiation, GATA-2 exhibits dynamic expression patterns, which are regulated by multiple transcription factors. Methods Stable LSD1-knockdown cell lines were established by growing murine erythroleukemia (MEL) or mouse embryonic stem cells together with virus particles, in the presence of Polybrene® at 4 μg/mL, for 24–48 hours followed by puromycin selection (1 μg/mL) for 2 weeks. Real-time polymerase chain reaction (PCR)-based quantitative chromatin immunoprecipitation (ChIP) analysis was used to test whether the TAL1 transcription factor is bound to 1S promoter in the GATA-2 locus or whether LSD1 colocalizes with TAL1 at the 1S promoter. The sequential ChIP assay was utilized to confirm the role of LSD1 in the regulation of H3K4me2 at the GATA-2 locus during erythroid differentiation. Western blot analysis was employed to detect the protein expression. The alamarBlue® assay was used to examine the proliferation of the cells, and the absorbance was monitored at optical density (OD) 570 nm and OD 600 nm. Results In this study, we showed that LSD1 regulates the expression of GATA-2 during erythroid differentiation. Knockdown of LSD1 results in increased GATA-2 expression and inhibits the differentiation of MEL and embryonic stem cells. Furthermore, we demonstrated that LSD1 binds to the 1S promoter of the GATA-2 locus and suppresses GATA-2 expression, via histone demethylation. Conclusion Our data revealed that LSD1 mediates erythroid differentiation, via epigenetic modification of the GATA-2 locus.
Collapse
Affiliation(s)
- Yidi Guo
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun, People's Republic of China ; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Yue Jin
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Jing Sun
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Ye Liu
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Bo Huo
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xiang Li
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xin Hu
- School of Life Sciences, Jilin University, Changchun, People's Republic of China ; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People's Republic of China ; National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
7
|
Datta TK, Rajput SK, Wee G, Lee K, Folger JK, Smith GW. Requirement of the transcription factor USF1 in bovine oocyte and early embryonic development. Reproduction 2014; 149:203-12. [PMID: 25385722 DOI: 10.1530/rep-14-0445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Upstream stimulating factor 1 (USF1) is a basic helix-loop-helix transcription factor that specifically binds to E-box DNA motifs, known cis-elements of key oocyte expressed genes essential for oocyte and early embryonic development. However, the functional and regulatory role of USF1 in bovine oocyte and embryo development is not understood. In this study, we demonstrated that USF1 mRNA is maternal in origin and expressed in a stage specific manner during the course of oocyte maturation and preimplantation embryonic development. Immunocytochemical analysis showed detectable USF1 protein during oocyte maturation and early embryonic development with increased abundance at 8-16-cell stage of embryo development, suggesting a potential role in embryonic genome activation. Knockdown of USF1 in germinal vesicle stage oocytes did not affect meiotic maturation or cumulus expansion, but caused significant changes in mRNA abundance for genes associated with oocyte developmental competence. Furthermore, siRNA-mediated depletion of USF1 in presumptive zygote stage embryos demonstrated that USF1 is required for early embryonic development to the blastocyst stage. A similar (USF2) yet unique (TWIST2) expression pattern during oocyte and early embryonic development for related E-box binding transcription factors known to cooperatively bind USF1 implies a potential link to USF1 action. This study demonstrates that USF1 is a maternally derived transcription factor required for bovine early embryonic development, which also functions in regulation of JY1, GDF9, and FST genes associated with oocyte competence.
Collapse
Affiliation(s)
- Tirtha K Datta
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| | - Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| | - Gabbine Wee
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| | - KyungBon Lee
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Fan AX, Papadopoulos GL, Hossain MA, Lin IJ, Hu J, Tang TM, Kilberg MS, Renne R, Strouboulis J, Bungert J. Genomic and proteomic analysis of transcription factor TFII-I reveals insight into the response to cellular stress. Nucleic Acids Res 2014; 42:7625-41. [PMID: 24875474 PMCID: PMC4081084 DOI: 10.1093/nar/gku467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed transcription factor TFII-I exerts both positive and negative effects on transcription. Using biotinylation tagging technology and high-throughput sequencing, we determined sites of chromatin interactions for TFII-I in the human erythroleukemia cell line K562. This analysis revealed that TFII-I binds upstream of the transcription start site of expressed genes, both upstream and downstream of the transcription start site of repressed genes, and downstream of RNA polymerase II peaks at the ATF3 and other stress responsive genes. At the ATF3 gene, TFII-I binds immediately downstream of a Pol II peak located 5 kb upstream of exon 1. Induction of ATF3 expression increases transcription throughout the ATF3 gene locus which requires TFII-I and correlates with increased association of Pol II and Elongin A. Pull-down assays demonstrated that TFII-I interacts with Elongin A. Partial depletion of TFII-I expression caused a reduction in the association of Elongin A with and transcription of the DNMT1 and EFR3A genes without a decrease in Pol II recruitment. The data reveal different interaction patterns of TFII-I at active, repressed, or inducible genes, identify novel TFII-I interacting proteins, implicate TFII-I in the regulation of transcription elongation and provide insight into the role of TFII-I during the response to cellular stress.
