1
|
Wu G, Song L, Zhu J, Hu Y, Cao L, Tan Z, Zhang S, Li Z, Li J. An ATM/TRIM37/NEMO Axis Counteracts Genotoxicity by Activating Nuclear-to-Cytoplasmic NF-κB Signaling. Cancer Res 2018; 78:6399-6412. [PMID: 30254148 DOI: 10.1158/0008-5472.can-18-2063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Geyan Wu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jinrong Zhu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yameng Hu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lixue Cao
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhanyao Tan
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shuxia Zhang
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital &Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ziwen Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
2
|
STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium 2018; 74:131-143. [PMID: 30048879 DOI: 10.1016/j.ceca.2018.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
The central role of Ca2+ signaling in the development of functional immunity and tolerance is well established. These signals are initiated by antigen binding to cognate receptors on lymphocytes that trigger store operated Ca2+ entry (SOCE). The underlying mechanism of SOCE in lymphocytes involves TCR and BCR mediated activation of Stromal Interaction Molecule 1 and 2 (STIM1/2) molecules embedded in the ER membrane leading to their activation of Orai channels in the plasma membrane. STIM/Orai dependent Ca2+ signals guide key antigen induced lymphocyte development and function principally through direct regulation of Ca2+ dependent transcription factors. The role of Ca2+ signaling in NFAT activation and signaling is well known and has been studied extensively, but a wide appreciation and mechanistic understanding of how Ca2+ signals also shape the activation and specificity of NF-κB dependent gene expression has lagged. Here we discuss and interpret what is known about Ca2+ dependent mechanisms of NF-kB activation, including what is known and the gaps in our understanding of how these signals control lymphocyte development and function.
Collapse
|
3
|
Antiabong JF, Ngoepe MG, Abechi AS. Semi-quantitative digital analysis of polymerase chain reaction-electrophoresis gel: Potential applications in low-income veterinary laboratories. Vet World 2016; 9:935-939. [PMID: 27733792 PMCID: PMC5057030 DOI: 10.14202/vetworld.2016.935-939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022] Open
Abstract
Aim: The interpretation of conventional polymerase chain reaction (PCR) assay results is often limited to either positive or negative (non-detectable). The more robust quantitative PCR (qPCR) method is mostly reserved for quantitation studies and not a readily accessible technology in laboratories across developing nations. The aim of this study was to evaluate a semi-quantitative method for conventional PCR amplicons using digital image analysis of electrophoretic gel. The potential applications are also discussed. Materials and Methods: This study describes standard conditions for the digital image analysis of PCR amplicons using the freely available ImageJ software and confirmed using the qPCR assay. Results and Conclusion: Comparison of ImageJ analysis of PCR-electrophoresis gel and qPCR methods showed similar trends in the Fusobacterium necrophorum DNA concentration associated with healthy and periodontal disease infected wallabies (p≤0.03). Based on these empirical data, this study adds descriptive attributes (“more” or “less”) to the interpretation of conventional PCR results. The potential applications in low-income veterinary laboratories are suggested, and guidelines for the adoption of the method are also highlighted.
Collapse
Affiliation(s)
- John F Antiabong
- Department of Molecular Microbiology, School of Biological Sciences, Flinders University SA, Bedford Park, 5042, Australia; Department of Applied Biotechnology, National Veterinary Research Institute, Nigeria
| | - Mafora G Ngoepe
- Onderstepoort Biological Products, Onderstepoort, Pretoria, 0110, South Africa
| | - Adakole S Abechi
- Department of Applied Biotechnology, National Veterinary Research Institute, Nigeria
| |
Collapse
|
4
|
PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ 2016; 23:1448-57. [PMID: 26943323 DOI: 10.1038/cdd.2016.23] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 01/26/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) promotes cell survival in response to genotoxic stress by inducing the expression of anti-apoptotic proteins including Bcl-xL, which protects mitochondria from stress-induced mitochondrial outer membrane permeabilization (MOMP). Here we show that the multifunctional sorting protein Pacs-2 (phosphofurin acidic cluster sorting protein-2) is required for Bcl-xL induction following DNA damage in primary mouse thymocytes. Consequently, in response to DNA damage, Pacs-2(-/-) thymocytes exhibit a blunted induction of Bcl-xL, increased MOMP and accelerated apoptosis. Biochemical studies show that cytoplasmic PACS-2 promotes this DNA damage-induced anti-apoptotic pathway by interacting with ataxia telangiectasia mutated (ATM) to drive NF-κB activation and induction of Bcl-xL. However, Pacs-2 was not required for tumor necrosis factor-α-induced NF-κB activation, suggesting a role for PACS-2 selectively in NF-κB activation in response to DNA damage. These findings identify PACS-2 as an in vivo mediator of the ATM and NF-κB-dependent induction of Bcl-xL that promotes cell survival in response to DNA damage.
