1
|
Liu X, Wang J, Wu LJ, Trinh B, Tsai RYL. IMPDH Inhibition Decreases TERT Expression and Synergizes the Cytotoxic Effect of Chemotherapeutic Agents in Glioblastoma Cells. Int J Mol Sci 2024; 25:5992. [PMID: 38892179 PMCID: PMC11172490 DOI: 10.3390/ijms25115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells. Our results showed that MPA decreased the expression of telomerase reverse transcriptase (TERT) in both U87 and U251 cells, and the expression of O6-methylguanine-DNA methyltransferase (MGMT) in U251 cells. In support, MPA treatment reduced the amount of telomere repeats in U87 and U251 cells. TERT downregulation by MPA was associated with a significant decrease in c-Myc (a TERT transcription activator) in U87 but not U251 cells, and a dose-dependent increase in p53 and CCCTC-binding factor (CTCF) (TERT repressors) in both U87 and U251 cells. In U251 cells, MPA displayed strong cytotoxic synergy with BCNU and moderate synergy with irinotecan, oxaliplatin, paclitaxel, or temozolomide (TMZ). In U87 cells, MPA displayed strong cytotoxic synergy with all except TMZ, acting primarily through the apoptotic pathway. Our work expands the mechanistic potential of IMPDH inhibition to TERT/telomere regulation and reveals a synthetic lethality between MPA and anti-GBM drugs.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Junying Wang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Laura J. Wu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Britni Trinh
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Robert Y. L. Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Ihashi S, Hamanaka M, Kaji M, Mori R, Nishizaki S, Mori M, Imasato Y, Inoue K, Matoba S, Ogonuki N, Takasu A, Nakamura M, Matsumoto K, Anzai M, Ogura A, Ikawa M, Miyamoto K. Incomplete activation of Alyref and Gabpb1 leads to preimplantation arrest in cloned mouse embryos. Life Sci Alliance 2023; 6:e202302296. [PMID: 37640449 PMCID: PMC10462978 DOI: 10.26508/lsa.202302296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Differentiated cell nuclei can be reprogrammed after nuclear transfer (NT) to oocytes and the produced NT embryos can give rise to cloned animals. However, development of NT embryos is often hampered by recurrent reprogramming failures, including the incomplete activation of developmental genes, yet specific genes responsible for the arrest of NT embryos are not well understood. Here, we searched for developmentally important genes among the reprogramming-resistant H3K9me3-repressed genes and identified Alyref and Gabpb1 by siRNA screening. Gene knockout of Alyref and Gabpb1 by the CRISPR/Cas9 system resulted in early developmental arrest in mice. Alyref was needed for the proper formation of inner cell mass by regulating Nanog, whereas Gabpb1 deficiency led to apoptosis. The supplement of Alyref and Gabpb1 mRNA supported efficient preimplantation development of cloned embryos. Alyref and Gabpb1 were silenced in NT embryos partially because of the repressed expression of Klf16 by H3K9me3. Thus, our study shows that the H3K9me3-repressed genes contain developmentally required genes, and the incomplete activation of such genes results in preimplantation arrest of cloned embryos.