Collapse
Affiliation(s)
- Alex Xiucheng Fan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Giorgio L Papadopoulos
- Departmentof Biology, University of Crete, GR1409 Heraklion, Greece Divisionof Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR 16672, Greece
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - I-Ju Lin
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Jianhong Hu
- Departmentof Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Tommy Ming Tang
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Rolf Renne
- Divisionof Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR 16672, Greece
| | - John Strouboulis
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA Departmentof Biology, University of Crete, GR1409 Heraklion, Greece Divisionof Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR 16672, Greece Departmentof Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| |
Collapse
|
9
|
p53 requires the stress sensor USF1 to direct appropriate cell fate decision. PLoS Genet 2014; 10:e1004309. [PMID: 24831529 PMCID: PMC4022457 DOI: 10.1371/journal.pgen.1004309] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/02/2014] [Indexed: 11/19/2022] Open
Abstract
Genomic instability is a major hallmark of cancer. To maintain genomic integrity, cells are equipped with dedicated sensors to monitor DNA repair or to force damaged cells into death programs. The tumor suppressor p53 is central in this process. Here, we report that the ubiquitous transcription factor Upstream Stimulatory factor 1 (USF1) coordinates p53 function in making proper cell fate decisions. USF1 stabilizes the p53 protein and promotes a transient cell cycle arrest, in the presence of DNA damage. Thus, cell proliferation is maintained inappropriately in Usf1 KO mice and in USF1-deficient melanoma cells challenged by genotoxic stress. We further demonstrate that the loss of USF1 compromises p53 stability by enhancing p53-MDM2 complex formation and MDM2-mediated degradation of p53. In USF1-deficient cells, the level of p53 can be restored by the re-expression of full-length USF1 protein similarly to what is observed using Nutlin-3, a specific inhibitor that prevents p53-MDM2 interaction. Consistent with a new function for USF1, a USF1 truncated protein lacking its DNA-binding and transactivation domains can also restore the induction and activity of p53. These findings establish that p53 function requires the ubiquitous stress sensor USF1 for appropriate cell fate decisions in response to DNA-damage. They underscore the new role of USF1 and give new clues of how p53 loss of function can occur in any cell type. Finally, these findings are of clinical relevance because they provide new therapeutic prospects in stabilizing and reactivating the p53 pathway. Cancer is a complex disease that is characterized by the sequential accumulation of genetic mutations. Exposure to environmental agents, such as solar ultraviolet, induces such alterations and thus contributes to the development of genomic instability. The tumor suppressor p53 has a central role in orchestrating cellular responses to genotoxic stress. In response to DNA-damage, p53 is stabilized and activated to direct cell fate decisions. Cells in which p53 stabilization is compromised become more vulnerable to mutagenic agents and hence the mutation rate increases, which promotes tumor development. Stabilization of p53 is thus a critical step towards cancer prevention. Using a genetic approach, we demonstrate that the ubiquitous transcription factor Upstream Stimulatory factor 1 (USF1) is required for immediate p53 stabilization and appropriate cell fate decisions following genotoxic stress. Furthermore, we show that this involves a novel function of USF1 that underscores its critical role as a stress sensor. The loss of USF1 expression should thus be considered as a potential initiator of tumorigenesis in the context of environmental insults.
Collapse
|
10
|
Barrow JJ, Li Y, Hossain M, Huang S, Bungert J. Dissecting the function of the adult β-globin downstream promoter region using an artificial zinc finger DNA-binding domain. Nucleic Acids Res 2014; 42:4363-74. [PMID: 24497190 PMCID: PMC3985677 DOI: 10.1093/nar/gku107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Developmental stage-specific expression of the β-type globin genes is regulated by many cis- and trans-acting components. The adult β-globin gene contains an E-box located 60 bp downstream of the transcription start site that has been shown to bind transcription factor upstream stimulatory factor (USF) and to contribute to efficient in vitro transcription. We expressed an artificial zinc finger DNA-binding domain (ZF-DBD) targeting this site (+60 ZF-DBD) in murine erythroleukemia cells. Expression of the +60 ZF-DBD reduced the recruitment and elongation of RNA polymerase II (Pol II) at the adult β-globin gene and at the same time increased the binding of Pol II at locus control region (LCR) element HS2, suggesting that Pol II is transferred from the LCR to the globin gene promoters. Expression of the +60 ZF-DBD also reduced the frequency of interactions between the LCR and the adult β-globin promoter. ChIP-exonuclease-sequencing revealed that the +60ZF-DBD was targeted to the adult β-globin downstream promoter and that the binding of the ZF-DBD caused alterations in the association of USF2 containing protein complexes. The data demonstrate that targeting a ZF-DBD to the adult β-globin downstream promoter region interferes with the LCR-mediated recruitment and activity of Pol II.