Collapse
|
5
|
Kelkar P, Walter A, Papadopoulos S, Mroß C, Munck M, Peche VS, Noegel AA. Nesprin-2 mediated nuclear trafficking and its clinical implications. Nucleus 2015; 6:479-89. [PMID: 26645154 PMCID: PMC4915507 DOI: 10.1080/19491034.2015.1128608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nuclear translocation of proteins has a crucial role in the pathogenesis of cancer, Alzheimer disease and viral infections. A complete understanding of nuclear trafficking mechanisms is therefore necessary in order to establish effective intervention strategies. Here we elucidate the role of Nesprin-2 in Ca2+/Calmodulin mediated nuclear transport. Nesprin-2 is an actin-binding nuclear envelope (NE) protein with roles in maintaining nuclear structure and location, regulation of transcription and mechanotransduction. Upon depletion of Nesprin-2 using shRNA, HaCaT cells show abnormal localization of the shuttling proteins BRCA1 and NF-κB. We show that their nuclear transport is unlikely due to the canonical RAN mediated nuclear import, but rather to a RAN independent Ca2+/Calmodulin driven mechanism involving Nesprin-2. We report novel interactions between the actin-binding domain of Nesprin-2 and Calmodulin and between the NLS containing region of BRCA1 and Calmodulin. Strikingly, displacing Nesprins from the NE resulted in increased steady state Ca2+ concentrations in the cytoplasm suggesting a previously unidentified role of Nesprins in Ca2+ regulation. On comparing Nesprin-2 and BRCA1 localization in the ovarian cancer cell lines SKOV-3 and Caov-3, Nesprin-2 and BRCA1 were localized to the NE envelope and the nucleus in SKOV-3, respectively, and to the cytoplasm in Caov-3 cells. Fibroblasts obtained from EDMD5 (Emery Dreifuss muscular dystrophy) patients showed loss of Nesprin-2 from the nuclear envelope, corresponding reduced nuclear localization of BRCA1 and enhanced cytoplasmic Ca2+. Taken together, the data suggests a novel role of Nesprin-2 in Ca2+/Calmodulin mediated nuclear trafficking and provides new insights which can guide future therapies.
Collapse
Affiliation(s)
- Pranav Kelkar
- a Institute for Biochemistry I; Medical Faculty; University of Cologne ; Köln , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne ; Köln , Germany.,c Center for Molecular Medicine; University of Cologne ; Köln , Germany
| | - Anna Walter
- d Institute of Vegetative Physiology; Medical Faculty; University of Cologne ; Köln ; Germany
| | - Symeon Papadopoulos
- d Institute of Vegetative Physiology; Medical Faculty; University of Cologne ; Köln ; Germany
| | - Carmen Mroß
- a Institute for Biochemistry I; Medical Faculty; University of Cologne ; Köln , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne ; Köln , Germany.,c Center for Molecular Medicine; University of Cologne ; Köln , Germany
| | - Martina Munck
- a Institute for Biochemistry I; Medical Faculty; University of Cologne ; Köln , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne ; Köln , Germany.,c Center for Molecular Medicine; University of Cologne ; Köln , Germany
| | - Vivek S Peche
- a Institute for Biochemistry I; Medical Faculty; University of Cologne ; Köln , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne ; Köln , Germany.,c Center for Molecular Medicine; University of Cologne ; Köln , Germany
| | - Angelika A Noegel
- a Institute for Biochemistry I; Medical Faculty; University of Cologne ; Köln , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne ; Köln , Germany.,c Center for Molecular Medicine; University of Cologne ; Köln , Germany
| |
Collapse
|
6
|
Quantification of cellular NEMO content and its impact on NF-κB activation by genotoxic stress. PLoS One 2015; 10:e0116374. [PMID: 25742655 PMCID: PMC4350935 DOI: 10.1371/journal.pone.0116374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/08/2014] [Indexed: 12/28/2022] Open
Abstract
NF-κB essential modulator, NEMO, plays a key role in canonical NF-κB signaling induced by a variety of stimuli, including cytokines and genotoxic agents. To dissect the different biochemical and functional roles of NEMO in NF-κB signaling, various mutant forms of NEMO have been previously analyzed. However, transient or stable overexpression of wild-type NEMO can significantly inhibit NF-κB activation, thereby confounding the analysis of NEMO mutant phenotypes. What levels of NEMO overexpression lead to such an artifact and what levels are tolerated with no significant impact on NEMO function in NF-κB activation are currently unknown. Here we purified full-length recombinant human NEMO protein and used it as a standard to quantify the average number of NEMO molecules per cell in a 1.3E2 NEMO-deficient murine pre-B cell clone stably reconstituted with full-length human NEMO (C5). We determined that the C5 cell clone has an average of 4 x 105 molecules of NEMO per cell. Stable reconstitution of 1.3E2 cells with different numbers of NEMO molecules per cell has demonstrated that a 10-fold range of NEMO expression (0.6–6x105 molecules per cell) yields statistically equivalent NF-κB activation in response to the DNA damaging agent etoposide. Using the C5 cell line, we also quantified the number of NEMO molecules per cell in several commonly employed human cell lines. These results establish baseline numbers of endogenous NEMO per cell and highlight surprisingly normal functionality of NEMO in the DNA damage pathway over a wide range of expression levels that can provide a guideline for future NEMO reconstitution studies.