Collapse
Affiliation(s)
- Shunya Ihashi
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Mizuto Hamanaka
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Masaya Kaji
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Ryunosuke Mori
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Shuntaro Nishizaki
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Miki Mori
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Yuma Imasato
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba, Japan
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba, Japan
| | - Atsushi Takasu
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Misaki Nakamura
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Kazuya Matsumoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Masayuki Anzai
- Institute of Advanced Technology, Kindai University, Wakayama, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| |
Collapse
|
3
|
Identification of Regulatory Factors and Prognostic Markers in Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2022; 11:antiox11020303. [PMID: 35204186 PMCID: PMC8868268 DOI: 10.3390/antiox11020303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of motor neurons, leading to muscle atrophy, paralysis and even death. Immune disorder, redox imbalance, autophagy disorder, and iron homeostasis disorder have been shown to play critical roles in the pathogenesis of ALS. However, the exact pathogenic genes and the underlying mechanism of ALS remain unclear. The purpose of this study was to screen for pathogenic regulatory genes and prognostic markers in ALS using bioinformatics methods. We used Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and expression regulation network analysis to investigate the function of differentially expressed genes in the nerve tissue, lymphoid tissue, and whole blood of patients with ALS. Our results showed that the up-regulated genes were mainly involved in immune regulation and inflammation, and the down-regulated genes were mainly involved in energy metabolism and redox processes. Eleven up-regulated transcription factors (CEBPB, CEBPD, STAT5A, STAT6, RUNX1, REL, SMAD3, GABPB2, FOXO1, PAX6, and FOXJ1) and one down-regulated transcription factor (NOG) in the nerve tissue of patients with ALS likely play important regulatory roles in the pathogenesis of ALS. Based on construction and evaluation of the ALS biomarker screening model, cluster analysis of the identified characteristic genes, univariate Cox proportional hazards regression analysis, and the random survival forest algorithm, we found that MAEA, TPST1, IFNGR2, and ALAS2 may be prognostic markers regarding the survival of ALS patients. High expression of MAEA, TPST1, and IFNGR2 and low expression of ALAS2 in ALS patients may be closely related to short survival of ALS patients. Taken together, our results indicate that immune disorders, inflammation, energy metabolism, and redox imbalance may be the important pathogenic factors of ALS. CEBPB, CEBPD, STAT5A, STAT6, RUNX1, REL, SMAD3, GABPB2, FOXO1, PAX6, FOXJ1, and NOG may be important regulatory factors linked to the pathogenesis of ALS. MAEA, TPST1, IFNGR2, and ALAS2 are potential important ALS prognostic markers. Our findings provide evidence on the pathogenesis of ALS, potential targets for the development of new drugs for ALS, and important markers for predicting ALS prognosis.
Collapse
|
4
|
Abstract
Glioblastoma is a highly lethal form of brain cancer with no current treatment options that substantially improve patient outcomes. A key therapeutic challenge is the identification of methods that reduce tumor burden while leaving normal cells unaffected. We show that TERT-promoter mutations, common in glioblastoma, lead to TERT reactivation through increased binding of GABPB1L-isoform–containing transcription factor complexes. In turn, we find that cancer-cell–specific inhibition of TERT through GABPB1L reduction results in near-term anti-growth effects and an impaired DNA damage response that profoundly increase the sensitivity of glioblastoma tumors to frontline chemotherapy. Our results thus provide rationale for GABPB1L inhibition combined with temozolomide chemotherapy treatment as a promising therapeutic strategy for glioblastoma. Most glioblastomas (GBMs) achieve cellular immortality by acquiring a mutation in the telomerase reverse transcriptase (TERT) promoter. TERT promoter mutations create a binding site for a GA binding protein (GABP) transcription factor complex, whose assembly at the promoter is associated with TERT reactivation and telomere maintenance. Here, we demonstrate increased binding of a specific GABPB1L-isoform–containing complex to the mutant TERT promoter. Furthermore, we find that TERT promoter mutant GBM cells, unlike wild-type cells, exhibit a critical near-term dependence on GABPB1L for proliferation, notably also posttumor establishment in vivo. Up-regulation of the protein paralogue GABPB2, which is normally expressed at very low levels, can rescue this dependence. More importantly, when combined with frontline temozolomide (TMZ) chemotherapy, inducible GABPB1L knockdown and the associated TERT reduction led to an impaired DNA damage response that resulted in profoundly reduced growth of intracranial GBM tumors. Together, these findings provide insights into the mechanism of cancer-specific TERT regulation, uncover rapid effects of GABPB1L-mediated TERT suppression in GBM maintenance, and establish GABPB1L inhibition in combination with chemotherapy as a therapeutic strategy for TERT promoter mutant GBM.