Collapse
Affiliation(s)
- Joeva J Barrow
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Shands Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, 32610, FL, USA
| | | | | | | | | |
Collapse
|
11
|
Rosenberg M, Fan AX, Lin IJ, Liang SY, Bungert J. Cell-cycle specific association of transcription factors and RNA polymerase ii with the human β-globin gene locus. J Cell Biochem 2013; 114:1997-2006. [PMID: 23519692 DOI: 10.1002/jcb.24542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 03/05/2013] [Indexed: 12/28/2022]
Abstract
The human β-globin genes are regulated by a locus control region (LCR) and are expressed at extremely high levels in erythroid cells. How transcriptional fidelity of highly expressed genes is regulated and maintained during the cell cycle is not completely understood. Here, we analyzed the association of transcription factor USF, the co-activator CBP, topoisomerase I (Topo I), basal transcription factor TFIIB, and RNA polymerase II (Pol II) with the β-globin gene locus at specific cell-cycle stages. The data demonstrate that while association of Pol II with globin locus associated chromatin decreased in mitotically arrested cells, it remained bound at lower levels at the γ-globin gene promoter. During early S-phase, association of CBP, USF, and Pol II with the globin gene locus decreased. The re-association of CBP and USF2 with the LCR preceded re-association of Pol II, suggesting that these proteins together mediate recruitment of Pol II to the β-globin gene locus during S-phase. Finally, we analyzed the association of Topo I with the globin gene locus during late S-phase. In general, Topo I association correlated with the binding of Pol II. Inhibition of Topo I activity reduced Pol II binding at the LCR and intergenic regions but not at the γ-globin gene promoter. The data demonstrate dynamic associations of transcription factors with the globin gene locus during the cell cycle and support previous results showing that specific components of transcription complexes remain associated with highly transcribed genes during mitosis.
Collapse
Affiliation(s)
- Michael Rosenberg
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, 32610
| | - Alex Xiucheng Fan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, 32610
| | - I-Ju Lin
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, 32610
| | - Shermi Y Liang
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, 32610
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, 32610
| |
Collapse
|
12
|
Bayarsaihan D, Makeyev AV, Enkhmandakh B. Epigenetic modulation by TFII-I during embryonic stem cell differentiation. J Cell Biochem 2013; 113:3056-60. [PMID: 22628223 DOI: 10.1002/jcb.24202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
TFII-I transcription factors play an essential role during early vertebrate embryogenesis. Genome-wide mapping studies by ChIP-seq and ChIP-chip revealed that TFII-I primes multiple genomic loci in mouse embryonic stem cells and embryonic tissues. Moreover, many TFII-I-bound regions co-localize with H3K4me3/K27me3 bivalent chromatin within the promoters of lineage-specific genes. This minireview provides a summary of current knowledge regarding the function of TFII-I in epigenetic control of stem cell differentiation.
Collapse
Affiliation(s)
- Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dentistry, University of Connecticut, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
13
|
Makeyev AV, Bayarsaihan D. ChIP-Chip Identifies SEC23A, CFDP1, and NSD1 as TFII-I Target Genes in Human Neural Crest Progenitor Cells. Cleft Palate Craniofac J 2012; 50:347-50. [PMID: 23145914 DOI: 10.1597/12-069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objectives : GTF2I and GTF2IRD1 genes located in Williams-Beuren syndrome (WBS) critical region encode TFII-I family transcription factors. The aim of this study was to map genomic sites bound by these proteins across promoter regions of developmental regulators associated with craniofacial development. Design : Chromatin was isolated from human neural crest progenitor cells and the DNA-binding profile was generated using the human RefSeq tiling promoter ChIP-chip arrays. Results : TFII-I transcription factors are recruited to the promoters of SEC23A, CFDP1, and NSD1 previously defined as TFII-I target genes. Moreover, our analysis revealed additional binding elements that contain E-boxes and initiator-like motifs. Conclusions : Genome-wide promoter binding studies revealed SEC23A, CFDP1, and NSD1 linked to craniofacial or dental development as direct TFII-I targets. Developmental regulation of these genes by TFII-I factors could contribute to the WBS-specific facial dysmorphism.
Collapse
|
14
|
Ben Mustapha M, Moumni I, Zorai A, Douzi K, Ghanem A, Abbes S. Microsatellite and Single Nucleotide Polymorphisms in the β-Globin Locus Control Region-Hypersensitive Site 2: Specificity of Tunisian βSChromosomes. Hemoglobin 2012; 36:533-44. [DOI: 10.3109/03630269.2012.721432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Makeyev AV, Enkhmandakh B, Hong SH, Joshi P, Shin DG, Bayarsaihan D. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues. PLoS One 2012; 7:e44443. [PMID: 22970219 PMCID: PMC3438194 DOI: 10.1371/journal.pone.0044443] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/02/2012] [Indexed: 11/18/2022] Open
Abstract
GTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression. Surprisingly, TFII-I recognizes the promoter sequences enriched for H3K4me3/K27me3 bivalent domain, an epigenetic signature of developmentally important genes. Moreover, we discovered significant differences in the association between TFII-I and BEN with the cis-regulatory elements in ESCs and embryonic craniofacial tissues. Our data indicate that in embryonic tissues BEN, but not the highly homologous TFII-I, is primarily recruited to target gene promoters. We propose a “feed-forward model” of gene regulation to explain the specificity of promoter recognition by TFII-I factors in eukaryotic cells.