Collapse
|
7
|
Muslimov IA, Tuzhilin A, Tang TH, Wong RKS, Bianchi R, Tiedge H. Interactions of noncanonical motifs with hnRNP A2 promote activity-dependent RNA transport in neurons. ACTA ACUST UNITED AC 2014; 205:493-510. [PMID: 24841565 PMCID: PMC4033767 DOI: 10.1083/jcb.201310045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+-dependent RNA–protein interactions enable activity-inducible RNA transport in dendrites. A key determinant of neuronal functionality and plasticity is the targeted delivery of select ribonucleic acids (RNAs) to synaptodendritic sites of protein synthesis. In this paper, we ask how dendritic RNA transport can be regulated in a manner that is informed by the cell’s activity status. We describe a molecular mechanism in which inducible interactions of noncanonical RNA motif structures with targeting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 form the basis for activity-dependent dendritic RNA targeting. High-affinity interactions between hnRNP A2 and conditional GA-type RNA targeting motifs are critically dependent on elevated Ca2+ levels in a narrow concentration range. Dendritic transport of messenger RNAs that carry such GA motifs is inducible by influx of Ca2+ through voltage-dependent calcium channels upon β-adrenergic receptor activation. The combined data establish a functional correspondence between Ca2+-dependent RNA–protein interactions and activity-inducible RNA transport in dendrites. They also indicate a role of genomic retroposition in the phylogenetic development of RNA targeting competence.
Collapse
Affiliation(s)
- Ilham A Muslimov
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Aliya Tuzhilin
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Thean Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysi, 13200 Kepala Batas, Penang, Malaysia
| | - Robert K S Wong
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Riccardo Bianchi
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
8
|
Berchtold CM, Coughlin A, Kasper Z, Thibeault SL. Paracrine potential of fibroblasts exposed to cigarette smoke extract with vascular growth factor induction. Laryngoscope 2013; 123:2228-36. [PMID: 23494588 PMCID: PMC4113205 DOI: 10.1002/lary.24052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/07/2013] [Accepted: 01/22/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES/HYPOTHESIS Nicotine, a major constituent of cigarette smoke, can activate the cholinergic anti-inflammatory pathway by binding to α7-nicotinic acetylcholine receptor (α7nAChR) expressed on the surface of certain cells. Here, we ask whether cigarette smoke extract induced different paracrine factors compared to the in vivo regulator of inflammation, tumor necrosis factor-α, in human vocal fold fibroblasts (hVFFs) shown to express low levels of α7nAChR. STUDY DESIGN In vitro. METHODS α7nAChR was detected by nested polymerase chain reaction and immunohistochemistry. γH2AX, a marker for DNA double-stand breaks, was measured by immunofluorescence. Cigarette smoke extract was prepared in accordance with investigators studying effects of cigarette smoke. hVFFs treated for 3 hours had media replaced for an additional 24 hours. Cytokine, chemokine, and growth factor levels in media were assessed by multiplex analysis. RESULTS α7nAChR expression levels decreased with the passage number of fibroblasts. Tumor necrosis factor-α induced a significantly different profile of cytokines, chemokines, and growth factor compared to cigarette smoke extract exposure. Cigarette smoke extract at a concentration not associated with induction of γH2AX nuclear foci significantly increased vascular endothelial growth factor. CONCLUSIONS Cigarette smoke extract elicited a response important for regulation of angiogenesis and vascular permeability during inflammation, without evidence of DNA double-stand breaks associated with carcinogenesis. hVFFs are capable of participating in paracrine regulation of pathological blood vessel formation associated with cigarette smoking-related diseases (ie, Reinke edema). These cells express α7nAChR, an essential component of the cholinergic anti-inflammatory pathway regulated by the vagus nerve in certain tissues and a target of therapeutic agents.
Collapse
Affiliation(s)
- Craig M Berchtold
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, U.S.A
| | | | | | | |
Collapse
|
9
|
Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L, Nelson PS. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 2012; 18:1359-68. [PMID: 22863786 DOI: 10.1038/nm.2890] [Citation(s) in RCA: 639] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/08/2012] [Indexed: 12/18/2022]
Abstract
Acquired resistance to anticancer treatments is a substantial barrier to reducing the morbidity and mortality that is attributable to malignant tumors. Components of tissue microenvironments are recognized to profoundly influence cellular phenotypes, including susceptibilities to toxic insults. Using a genome-wide analysis of transcriptional responses to genotoxic stress induced by cancer therapeutics, we identified a spectrum of secreted proteins derived from the tumor microenvironment that includes the Wnt family member wingless-type MMTV integration site family member 16B (WNT16B). We determined that WNT16B expression is regulated by nuclear factor of κ light polypeptide gene enhancer in B cells 1 (NF-κB) after DNA damage and subsequently signals in a paracrine manner to activate the canonical Wnt program in tumor cells. The expression of WNT16B in the prostate tumor microenvironment attenuated the effects of cytotoxic chemotherapy in vivo, promoting tumor cell survival and disease progression. These results delineate a mechanism by which genotoxic therapies given in a cyclical manner can enhance subsequent treatment resistance through cell nonautonomous effects that are contributed by the tumor microenvironment.
Collapse
Affiliation(s)
- Yu Sun
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Baldwin AS. Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer. Immunol Rev 2012; 246:327-45. [PMID: 22435564 DOI: 10.1111/j.1600-065x.2012.01095.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cellular response to survive or to undergo death is fundamental to the benefit of the organism, and errors in this process can lead to autoimmunity and cancer. The transcription factor nuclear factor κB (NF-κB) functions to block cell death through transcriptional induction of genes encoding anti-apoptotic and antioxidant proteins. This is essential for survival of activated cells of the immune system and for cells undergoing a DNA damage response. In Ras-transformed cells and tumors as well as other cancers, NF-κB functions to suppress apoptosis--a hallmark of cancer. Critical prosurvival roles for inhibitor of NF-κB kinase (IKK) family members, including IKKε and TBK1, have been reported, which are both NF-κB-dependent and -independent. While the roles of NF-κB in promoting cell survival in lymphocytes and in cancers is relatively clear, evidence has been presented that NF-κB can promote cell death in particular contexts. Recently, IKK was shown to play a critical role in the induction of autophagy, a metabolic response typically associated with cell survival but which can lead to cell death. This review provides an historical perspective, along with new findings, regarding the roles of the IKK and NF-κB pathways in regulating cell survival.