Collapse
|
5
|
Guterres AN, Villanueva J. Targeting telomerase for cancer therapy. Oncogene 2020; 39:5811-5824. [PMID: 32733068 PMCID: PMC7678952 DOI: 10.1038/s41388-020-01405-w] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Telomere maintenance via telomerase reactivation is a nearly universal hallmark of cancer cells which enables replicative immortality. In contrast, telomerase activity is silenced in most adult somatic cells. Thus, telomerase represents an attractive target for highly selective cancer therapeutics. However, development of telomerase inhibitors has been challenging and thus far there are no clinically approved strategies exploiting this cancer target. The discovery of prevalent mutations in the TERT promoter region in many cancers and recent advances in telomerase biology has led to a renewed interest in targeting this enzyme. Here we discuss recent efforts targeting telomerase, including immunotherapies and direct telomerase inhibitors, as well as emerging approaches such as targeting TERT gene expression driven by TERT promoter mutations. We also address some of the challenges to telomerase-directed therapies including potential therapeutic resistance and considerations for future therapeutic applications and translation into the clinical setting. Although much work remains to be done, effective strategies targeting telomerase will have a transformative impact for cancer therapy and the prospect of clinically effective drugs is boosted by recent advances in structural models of human telomerase.
Collapse
Affiliation(s)
- Adam N Guterres
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Liu C, Dai SK, Sun Z, Wang Z, Liu PP, Du HZ, Yu S, Liu CM, Teng ZQ. GA-binding protein GABPβ1 is required for the proliferation of neural stem/progenitor cells. Stem Cell Res 2019; 39:101501. [PMID: 31344652 DOI: 10.1016/j.scr.2019.101501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023] Open
Abstract
GA binding protein (GABP) is a ubiquitously expressed transcription factor that regulates the development of multiple cell types, including osteoblast, hematopoietic stem cells, B cells and T cells. However, so little is known about its biological function in the development of central nervous system. In this report, we show that GABP is highly expressed in neural stem/progenitor cells (NSPCs) and down-regulated in neurons, and that GABPβ1 is required for the proper proliferation of NSPCs. Knockdown of GABPα resulted in an elevated expression level of GABPβ1, and GABPβ1 down-regulation significantly decreased the proliferation of NSPCs, whereas GABPβ2 knockdown did not result in any changes in the proliferation of NSPCs. We observed that there was nearly a 21-fold increase of the GABPβ1S mRNA level in GABPβ1L KO NSPCs compared to WT cells, and knocking down of GABPβ1S in GABPβ1L KO NSPCs could further reduce their proliferation potential. We also found that knockdown of GABPβ1 promoted neuronal and astrocytic differentiation of NSPCs. Finally, we identified dozens of downstream target genes of GABPβ1, which are closely associated with the cell proliferation and differentiation. Collectively, our results suggest that both GABPβ1L and GABPβ1S play an essential role in regulating the proper proliferation and differentiation of NSPCs.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhuo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Mancini A, Xavier-Magalhães A, Woods WS, Nguyen KT, Amen AM, Hayes JL, Fellmann C, Gapinske M, McKinney AM, Hong C, Jones LE, Walsh KM, Bell RJA, Doudna JA, Costa BM, Song JS, Perez-Pinera P, Costello JF. Disruption of the β1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner. Cancer Cell 2018; 34:513-528.e8. [PMID: 30205050 PMCID: PMC6135086 DOI: 10.1016/j.ccell.2018.08.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 07/02/2018] [Accepted: 08/03/2018] [Indexed: 12/27/2022]
Abstract
TERT promoter mutations reactivate telomerase, allowing for indefinite telomere maintenance and enabling cellular immortalization. These mutations specifically recruit the multimeric ETS factor GABP, which can form two functionally independent transcription factor species: a dimer or a tetramer. We show that genetic disruption of GABPβ1L (β1L), a tetramer-forming isoform of GABP that is dispensable for normal development, results in TERT silencing in a TERT promoter mutation-dependent manner. Reducing TERT expression by disrupting β1L culminates in telomere loss and cell death exclusively in TERT promoter mutant cells. Orthotopic xenografting of β1L-reduced, TERT promoter mutant glioblastoma cells rendered lower tumor burden and longer overall survival in mice. These results highlight the critical role of GABPβ1L in enabling immortality in TERT promoter mutant glioblastoma.