Collapse
Affiliation(s)
- Aleksandr V. Makeyev
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, School of Dentistry, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Badam Enkhmandakh
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, School of Dentistry, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Seung-Hyun Hong
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Pujan Joshi
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Dong-Guk Shin
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Dashzeveg Bayarsaihan
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, School of Dentistry, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
16
|
Li B, Ding L, Li W, Story MD, Pace BS. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation. BMC Genomics 2012; 13:153. [PMID: 22537182 PMCID: PMC3353202 DOI: 10.1186/1471-2164-13-153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
Abstract
Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation.
Collapse
Affiliation(s)
- Biaoru Li
- Department Pediatrics, Georgia Health Sciences University, 1120 15th St, CN-4112, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
17
|
Roy AL. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene 2011; 492:32-41. [PMID: 22037610 DOI: 10.1016/j.gene.2011.10.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/08/2011] [Accepted: 10/11/2011] [Indexed: 12/12/2022]
Abstract
Exactly twenty years ago TFII-I was discovered as a biochemical entity that was able to bind to and function via a core promoter element called the Initiator (Inr). Since then several different properties of this signal-induced multifunctional factor were discovered. Here I update these ever expanding functions of TFII-I--focusing primarily on the last ten years since the first review appeared in this journal.
Collapse
Affiliation(s)
- Ananda L Roy
- Department of Pathology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
18
|
Role of helix-loop-helix proteins during differentiation of erythroid cells. Mol Cell Biol 2011; 31:1332-43. [PMID: 21282467 DOI: 10.1128/mcb.01186-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helix-loop-helix (HLH) proteins play a profound role in the process of development and cellular differentiation. Among the HLH proteins expressed in differentiating erythroid cells are the ubiquitous proteins Myc, USF1, USF2, and TFII-I, as well as the hematopoiesis-specific transcription factor Tal1/SCL. All of these HLH proteins exhibit distinct functions during the differentiation of erythroid cells. For example, Myc stimulates the proliferation of erythroid progenitor cells, while the USF proteins and Tal1 regulate genes that specify the differentiated phenotype. This minireview summarizes the known activities of Myc, USF, TFII-I, and Tal11/SCL and discusses how they may function sequentially, cooperatively, or antagonistically in regulating expression programs during the differentiation of erythroid cells.
Collapse
|
19
|
Blum R, Gupta R, Burger PE, Ontiveros CS, Salm SN, Xiong X, Kamb A, Wesche H, Marshall L, Cutler G, Wang X, Zavadil J, Moscatelli D, Wilson EL. Molecular signatures of the primitive prostate stem cell niche reveal novel mesenchymal-epithelial signaling pathways. PLoS One 2010; 5. [PMID: 20941365 PMCID: PMC2948007 DOI: 10.1371/journal.pone.0013024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022] Open
Abstract
Background Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system. Methodology/Principal Findings We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2), lipid metabolism (e.g., Srebp1) and cell migration (e.g., Areb6 and Rreb1). Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche. Conclusions/Significance We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may be common to mammalian niches in general. This study provides a comprehensive source for further studies of mesenchymal/epithelial interactions in the prostate stem cell niche. The elucidation of pathways in the normal primitive niche may provide greater insight into mechanisms subverted during abnormal proliferative and oncogenic processes. Understanding these events may result in the development of specific targeted therapies for prostatic diseases such as benign prostatic hypertrophy and carcinomas.
Collapse
Affiliation(s)
- Roy Blum
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Rashmi Gupta
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Patricia E. Burger
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Christopher S. Ontiveros
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah N. Salm
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Department of Science, Borough of Manhattan Community College/City University of New York, New York, New York, United States of America
| | - Xiaozhong Xiong
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Alexander Kamb
- Amgen Inc, South San Francisco, California, United States of America
| | - Holger Wesche
- Amgen Inc, South San Francisco, California, United States of America
| | - Lisa Marshall
- Amgen Inc, South San Francisco, California, United States of America
| | - Gene Cutler
- Amgen Inc, South San Francisco, California, United States of America
| | - Xiangyun Wang
- Pfizer Inc, Groton, Connecticut, United States of America
| | - Jiri Zavadil
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University Medical Center, New York, New York, United States of America
| | - David Moscatelli
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - E. Lynette Wilson
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Division of Immunology, University of Cape Town, Cape Town, South Africa
- Department of Urology, New York University School of Medicine, New York, New York, United States of America
- NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Seifert AW, Zheng Z, Ormerod BK, Cohn MJ. Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics. Nat Commun 2010; 1:23. [PMID: 20975695 PMCID: PMC2964453 DOI: 10.1038/ncomms1020] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/28/2010] [Indexed: 02/07/2023] Open
Abstract
The faithful positioning and growth of cells during
embryonic development is essential. In this study Seifert et al. demonstrate that
inactivation of Sonic Hedgehog during development of the genital tubercle results in a
prolonged G1 phase and a slower rate of growth. During embryonic development, cells are instructed which position to occupy, they interpret
these cues as differentiation programmes, and expand these patterns by growth. Sonic
hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is
not well understood. In this study, we show that inactivation of Shh in external
genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%.