Collapse
Affiliation(s)
- Albert S Baldwin
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
McCool KW, Miyamoto S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol Rev 2012; 246:311-26. [PMID: 22435563 DOI: 10.1111/j.1600-065x.2012.01101.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dimeric transcription factor nuclear factor κB (NF-κB) functions broadly in coordinating cellular responses during inflammation and immune reactions, and its importance in the pathogenesis of cancer is increasingly recognized. Many of the signal transduction pathways that trigger activation of cytoplasmic NF-κB in response to a broad array of immune and inflammatory stimuli have been elaborated in great detail. NF-κB can also be activated by DNA damage, though relatively less is known about the signal transduction mechanisms that link DNA damage in the nucleus with activation of NF-κB in the cytoplasm. Here, we focus on the conserved signaling pathway that has emerged that promotes NF-κB activation following DNA damage. Post-translational modification of NF-κB essential modulator (NEMO) plays a central role in linking the cellular DNA damage response to NF-κB via the ataxia telangiectasia mutated (ATM) kinase. Accumulating evidence suggests that DNA damage-dependent NF-κB activation may play significant biological roles, particularly during lymphocyte differentiation and progression of human malignancies.
Collapse
Affiliation(s)
- Kevin W McCool
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | |
Collapse
|
12
|
König HG, Fenner BJ, Byrne JC, Schwamborn RF, Bernas T, Jefferies CA, Prehn JHM. Fibroblast growth factor homologous factor 1 interacts with NEMO to regulate NF-κB signaling in neurons. J Cell Sci 2012; 125:6058-70. [DOI: 10.1242/jcs.111880] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuronal survival and plasticity critically depend on constitutive activity of the transcription factor nuclear factor-κB (NF-κB). We here describe a role for a small intracellular fibroblast growth factor homologue, the fibroblast growth factor homologous factor 1 (FHF1/FGF12) in the regulation of NF-κB activity in mature neurons. FHF's have previously been described to control neuronal excitability, and mutations in FHF isoforms give rise to a form of progressive spinocerebellar ataxia. Using a protein-array approach, we identified FHF1b as a novel interactor of the canonical NF–κB modulator IKKγ/NEMO. Co-immunoprecipitation, pull-down and GAL4-reporter experiments, as well as proximity ligation assays confirmed the interaction of FHF1 and NEMO, and demonstrated that a major site of interaction occurred within the axon initial segment. Fhf1 gene silencing strongly activated neuronal NF-κB activity and increased neurite lengths, branching patterns and spine counts in mature cortical neurons. The effects of FHF1 on neuronal NF-κB activity and morphology required the presence of NEMO. Our results imply that FHF1 negatively regulates the constitutive NF-κB activity in neurons.
Collapse
|
13
|
Importance of PIKKs in NF-κB activation by genotoxic stress. Biochem Pharmacol 2011; 82:1371-83. [PMID: 21872579 DOI: 10.1016/j.bcp.2011.07.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 01/11/2023]
Abstract
Alteration of the genome integrity leads to the activation of a vast network of cellular responses named "DNA damage response". Three kinases from the phosphoinositide 3-kinase-like protein kinase family regulate this network; ATM and DNA-PK both activated by DNA double-strand breaks and ATR activated by replication blocks. "DNA damage response" pathway coordinates cell cycle arrest, DNA repair, and the activation of transcription factors such as p53 and NF-κB. It controls senescence/apoptosis/survival of the damaged cells. Cell death or survival result from a tightly regulated balance between antagonist pro- and anti-apoptotic signals. NF-κB is a key transcription factor involved in immunity, inflammation and cell transformation. When activated by DNA double-strand breaks, NF-κB has most often a pro-survival effect and thereof interferes with chemotherapy treatments that often rely on DNA damage to induce tumor cell death (i.e. topoisomerase inhibitors and ionizing radiation). NF-κB is thus an important pharmaceutical target. Agents leading to replication stress induce a pro-apoptotic NF-κB. The molecular mechanisms initiated by DNA lesions leading to NF-κB nuclear translocation have been extensively studied these last years. In this review, we will focus on ATM, ATR and DNA-PK functions both in the IKKα/IKKβ/NEMO-dependent or -independent signaling pathways and on the regulation they can exercise at the promoter level of NF-κB regulated genes.
Collapse
|
14
|
Lodewick J, Lamsoul I, Bex F. Move or die: the fate of the Tax oncoprotein of HTLV-1. Viruses 2011; 3:829-57. [PMID: 21994756 PMCID: PMC3185767 DOI: 10.3390/v3060829] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 12/12/2022] Open
Abstract
The HTLV-1 Tax protein both activates viral replication and is involved in HTLV-1-mediated transformation of T lymphocytes. The transforming properties of Tax include altering the expression of select cellular genes via activation of cellular pathways and perturbation of both cell cycle control mechanisms and apoptotic signals. The recent discovery that Tax undergoes a hierarchical sequence of posttranslational modifications that control its intracellular localization provides provocative insights into the mechanisms regulating Tax transcriptional and transforming activities.