Collapse
Affiliation(s)
- Andrew Mancini
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Ana Xavier-Magalhães
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Wendy S Woods
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kien-Thiet Nguyen
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Alexandra M Amen
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Josie L Hayes
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Christof Fellmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Gapinske
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew M McKinney
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Lindsey E Jones
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Kyle M Walsh
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Robert J A Bell
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute (HHMI), Berkeley, CA 94720, USA
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Jun S Song
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Prieto-Ruiz JA, Alis R, García-Benlloch S, Sáez-Atiénzar S, Ventura I, Hernández-Andreu JM, Hernández-Yago J, Blesa JR. Expression of the human TIMM23 and TIMM23B genes is regulated by the GABP transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:80-94. [PMID: 29413900 DOI: 10.1016/j.bbagrm.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
The TIM23 protein is a key component of the mitochondrial import machinery in yeast and mammals. TIM23 is the channel-forming subunit of the translocase of the inner mitochondrial membrane (TIM23) complex, which mediates preprotein translocation across the mitochondrial inner membrane. In this paper, we aimed to characterize the promoter region of the highly similar human TIM23 orthologs: TIMM23 and TIMM23B. Bioinformatic analysis revealed putative sites for the GA-binding protein (GABP) and the recombination signal binding protein for immunoglobulin kappa J (RBPJ) transcription factors in both promoters. Luciferase reporter assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation experiments showed three functional sites for GABP and one functional site for RBPJ in both promoters. Moreover, silencing of GABPA, the gene encoding the DNA-binding subunit of the GABP transcription factor, resulted in reduced expression of TIMM23 and TIMM23B. Our results show an essential role of GABP in activating TIMM23 expression. More broadly, they suggest that physiological signals involved in activating mitochondrial biogenesis and oxidative function also enhance the transcription but not the protein level of TIMM23, which is essential for maintaining mitochondrial function and homeostasis.
Collapse
Affiliation(s)
- Jesús A Prieto-Ruiz
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Rafael Alis
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Sandra García-Benlloch
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Sara Sáez-Atiénzar
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Ignacio Ventura
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - José M Hernández-Andreu
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - José Hernández-Yago
- Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/ Guillem de Castro 94, 46001, Valencia, Spain.
| | - José R Blesa
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| |
Collapse
|
9
|
Wu H, Xiao Y, Zhang S, Ji S, Wei L, Fan F, Geng J, Tian J, Sun X, Qin F, Jin C, Lin J, Yin ZY, Zhang T, Luo L, Li Y, Song S, Lin SC, Deng X, Camargo F, Avruch J, Chen L, Zhou D. The Ets transcription factor GABP is a component of the hippo pathway essential for growth and antioxidant defense. Cell Rep 2013; 3:1663-77. [PMID: 23684612 DOI: 10.1016/j.celrep.2013.04.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/15/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
The transcriptional coactivator Yes-associated protein (YAP) plays an important role in organ-size control and tumorigenesis. However, how Yap gene expression is regulated remains unknown. This study shows that the Ets family member GABP binds to the Yap promoter and activates YAP transcription. The depletion of GABP downregulates YAP, resulting in a G1/S cell-cycle block and increased cell death, both of which are substantially rescued by reconstituting YAP. GABP can be inactivated by oxidative mechanisms, and acetaminophen-induced glutathione depletion inhibits GABP transcriptional activity and depletes YAP. In contrast, activating YAP by deleting Mst1/Mst2 strongly protects against acetaminophen-induced liver injury. Similar to its effects on YAP, Hippo signaling inhibits GABP transcriptional activity through several mechanisms. In human liver cancers, enhanced YAP expression is correlated with increased nuclear expression of GABP. Therefore, we conclude that GABP is an activator of Yap gene expression and a potential therapeutic target for cancers driven by YAP.