Transient Shh signalling establishes pattern in the genital tubercle; however,
transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is
extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded
similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate
growth by similar mechanisms in different organ systems. The finding that Shh regulates cell
number by controlling the length of specific cell cycle phases identifies a novel mechanism
by which Shh elaborates pattern during appendage development.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
21
|
Zhou Z, Li X, Deng C, Ney PA, Huang S, Bungert J. USF and NF-E2 cooperate to regulate the recruitment and activity of RNA polymerase II in the beta-globin gene locus. J Biol Chem 2010; 285:15894-905. [PMID: 20236933 DOI: 10.1074/jbc.m109.098376] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human beta-globin gene is expressed at high levels in erythroid cells and regulated by proximal and distal cis-acting DNA elements, including promoter, enhancer, and a locus control region (LCR). Transcription complexes are recruited not only to the globin gene promoters but also to the LCR. Previous studies have implicated the ubiquitously expressed transcription factor USF and the tissue-restricted activator NF-E2 in the recruitment of transcription complexes to the beta-globin gene locus. Here we demonstrate that although USF is required for the efficient association of RNA polymerase II (Pol II) with immobilized LCR templates, USF and NF-E2 together regulate the association of Pol II with the adult beta-globin gene promoter. Recruitment of Pol II to the LCR occurs in undifferentiated murine erythroleukemia cells, but phosphorylation of LCR-associated Pol II at serine 5 of the C-terminal domain is mediated by erythroid differentiation and requires the activity of NF-E2. Furthermore, we provide evidence showing that USF interacts with NF-E2 in erythroid cells. The data provide mechanistic insight into how ubiquitous and tissue-restricted transcription factors cooperate to regulate the recruitment and activity of transcription complexes in a tissue-specific chromatin domain.
Collapse
Affiliation(s)
- Zhuo Zhou
- Department of Biochemistry and Molecular Biology, Powell Gene Therapy Center, Center for Epigenetics, and Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yang M, Qian XH, Zhao DH, Fu SZ. Effects of Astragalus polysaccharide on the erythroid lineage and microarray analysis in K562 cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 127:242-250. [PMID: 19922785 DOI: 10.1016/j.jep.2009.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/30/2009] [Accepted: 11/08/2009] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus polysaccharide (APS), obtained from Astragalus membranaceus, displays a range of activities in many systems, including the promotion of immune responses, anti-inflammation, and the protection of vessels. It possesses potent pharmacological activity on differentiation to the erythroid lineage. AIM OF THE STUDY To investigate the effects of APS on the erythroid differentiation and the mechanism of action by microarray analysis in K562 cells. MATERIALS AND METHODS Benzidine staining, semi-quantitative RT-PCR, Western blot and microarray methods were used to survey the effects of APS on inducing erythroid differentiation and the changes of gene expression profile in K562 cells. RESULTS Of the 13.2% positive cells detected by benzidine staining, the induction was the highest with 200 microg/ml APS on 72h. Ggamma-mRNA expression and fetal hemoglobin synthesis were significantly up-regulated. Microarray analysis showed that 31 genes were up-regulated and 108 genes were down-regulated. These differential expression genes generally regulate protein binding, cellular metabolic process, the cell proliferation, and transcriptional activator activity. The gamma-globin gene was up-regulated, the genes related with erythroid differentiation such as LMO2, Runx1 and GTF2I were up-regulated, while Bklf, Eklf, EPHB4 and Sp1 were down-regulated. CONCLUSIONS Our studies indicate that APS indicate potent activities on the erythroid differentiation by modulating genes of LMO2, Klf1, Klf3, Runx1, EphB4 and Sp1, increasing gamma-globin mRNA expression and fetal hemoglobin synthesis in K562 cells.
Collapse
Affiliation(s)
- Min Yang
- Department of Neonatology, Nanfang Hospital Affiliated Nanfang Medical University, 1838 Guang Zhou Da Dao North, Guangzhou 510515, Guangdong, PR China
| | | | | | | |
Collapse
|
23
|
H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood 2010; 115:2028-37. [PMID: 20068219 DOI: 10.1182/blood-2009-07-236059] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Histone modifications play an important role in the process of transcription. However, in contrast to lysine methylation, the role of arginine methylation in chromatin structure and transcription has been underexplored. The globin genes are regulated by a highly organized chromatin structure that juxtaposes the locus control region (LCR) with downstream globin genes. We report here that the targeted recruitment of asymmetric dimethyl H4R3 catalyzed by PRMT1 (protein arginine methyltransferase 1) facilitates histone H3 acetylation on Lys9/Lys14. Dimethyl H4R3 provides a binding surface for P300/CBP-associated factor (PCAF) and directly enhances histone H3 acetylation in vitro. We show that these active modifications are essential for efficient interactions between the LCR and the beta(maj)-promoter as well as transcription of the beta-globin gene. Furthermore, knockdown (KD) of PRMT1 by RNA interference in erythroid progenitor cells prevents histone acetylation, enhancer and promoter interaction, and recruitment of transcription complexes to the active beta-globin promoter. Reintroducing rat PRMT1 into the PRMT1 KD MEL cells rescues PRMT1 binding, beta-globin transcription, and erythroid differentiation. Taken together, our data suggest that PRMT1-mediated dimethyl H4R3 facilitates histone acetylation and enhancer/promoter communications, which lead to the efficient recruitment of transcription preinitiation complexes to active promoters.