Collapse
Affiliation(s)
- Julie Lodewick
- Institut de Recherches Microbiologiques J-M Wiame, Université Libre de Bruxelles, B-1070 Bruxelles, Belgium.
| | | | | |
Collapse
|
15
|
Bensimon A, Aebersold R, Shiloh Y. Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett 2011; 585:1625-39. [PMID: 21570395 DOI: 10.1016/j.febslet.2011.05.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 01/18/2023]
Abstract
The DNA of all organisms is constantly subjected to damaging agents, both exogenous and endogenous. One extremely harmful lesion is the double-strand break (DSB), which activates a massive signaling network - the DNA damage response (DDR). The chief activator of the DSB response is the ATM protein kinase, which phosphorylates numerous key players in its various branches. Recent phosphoproteomic screens have extended the scope of damage-induced phosphorylations beyond the direct ATM substrates. We review the evidence for the involvement of numerous other protein kinases in the DDR, obtained from documentation of specific pathways as well as high-throughput screens. The emerging picture of the protein phosphorylation landscape in the DDR broadens the current view on the role of this protein modification in the maintenance of genomic stability. Extensive cross-talk between many of these protein kinases forms an interlaced signaling network that spans numerous cellular processes. Versatile protein kinases in this network affect pathways that are different from those they have been identified with to date. The DDR appears to be one of the most extensive signaling responses to cellular stimuli.
Collapse
Affiliation(s)
- Ariel Bensimon
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
16
|
Espinosa L, Bigas A, Mulero MC. Alternative nuclear functions for NF-κB family members. Am J Cancer Res 2011; 1:446-59. [PMID: 21984965 PMCID: PMC3186045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 05/31/2023] Open
Abstract
The NF-κB signalling pathway regulates many different biological processes from the cellular level to the whole organism. The majority of these functions are completely dependent on the activation of the cytoplasmic IKK kinase complex that leads to IκB degradation and results in the nuclear translocation of specific NF-κB dimers, which, in general, act as transcription factors. Although this is a well-established mechanism of action, several publications have now demonstrated that some members of this pathway display additional functions in the nucleus as regulators of NF-κB-dependent and independent gene expression. In this review, we compiled and put in context most of the data concerning specific nuclear roles for IKK and IκB proteins.
Collapse
Affiliation(s)
- Lluís Espinosa
- Program in Cancer Research, IMIM-Hospital del Mar Barcelona, Spain
| | | | | |
Collapse
|
17
|
Abstract
A large body of literature describes elaborate NF-κB signaling networks induced by inflammatory and immune signals. Decades of research has revealed that transcriptionally functional NF-κB dimers are activated by two major pathways, canonical and non-canonical. Both pathways involve the release of NF-κB dimers from inactive cytoplasmic complexes to cause their nuclear translocation to modulate gene expression programs and biological responses. NF-κB is also responsive to genotoxic agents; however, signal communication networks that are initiated in the nucleus following DNA damage induction are less defined. Evidence in the literature supports the presence of such signaling pathways induced by multiple distinct genotoxic agents, resulting in the activation of cytoplasmic IKK complex. An example is a pathway that involves the DNA damage-responsive kinase ataxia telangiectasia mutated (ATM) and a series of post-translational modifications of NF-κB essential modulator (NEMO) in the nucleus of a genotoxin-exposed cell. Recent evidence also suggests that this nuclear-initiated NF-κB signaling pathway plays significant physiological and pathological roles, particularly in lymphocyte development and human cancer progression. This review will summarize these new developments, while identifying significant unanswered questions and providing new hypotheses that may be addressed in future studies.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
18
|
A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Mol Cell 2010; 40:63-74. [PMID: 20932475 DOI: 10.1016/j.molcel.2010.09.008] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 04/20/2010] [Accepted: 08/18/2010] [Indexed: 11/21/2022]
Abstract
As part of the genotoxic stress response, cells activate the transcription factor NF-κB. The DNA strand break sensor poly(ADP-ribose)-polymerase-1 (PARP-1) and the kinase ataxia telangiectasia mutated (ATM) act as proximal signal mediators. PARP-1 assembles a nucleoplasmic signalosome, which triggers PIASy-mediated IKKγ SUMOylation. ATM-dependent IKKγ phosphorylation and subsequent ubiquitination were implicated to activate the cytoplasmic IκB kinase (IKK) complex by unknown mechanisms. We show that activated ATM translocates in a calcium-dependent manner to cytosol and membrane fractions. Through a TRAF-binding motif, ATM activates TRAF6, resulting in Ubc13-mediated K63-linked polyubiquitin synthesis and cIAP1 recruitment. The ATM-TRAF6-cIAP1 module stimulates TAB2-dependent TAK1 phosphorylation. Both nuclear PARP-1- and cytoplasmic ATM-driven signaling branches converge at the IKK complex to catalyze monoubiquitination of IKKγ at K285. Our data indicate that exported SUMOylated IKKγ acts as a substrate. IKKγ monoubiquitination is a prerequisite for genotoxic IKK and NF-κB activation, but also promotes cytokine signaling.