Collapse
Affiliation(s)
- Hongtan Wu
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiang'an District, Xiamen, Fujian 361102, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yu S, Jing X, Colgan JD, Zhao DM, Xue HH. Targeting tetramer-forming GABPβ isoforms impairs self-renewal of hematopoietic and leukemic stem cells. Cell Stem Cell 2013; 11:207-19. [PMID: 22862946 DOI: 10.1016/j.stem.2012.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/26/2012] [Accepted: 05/03/2012] [Indexed: 11/27/2022]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are both capable of self-renewal, with HSCs sustaining multiple blood lineage differentiation and LSCs indefinitely propagating leukemia. The GABP complex, consisting of DNA binding GABPα subunit and transactivation GABPβ subunit, critically regulates HSC multipotency and self-renewal via controlling an essential gene regulatory module. Two GABPβ isoforms, GABPβ1L and GABPβ2, contribute to assembly of GABPα(2)β(2) tetramer. We demonstrate that GABPβ1L/β2 deficiency specifically impairs HSC quiescence and survival, with little impact on cell cycle or apoptosis in differentiated blood cells. The HSC-specific effect is mechanistically ascribed to perturbed integrity of the GABP-controlled gene regulatory module in HSCs. Targeting GABPβ1L/β2 also impairs LSC self-renewal in p210(BCR-ABL)-induced chronic myelogenous leukemia (CML) and exhibits synergistic effects with tyrosine kinase inhibitor imatinib therapy in inhibiting CML propagation. These findings identify the tetramer-forming GABPβ isoforms as specific HSC regulators and potential therapeutic targets in treating LSC-based hematological malignancy.
Collapse
Affiliation(s)
- Shuyang Yu
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
11
|
Naïve CD4+ T cells of Peyer's patches produce more IL-6 than those of spleen in response to antigenic stimulation. Immunol Lett 2011; 141:109-15. [PMID: 21944889 DOI: 10.1016/j.imlet.2011.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/22/2011] [Accepted: 09/06/2011] [Indexed: 12/29/2022]
Abstract
Peyer's patches (PPs) are potential sites where specific mucosal immune responses and oral tolerance are induced. The unique features of these immune responses are thought to occur in micromilieu and are largely affected by antigen-presenting cells (APCs) such as dendritic cells. In this study, we investigated the cytokine profiles induced by the activation of CD4(+) T cells of PPs. PP cells from TCR transgenic mice secreted greater amounts of IL-5 and IL-6 than spleen cells after antigenic stimulation. IL-5 was mainly produced by PP non-T cells, whereas IL-6 was secreted by PP CD4(+) cells. PPs contained two major populations including naïve and memory/activated CD4(+) cells; both populations secreted IL-6 upon activation. We also found that CD4(+)/CD62L(hi) naïve cells from PPs secreted a greater amount of IL-6 after stimulation than those from the spleen. Furthermore, subtraction and qPCR analyses revealed that PP CD4(+)/CD62L(hi) cells express a greater amount of transcripts of GA-binding protein β subunit 1 than those of the spleen. These results suggest that naïve T cells as well as non-T cells and activated/memory T cells from PPs are distinct from their splenic counterparts and thus cause unique immune responses the in intestine.
Collapse
|
12
|
Thompson C, MacDonald G, Mueller CR. Decreased expression of BRCA1 in SK-BR-3 cells is the result of aberrant activation of the GABP Beta promoter by an NRF-1-containing complex. Mol Cancer 2011; 10:62. [PMID: 21609478 PMCID: PMC3127848 DOI: 10.1186/1476-4598-10-62] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 05/24/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND BRCA1 has recently been identified as a potential regulator of mammary stem/progenitor cell differentiation, and this function may explain the high prevalence of breast cancer in BRCA1 mutation carriers, as well as the downregulation of BRCA1 in a large proportion of sporadic breast cancers. That is, loss of BRCA1 function results in blocked differentiation with expansion of the mammary stem/progenitor cells. Because BRCA1 also maintains genomic integrity, its loss could produce a pool of genetically unstable stem/progenitor cells that are prime targets for further transforming events. Thus, elucidating the regulatory mechanisms of BRCA1 expression is important to our understanding of normal and malignant breast differentiation. RESULTS Loss of BRCA1 expression in the ErbB2-amplified SK-BR-3 cell line was found to be the result of loss of activity of the ets transcription factor GABP, a previously characterized regulator of BRCA1 transcription. The expression of the non-DNA binding GABPβ subunit was shown to be deficient, while the DNA binding subunit, GABPα was rendered unstable by the absence of GABPβ. Deletion analysis of the GABPβ proximal promoter identified a potential NRF-1 binding site as being critical for expression. Supershift analysis, the binding of recombinant protein and chromatin immunoprecipitation confirmed the role of NRF-1 in regulating the expression of GABPβ. The siRNA knockdown of NRF-1 resulted in decreased GABPβ and BRCA1 expression in MCF-7 cells indicating that they form a transcriptional network. NRF-1 levels and activity did not differ between SK-BR-3 and MCF-7 cells, however the NRF-1 containing complex on the GABPβ promoter differed between the two lines and appears to be the result of altered coactivator binding. CONCLUSIONS Both NRF-1 and GABP have been linked to the regulation of nuclear-encoded mitochondrial proteins, and the results of this study suggest their expression is coordinated by NRF-1's activation of the GABPβ promoter. Their linkage to BRCA1, a potential breast stem cell regulator, implies a connection between the induction of mitochondrial metabolism and breast differentiation.