Collapse
|
24
|
Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression. GENETIC VACCINES AND THERAPY 2009; 7:13. [PMID: 20042112 PMCID: PMC2809042 DOI: 10.1186/1479-0556-7-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 12/30/2009] [Indexed: 11/20/2022]
Abstract
Background Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. Methods A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Results Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements in T-cell specific gene expression were observed with the incorporation of additional cis-regulatory elements, such as a human polyadenylation signal and intron 7 from the human ADA gene. Conclusion These studies suggest that the combination of an authentically regulated ADA gene in a murine retroviral vector, together with additional locus-specific regulatory refinements, will yield a vector with a safer profile and greater efficacy in terms of high-level, therapeutic, regulated gene expression for the treatment of ADA-deficient severe combined immunodeficiency.
Collapse
|
25
|
Lazebnik MB, Tussie-Luna MI, Hinds PW, Roy AL. Williams-Beuren syndrome-associated transcription factor TFII-I regulates osteogenic marker genes. J Biol Chem 2009; 284:36234-36239. [PMID: 19880526 DOI: 10.1074/jbc.c109.063115] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Williams-Beuren syndrome (WBS), an autosomal dominant genetic disorder, is characterized by a unique cognitive profile and craniofacial defects. WBS results from a microdeletion at the chromosomal location 7q11.23 that encompasses the genes encoding the members of TFII-I family of transcription factors. Given that the haploinsufficiency for TFII-I is causative to the craniofacial phenotype in humans, we set out to analyze the effect of post-transcriptional silencing of TFII-I during BMP-2-driven osteoblast differentiation in the C2C12 cell line. Our results show that TFII-I plays an inhibitory role in regulating genes that are essential in osteogenesis and intersects with the bone-specific transcription factor Runx2 and the retinoblastoma protein, pRb. Identification of pathways regulated by TFII-I family transcription factors may begin to shed light on the molecular determinants of WBS.
Collapse
Affiliation(s)
- Maria B Lazebnik
- Programs in Genetics, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | - Philip W Hinds
- Programs in Genetics, Tufts University School of Medicine, Boston, Massachusetts 02111; Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111.
| | - Ananda L Roy
- Programs in Genetics, Tufts University School of Medicine, Boston, Massachusetts 02111; Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111; Programs in Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111.
| |
Collapse
|
26
|
Sacristán C, Schattgen SA, Berg LJ, Bunnell SC, Roy AL, Rosenstein Y. Characterization of a novel interaction between transcription factor TFII-I and the inducible tyrosine kinase in T cells. Eur J Immunol 2009; 39:2584-95. [PMID: 19701889 DOI: 10.1002/eji.200839031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
TCR signaling leads to the activation of kinases such as inducible tyrosine kinase (Itk), a key regulatory protein in T-lymphocyte activation and function. The homolog of Itk in B cells is Bruton's tyrosine kinase, previously shown to bind and phosphorylate the transcription factor TFII-I. TFII-I plays major roles in transcription and signaling. Our purpose herein was twofold: first, to identify some of the molecular determinants involved in TFII-I activation downstream of receptor crosslinking in T cells and second, to uncover the existence of Itk-TFII-I signaling in T lymphocytes. We report for the first time that TFII-I is tyrosine phosphorylated upon TCR, TCR/CD43, and TCR/CD28 co-receptor engagement in human and/or murine T cells. We show that Itk physically interacts with TFII-I and potentiates TFII-I-driven c-fos transcription. We demonstrate that TFII-I is phosphorylated upon co-expression of WT, but not kinase-dead, or kinase-dead/R29C mutant Itk, suggesting these residues are important for TFII-I phosphorylation, presumably via an Itk-dependent mechanism. Structural analysis of TFII-I-Itk interactions revealed that the first 90 residues of TFII-I are dispensable for Itk binding. Mutations within Itk's kinase, pleckstrin-homology, and proline-rich regions did not abolish TFII-I-Itk binding. Our results provide an initial step in understanding the biological role of Itk-TFII-I signaling in T-cell function.
Collapse
Affiliation(s)
- Catarina Sacristán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| | | | | | | | | | | |
Collapse
|
27
|
Arumugam PI, Urbinati F, Velu CS, Higashimoto T, Grimes HL, Malik P. The 3' region of the chicken hypersensitive site-4 insulator has properties similar to its core and is required for full insulator activity. PLoS One 2009; 4:e6995. [PMID: 19746166 PMCID: PMC2736623 DOI: 10.1371/journal.pone.0006995] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 08/17/2009] [Indexed: 11/19/2022] Open
Abstract
Chromatin insulators separate active transcriptional domains and block the spread of heterochromatin in the genome. Studies on the chicken hypersensitive site-4 (cHS4) element, a prototypic insulator, have identified CTCF and USF-1/2 motifs in the proximal 250 bp of cHS4, termed the "core", which provide enhancer blocking activity and reduce position effects. However, the core alone does not insulate viral vectors effectively. The full-length cHS4 has excellent insulating properties, but its large size severely compromises vector titers. We performed a structure-function analysis of cHS4 flanking lentivirus-vectors and analyzed transgene expression in the clonal progeny of hematopoietic stem cells and epigenetic changes in cHS4 and the transgene promoter. We found that the core only reduced the clonal variegation in expression. Unique insulator activity resided in the distal 400 bp cHS4 sequences, which when combined with the core, restored full insulator activity and open chromatin marks over the transgene promoter and the insulator. These data consolidate the known insulating activity of the canonical 5' core with a novel 3' 400 bp element with properties similar to the core. Together, they have excellent insulating properties and viral titers. Our data have important implications in understanding the molecular basis of insulator function and design of gene therapy vectors.