Collapse
|
19
|
Lee HJ, Joo M, Abdolrasulnia R, Young DG, Choi I, Ware LB, Blackwell TS, Christman BW. Peptidylarginine deiminase 2 suppresses inhibitory {kappa}B kinase activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Biol Chem 2010; 285:39655-62. [PMID: 20937835 DOI: 10.1074/jbc.m110.170290] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Peptidylarginine deiminases (PADs) are enzymes that convert arginine to citrulline in proteins. In this study, we examined PAD-mediated citrullination and its effect on pro-inflammatory activity in the macrophage cell line RAW 264.7. Citrullination of 45-65-kDa proteins was induced when cells were treated with lipopolysaccharide (LPS; 1 μg/ml). Protein citrullination was suppressed by the intracellular calcium chelator BAPTA/AM (30 μM). LPS treatment up-regulated COX-2 levels in cells. Interestingly, overexpressing PAD2 reduced LPS-mediated COX-2 up-regulation by 50%. PAD2 overexpression also reduced NF-κB activity, determined by NF-κB-driven luciferase activity. The effect of PAD2 on NF-κB activity was further examined by using HEK 293 cells transfected with NF-κB luciferase, IκB β/γ kinase (IKKβ/γ) subunits, and PAD2. IKKβ increased NF-κB activity, but this increase was markedly suppressed when PAD2 was present in cells. IKKβ-mediated NF-κB activation was further enhanced by IKKγ in the presence of calcium ionophore A23187. However, this stimulatory effect of IKKβ/γ was abolished by PAD2. Coimmunoprecipitation of cell lysates showed that IKKγ and PAD2 can coimmunoprecipitate in the presence of the Ca(2+) ionophore. IKKγ coimmunoprecipitated truncation mutants, PAD2(1-385) and PAD2(355-672). The substitution of Gln-358 (a putative ligand for Ca(2+) binding) with an Ala abolished coimmunoprecipitation. Conversely, PAD2 coimmunoprecipitated truncation mutants IKKγ(1-196) and IKKγ(197-419). In other experiments, treating RAW 264.7 cells with LPS induced citrullination in the immunoprecipitates of IKKγ. In vitro citrullination assay showed that incubation of purified PAD2 and IKKγ proteins in the presence of Ca(2+) citrullinated IKKγ. These results demonstrate that PAD2 interacts with IKKγ and suppresses NF-κB activity.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jeon YJ, Kim DH, Jung H, Chung SJ, Chi SW, Cho S, Lee SC, Park BC, Park SG, Bae KH. Annexin A4 interacts with the NF-kappaB p50 subunit and modulates NF-kappaB transcriptional activity in a Ca2+-dependent manner. Cell Mol Life Sci 2010; 67:2271-81. [PMID: 20237821 PMCID: PMC11115496 DOI: 10.1007/s00018-010-0331-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/16/2010] [Accepted: 02/23/2010] [Indexed: 11/30/2022]
Abstract
Previously, we identified annexin A4 (ANXA4) as a candidate substrate of caspase-3. Proteomic studies were performed to identify interacting proteins with a view to determining the roles of ANXA4. ANXA4 was found to interact with the p105. Subsequent studies revealed that ANXA4 interacts with NF-kappaB through the Rel homology domain of p50. Furthermore, the interaction is markedly increased by elevated Ca(2+) levels. NF-kappaB transcriptional activity assays demonstrated that ANXA4 suppresses NF-kappaB transcriptional activity in the resting state. Following treatment with TNF-alpha or PMA, ANXA4 also suppressed NF-kappaB transcriptional activity, which was upregulated significantly early after etoposide treatment. This difference may be due to the intracellular Ca(2+) level. Additionally, ANXA4 translocates to the nucleus together with p50, and imparts greater resistance to apoptotic stimulation by etoposide. Our results collectively indicate that ANXA4 differentially modulates the NF-kappaB signaling pathway, depending on its interactions with p50 and the intracellular Ca(2+) ion level.
Collapse
Affiliation(s)
- Young-Joo Jeon
- Medical Proteomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| | - Do-Hyung Kim
- Medical Proteomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| | - Hyeyun Jung
- Medical Proteomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| | - Sang J. Chung
- Medical Proteomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| | - Seung-Wook Chi
- Medical Proteomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, 156-756 Republic of Korea
| | - Sang Chul Lee
- Medical Proteomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| | - Byoung Chul Park
- Medical Proteomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| | - Kwang-Hee Bae
- Medical Proteomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| |
Collapse
|
21
|
Fenner BJ, Scannell M, Prehn JHM. Expanding the substantial interactome of NEMO using protein microarrays. PLoS One 2010; 5:e8799. [PMID: 20098747 PMCID: PMC2808332 DOI: 10.1371/journal.pone.0008799] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/24/2009] [Indexed: 11/18/2022] Open
Abstract
Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway.