Collapse
Affiliation(s)
- Crista Thompson
- Pathology and Molecular Medicine Department, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
13
|
Yu S, Cui K, Jothi R, Zhao DM, Jing X, Zhao K, Xue HH. GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells. Blood 2011; 117:2166-78. [PMID: 21139080 PMCID: PMC3062326 DOI: 10.1182/blood-2010-09-306563] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/30/2010] [Indexed: 12/15/2022] Open
Abstract
Maintaining a steady pool of self-renewing hematopoietic stem cells (HSCs) is critical for sustained production of multiple blood lineages. Many transcription factors and molecules involved in chromatin and epigenetic modifications have been found to be critical for HSC self-renewal and differentiation; however, their interplay is less understood. The transcription factor GA binding protein (GABP), consisting of DNA-binding subunit GABPα and transactivating subunit GABPβ, is essential for lymphopoiesis as shown in our previous studies. Here we demonstrate cell-intrinsic, absolute dependence on GABPα for maintenance and differentiation of hematopoietic stem/progenitor cells. Through genome-wide mapping of GABPα binding and transcriptomic analysis of GABPα-deficient HSCs, we identified Zfx and Etv6 transcription factors and prosurvival Bcl-2 family members including Bcl-2, Bcl-X(L), and Mcl-1 as direct GABP target genes, underlying its pivotal role in HSC survival. GABP also directly regulates Foxo3 and Pten and hence sustains HSC quiescence. Furthermore, GABP activates transcription of DNA methyltransferases and histone acetylases including p300, contributing to regulation of HSC self-renewal and differentiation. These systematic analyses revealed a GABP-controlled gene regulatory module that programs multiple aspects of HSC biology. Our studies thus constitute a critical first step in decoding how transcription factors are orchestrated to regulate maintenance and multipotency of HSCs.
Collapse
Affiliation(s)
- Shuyang Yu
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Jing X, Zhao DM, Waldschmidt TJ, Xue HH. GABPbeta2 is dispensible for normal lymphocyte development but moderately affects B cell responses. J Biol Chem 2008; 283:24326-33. [PMID: 18628204 DOI: 10.1074/jbc.m804487200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GA-binding protein (GABP) is the only Ets family transcription factor that functions as a heterodimer. The GABPalpha subunit binds to DNA, and the GABPbeta subunit possesses the ability to transactivate target genes. Inactivation of GABPalpha caused embryonic lethality and defective lymphocyte development and immune responses. There are 3 isoforms of the GABPbeta subunit, but whether they have distinct functions has not been addressed. In this study, we selectively ablated the expression of GABPbeta2 using a gene trap strategy. GABPbeta2-deficient mice were viable and had normal T and B cell development, suggesting that loss of GABPbeta2 is compensated for by other GABPbeta isoforms during these processes. GABPbeta2-deficient T cells can be activated and proliferate similarly to wild-type controls. In contrast, B cells lacking GABPbeta2 showed 2-3-fold increases in proliferation in response to B cell receptor stimulation. In addition, GABPbeta2-deficient mice exhibited moderately increased antibody production and germinal center responses when challenged with T-dependent antigens. These results indicate that albeit GABPbeta isoforms are redundant in lymphocyte development, GABPbeta2 has a distinct role in restraining B cell expansion and humoral responses.
Collapse
Affiliation(s)
- Xuefang Jing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|