Collapse
Affiliation(s)
- Paritha I. Arumugam
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Fabrizia Urbinati
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Chinavenmeni S. Velu
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Tomoyasu Higashimoto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - H. Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Hematology-Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Defective erythropoiesis in transgenic mice expressing dominant-negative upstream stimulatory factor. Mol Cell Biol 2009; 29:5900-10. [PMID: 19704006 DOI: 10.1128/mcb.00419-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transcription factor USF is a ubiquitously expressed member of the helix-loop-helix family of proteins. It binds with high affinity to E-box elements and, through interaction with coactivators, aids in the formation of transcription complexes. Previous work demonstrated that USF regulates genes during erythroid differentiation, including HoxB4 and beta-globin. Here, we show that the erythroid cell-specific expression of a dominant-negative mutant of USF, A-USF, in transgenic mice reduces the expression of all beta-type globin genes and leads to the diminished association of RNA polymerase II with locus control region element HS2 and with the beta-globin gene promoter. We further show that the expression of A-USF reduces the expression of several key erythroid cell-specific transcription factors, including EKLF and Tal-1. We provide evidence demonstrating that USF interacts with known regulatory DNA elements in the EKLF and Tal-1 gene loci in erythroid cells. Furthermore, A-USF-expressing transgenic mice exhibit a defect in the formation of CD71(+) progenitor and Ter-119(+) mature erythroid cells. In summary, the data demonstrate that USF regulates globin gene expression indirectly by enhancing the expression of erythroid transcription factors and directly by mediating the recruitment of transcription complexes to the globin gene locus.
Collapse
|
29
|
LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis. Proc Natl Acad Sci U S A 2009; 106:10141-6. [PMID: 19497860 DOI: 10.1073/pnas.0900437106] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TAL1 is a critical transcription factor required for hematopoiesis. However, perturbation of its activity often leads to T cell leukemia. Whether and how its transcriptional activities are regulated during hematopoiesis remains to be addressed. Here, we show that TAL1 is associated with histone demethylase complexes containing lysine-specific demethylase 1 (LSD1), RE1 silencing transcription factor corepressor (CoREST), histone deacetylase 1 (HDAC1), and histone deacetylase 2 in erythroleukemia and T cell leukemia cells. The enzymatic domain of LSD1 plays an important role in repressing the TAL1-directed transcription of GAL4 reporter linked to a thymidine kniase minimal promoter. Furthermore, we demonstrate that the TAL1-associated LSD1, HDAC1, and their enzymatic activities are coordinately down-regulated during the early phases of erythroid differentiation. Consistent with the rapid changes of TAL1-corepressor complex during differentiation, TAL1 recruits LSD1 to the silenced p4.2 promoter in undifferentiated, but not in differentiated, murine erythroleukemia (MEL) cells. Finally, shRNA-mediated knockdown of LSD1 in MEL cells resulted in derepression of the TAL1 target gene accompanied by increasing dimeH3K4 at the promoter region. Thus, our data revealed that histone lysine demethylase LSD1 may negatively regulate TAL1-mediated transcription and suggest that the dynamic regulation of TAL1-associated LSD1/HDAC1 complex may determine the onset of erythroid differentiation programs.
Collapse
|
30
|
Lin IJ, Zhou Z, Crusselle-Davis VJ, Moghimi B, Gandhi K, Anantharaman A, Pantic D, Huang S, Jayandharan G, Zhong L, Srivastava A, Bungert J. Calpeptin increases the activity of upstream stimulatory factor and induces high level globin gene expression in erythroid cells. J Biol Chem 2009; 284:20130-5. [PMID: 19491096 DOI: 10.1074/jbc.m109.001461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation of erythroid cells is regulated by cell signaling pathways including those that change the intracellular concentration of calcium. Calcium-dependent proteases have been shown previously to process and regulate the activity of specific transcription factors. We show here that the protein levels of upstream stimulatory factor (USF) increase during differentiation of murine erythroleukemia (MEL) cells. USF was subject to degradation by the Ca(2+)-dependent protease m-calpain in undifferentiated but not in differentiated MEL cells. Treatment of MEL cells with the specific calpain inhibitor calpeptin increased the levels of USF and strongly induced expression of the adult alpha- and beta-globin genes. The induction of globin gene expression was associated with an increase in the association of USF and RNA po ly mer ase II with regulatory elements of the beta-globin gene locus. Calpeptin also induced high level alpha- and beta-globin gene expression in primary CD71-positive erythroid progenitor cells. The combined data suggest that inhibition of calpain activity is required for erythroid differentiation-associated increase in globin gene expression.