Collapse
Affiliation(s)
- Beau J. Fenner
- Centre for Human Proteomics and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Scannell
- Centre for Human Proteomics and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H. M. Prehn
- Centre for Human Proteomics and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
22
|
Agassandian M, Chen BB, Schuster CC, Houtman JCD, Mallampalli RK. 14-3-3zeta escorts CCTalpha for calcium-activated nuclear import in lung epithelia. FASEB J 2009; 24:1271-83. [PMID: 20007511 DOI: 10.1096/fj.09-136044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Integrity of animal biomembranes is critical to preserve normal cellular functions and viability. Phosphatidylcholine, an indispensible membrane component, requires the enzyme CCTalpha for its biosynthesis. Nuclear expression of CCTalpha is needed for expansion of the nuclear membrane network, but mechanisms for CCTalpha nuclear import are unknown. Herein, we show that in epithelia, extracellular Ca(2+) triggers CCTalpha cytoplasmic-nuclear translocation. CCTalpha nuclear import was associated with binding to 14-3-3zeta, a key regulator of protein trafficking. 14-3-3zeta was both sufficient and required for CCTalpha nuclear import. Helix G within the 14-3-3zeta binding groove interacts with a putative molecular signature within the CCTalpha carboxyl-terminal phosphoserine motif (residues 328-343). 14-3-3zeta was critically involved in preserving phosphatidylcholine synthesis and cell viability in a model of Pseudomonas aeruginosa infection where Ca(2+) concentrations increase within epithelia. Thus, 14-3-3zeta controls CCTalpha nuclear import in response to calcium signals, thereby regulating mammalian phospholipid synthesis. Agassandian, M., Chen, B. B., Schuster, C. C., Houtman, J. C. D., Mallampalli, R. K. 14-3-3zeta escorts CCTalpha for calcium-activated nuclear import in lung epithelia.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
23
|
Poltz R, Franke R, Schweitzer K, Klamt S, Gilles ED, Naumann M. Logical network of genotoxic stress-induced NF-κB signal transduction predicts putative target structures for therapeutic intervention strategies. Adv Appl Bioinform Chem 2009; 2:125-38. [PMID: 21918620 PMCID: PMC3169943 DOI: 10.2147/aabc.s8211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genotoxic stress is induced by a broad range of DNA-damaging agents and could lead to a variety of human diseases including cancer. DNA damage is also therapeutically induced for cancer treatment with the aim to eliminate tumor cells. However, the effectiveness of radio- and chemotherapy is strongly hampered by tumor cell resistance. A major reason for radio- and chemotherapeutic resistances is the simultaneous activation of cell survival pathways resulting in the activation of the transcription factor nuclear factor-kappa B (NF-κB). Here, we present a Boolean network model of the NF-κB signal transduction induced by genotoxic stress in epithelial cells. For the representation and analysis of the model, we used the formalism of logical interaction hypergraphs. Model reconstruction was based on a careful meta-analysis of published data. By calculating minimal intervention sets, we identified p53-induced protein with a death domain (PIDD), receptor-interacting protein 1 (RIP1), and protein inhibitor of activated STAT y (PIASy) as putative therapeutic targets to abrogate NF-κB activation resulting in apoptosis. Targeting these structures therapeutically may potentiate the effectiveness of radio-and chemotherapy. Thus, the presented model allows a better understanding of the signal transduction in tumor cells and provides candidates as new therapeutic target structures.
Collapse
Affiliation(s)
- Rainer Poltz
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Cheng J, Wu CC, Gotlinger KH, Zhang F, Falck JR, Narsimhaswamy D, Schwartzman ML. 20-hydroxy-5,8,11,14-eicosatetraenoic acid mediates endothelial dysfunction via IkappaB kinase-dependent endothelial nitric-oxide synthase uncoupling. J Pharmacol Exp Ther 2009; 332:57-65. [PMID: 19841472 DOI: 10.1124/jpet.109.159863] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction and activation occur in the vasculature and are believed to contribute to the pathogenesis of cardiovascular diseases. We have shown that 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a cytochrome P450 4A-derived eicosanoid that promotes vasoconstriction in the microcirculation, uncouples endothelial nitric-oxide synthase (eNOS) and reduces nitric oxide (NO) levels via the dissociation of the 90-kDa heat shock protein (HSP90) from eNOS. It also causes endothelial activation by stimulating nuclear factor-kappaB (NF-kappaB) and increasing levels of pro-inflammatory cytokines. In this study, we examined signaling mechanisms that may link 20-HETE-induced endothelial dysfunction and activation. Under conditions in which 20-HETE inhibited NO production, it also stimulated inhibitor of NF-kappaB (IkappaB) phosphorylation. Both effects were prevented by inhibition of tyrosine kinases and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). It is noteworthy that inhibitor of IkappaB kinase (IKK) activity negated the 20-HETE-mediated inhibition of NO production. Immunoprecipitation experiments revealed that treatment of ionophore-stimulated cells with 20-HETE brings about a decrease in HSP90-eNOS association and an increase in HSP90-IKKbeta association, suggesting that the activation by 20-HETE of NF-kappaB is linked to its action on eNOS. Furthermore, addition of inhibitors of tyrosine kinase MAPK and IKK restored the 20-HETE-mediated impairment of acetylcholine-induced relaxation in rat renal interlobar arteries. The results indicate that 20-HETE mediates eNOS uncoupling and endothelial dysfunction via the activation of tyrosine kinase, MAPK, and IKK, and these effects are linked to 20-HETE-mediated endothelial activation.
Collapse
Affiliation(s)
- Jennifer Cheng
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Solt LA, Madge LA, May MJ. NEMO-binding domains of both IKKalpha and IKKbeta regulate IkappaB kinase complex assembly and classical NF-kappaB activation. J Biol Chem 2009; 284:27596-608. [PMID: 19666475 DOI: 10.1074/jbc.m109.047563] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proinflammatory NF-kappaB activation requires the IkappaB (inhibitor of NF-kappaB) kinase (IKK) complex that contains two catalytic subunits named IKKalpha and IKKbeta and a regulatory subunit named NF-kappaB essential modulator (NEMO). NEMO and IKKbeta are essential for tumor necrosis factor (TNF)-induced NF-kappaB activation, and we recently demonstrated that NEMO and IKKalpha are sufficient for interleukin (IL)-1-induced signaling. IKKalpha and IKKbeta both contain a functional NEMO-binding domain (NBD); however, the role of NEMO association with each kinase in NF-kappaB signaling and IKK complex formation remains unclear. To address this question, we stably reconstituted IKKalpha(-/-) and IKKbeta(-/-) murine embryonic fibroblasts (MEFs) with wild-type (WT) or NBD-deficient (DeltaNBD) versions of IKKalpha and IKKbeta, respectively. TNF-induced classical NF-kappaB activation in IKKbeta(-/-) MEFs was rescued by IKKbeta(WT) but not IKKbeta(DeltaNBD), whereas neither IKKbeta(WT) nor IKKbeta(DeltaNBD) affected IL-1-induced NF-kappaB signaling. As previously described, classical NF-kappaB transcriptional activity was absent in IKKalpha(-/-) cells. Reconstitution with either IKKalpha(WT) or IKKalpha(DeltaNBD) rescued both IL-1 and TNF-induced transcription, demonstrating that NEMO association is not required for IKKalpha-dependent regulation of NF-kappaB-dependent transcription. Stably expressed IKKalpha(WT) or IKKbeta(WT) associated with endogenous IKKs and NEMO in IKKalpha(-/-) or IKKbeta(-/-) MEFs, respectively, resulting in formation of the heterotrimeric IKKalpha-IKKbeta-NEMO complex. In contrast, although the IKKalpha(DeltaNBD) and IKKbeta(DeltaNBD) mutants associated with endogenous IKKs containing an NBD, these dimeric endogenous IKK-IKK(DeltaNBD) complexes did not associate with NEMO. These findings therefore demonstrate that formation of the heterotrimeric IKKalpha-IKKbeta-NEMO holocomplex absolutely requires two intact NEMO-binding domains.
Collapse
Affiliation(s)
- Laura A Solt
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
26
|
Penzo M, Massa PE, Olivotto E, Bianchi F, Borzi RM, Hanidu A, Li X, Li J, Marcu KB. Sustained NF-kappaB activation produces a short-term cell proliferation block in conjunction with repressing effectors of cell cycle progression controlled by E2F or FoxM1. J Cell Physiol 2008; 218:215-27. [PMID: 18803232 DOI: 10.1002/jcp.21596] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
NF-kappaB transcription factors induce a host of genes involved in pro-inflammatory/stress-like responses; but the collateral effects and consequences of sustained NF-kappaB activation on other cellular gene expression programming remain less well understood. Here enforced expression of a constitutively active IKKbeta T-loop mutant (IKKbetaca) drove murine fibroblasts into transient growth arrest that subsided within 2-3 weeks of continuous culture. Proliferation arrest was associated with a G1/S phase block in immortalized and primary early passage MEFs. Molecular analysis in immortalized MEFs revealed that inhibition of cell proliferation in the initial 1-2 weeks after their IKKbetaca retroviral infection was linked to the transient, concerted repression of essential cell cycle effectors that are known targets of either E2F or FoxM1. Co-expression of a phosphorylation resistant IkappaBalpha super repressor and IKKbetaca abrogated growth arrest and cell cycle effector repression, thereby linking IKKbetaca's effects to canonical NF-kappaB activation. Transient growth arrest of IKKbetaca cells was associated with enhanced p21 (cyclin-dependent kinase inhibitor 1A) protein expression, due in part to transcriptional activation by NF-kappaB and also likely due to strong repression of Skp2 and Csk1, both of which are FoxM1 direct targets mediating proteasomal dependent p21 turnover. Ablation of p21 in immortalized MEFs reduced their IKKbetaca mediated growth suppression. Moreover, trichostatin A inhibition of HDACs alleviated the repression of E2F and FoxM1 targets induced by IKKbetaca, suggesting chromatin mediated gene silencing in IKKbetaca's short term repressive effects on E2F and FoxM1 target gene expression.
Collapse
Affiliation(s)
- Marianna Penzo
- Centro Ricerca Biomedica Applicata (CRBA), S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Brzoska K, Szumiel I. Signalling loops and linear pathways: NF- B activation in response to genotoxic stress. Mutagenesis 2008; 24:1-8. [DOI: 10.1093/mutage/gen056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
28
|
Abstract
Controlled nucleocytoplasmic localization regulates activity of NF kappa B as well as other transcription factors. Analysis of the nucleocytoplasmic protein shuttling has been greatly facilitated by the use of leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export. The authors have previously shown that LMB inhibits NF kappa B activity in human neutrophils by increasing the nuclear accumulation of NF kappa B inhibitor, I kappa B alpha. In this chapter, the authors describe a protocol that uses LMB to study the nucleocytoplasmic shuttling of I kappa B alpha in human macrophage-like U937 cells, thus inhibiting NF kappa B activity. This protocol should be readily adaptable to analyze the nucleocytoplasmic shuttling of other proteins in human leukocytes.
Collapse
|