Collapse
Affiliation(s)
- I-Ju Lin
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
An insulator with barrier-element activity promotes alpha-spectrin gene expression in erythroid cells. Blood 2008; 113:1547-54. [PMID: 19008453 DOI: 10.1182/blood-2008-06-164954] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Understanding mechanisms controlling expression of the alpha-spectrin gene is important for understanding erythropoiesis, membrane biogenesis, and spectrin-linked hemolytic anemia. We showed previously that a minimal alpha-spectrin promoter directed low levels of expression only in early erythroid development, indicating elements outside the promoter are required for expression in adult erythrocytes. Addition of noncoding exon 1' and intron 1' conferred a 10-fold increase in activity in reporter gene assays. In this report, we used a transgenic mouse model to show that addition of exon 1' and intron 1' to the alpha-spectrin promoter conferred tissue-specific expression of a linked (A)gamma-globin gene in erythroid cells at all developmental stages. Expression was nearly position-independent, as 21 of 23 lines expressed the transgene, and gamma-globin protein was present in 100% of erythrocytes, indicating uniform expression. Additional in vivo studies revealed that exon 1' functions as an insulator with barrier-element activity. Chromatin immunoprecipitation assays demonstrated that this region was occupied by the upstream stimulatory factors 1/2 (USF1/USF2), similar to the well-characterized chicken HS4 insulator. These data identify the first barrier element described in an erythrocyte membrane protein gene and indicate that exon 1' and intron 1' are excellent candidate regions for mutations in patients with spectrin-linked hemolytic anemia.
Collapse
|
32
|
Liang S, Moghimi B, Yang TP, Strouboulis J, Bungert J. Locus control region mediated regulation of adult beta-globin gene expression. J Cell Biochem 2008; 105:9-16. [PMID: 18500726 DOI: 10.1002/jcb.21820] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many genes residing in gene clusters and expressed in a differentiation or developmental-stage specific manner are regulated by locus control regions (LCRs). These complex genetic regulatory elements are often composed of several DNAse I hypersensitive sites (HS sites) that function together to regulate the expression of several cis-linked genes. Particularly well characterized is the LCR associated with the beta-globin gene locus. The beta-globin LCR consists of five HS sites that are located upstream of the beta-like globin genes. Recent data demonstrate that the LCR is required for the association of the beta-globin gene locus with transcription foci or factories. The observation that RNA polymerase II associates with the LCR in erythroid progenitor or hematopoietic stem cells which do not express the globin genes suggests that the LCR is always in an accessible chromatin configuration during differentiation of erythroid cells. We propose that erythroid specific factors together with ubiquitous proteins mediate a change in chromatin configuration that juxtaposes the globin genes and the LCR. The proximity then facilitates the transfer of activities from the LCR to the globin genes. In this article we will discuss recent observations regarding beta-globin locus activation with a particular emphasis on LCR mediated activation of adult beta-globin gene expression.
Collapse
Affiliation(s)
- Shermi Liang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Center for Mammalian Genetics, Genetics Institute, Shands Cancer Center, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
33
|
Palstra R, de Laat W, Grosveld F. Chapter 4 β‐Globin Regulation and Long‐Range Interactions. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:107-42. [DOI: 10.1016/s0065-2660(07)00004-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Crusselle-Davis VJ, Zhou Z, Anantharaman A, Moghimi B, Dodev T, Huang S, Bungert J. Recruitment of coregulator complexes to the β-globin gene locus by TFII-I and upstream stimulatory factor. FEBS J 2007; 274:6065-73. [DOI: 10.1111/j.1742-4658.2007.06128.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Huang S, Li X, Yusufzai TM, Qiu Y, Felsenfeld G. USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol Cell Biol 2007; 27:7991-8002. [PMID: 17846119 PMCID: PMC2169148 DOI: 10.1128/mcb.01326-07] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insulator element at the 5' end of the chicken beta-globin locus acts as a barrier, protecting transgenes against silencing effects of adjacent heterochromatin. We showed earlier that the transcription factor USF1 binds within the insulator and that this site is important for generating in adjacent nucleosomes histone modifications associated with active chromatin and, by inference, with barrier function. To understand the mechanism of USF1 action, we have characterized USF1-containing complexes. USF1 interacts directly with the histone H4R3-specific methyltransferase PRMT1. USF1, PRMT1, and the histone acetyltransferases (HATs) PCAF and SRC-1 form a complex with both H4R3 histone methyltransferase and HAT activities. Small interfering RNA downregulation of USF1 results in localized loss of H4R3 methylation, and other histone modifications associated with euchromatin, at the insulator. A dominant negative peptide that interferes with USF1 binding to DNA causes silencing of an insulated reporter construct, indicating abolition of barrier function. These results show that USF1 plays a direct role in maintaining the barrier, supporting a model in which the insulator works as a barrier by maintaining a local environment of active chromatin.
Collapse
Affiliation(s)
- Suming Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0540, USA.
| | | | | | | | | |
Collapse
|